1
|
Fink A, Ben Hur D, Wani NA, Cohen H, Segev-Zarko LA, Arnusch CJ, Shai Y. Development of Nontoxic Peptides for Lipopolysaccharide Neutralization and Sepsis Treatment. ACS Pharmacol Transl Sci 2024; 7:1795-1806. [PMID: 38898940 PMCID: PMC11184611 DOI: 10.1021/acsptsci.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
Host defense peptides (HDPs), also named antimicrobial peptides (AMPs), are increasingly being recognized for serving multiple functions in protecting the host from infection and disease. Previous studies have shown that various HDPs can also neutralize lipopolysaccharide (LPS, endotoxin), as well as lipoteichoic acid (LTA), inducing macrophage activation. However, antimicrobial activity is usually accompanied by systemic toxicity which makes it difficult to use HDPs as antiendotoxin agents. Here we report that key parameters can uncouple these two functions yielding nontoxic peptides with potent LPS and LTA neutralization activities in vitro and in animal models. The data reveal that peptide length, the number, and the placement of positive charges are important parameters involved in LPS neutralization. Crucially, the peptide exhibited a separation between its membrane-disrupting and antimicrobial properties, effectively decoupling them from its ability to neutralize LPS. This essential distinction prevented systemic toxicity and led to the peptide's complete rescue of mice suffering from severe septic shock in two distinct models. Strong binding to LPS, changes in structure, and oligomerization state upon LPS binding were important factors that determined the activity of the peptides. In the face of the increasing threat of septic shock worldwide, it is crucial to grasp how we can neutralize harmful substances like LPS. This knowledge is vital for creating nontoxic treatments for sepsis.
Collapse
Affiliation(s)
- Avner Fink
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
- MilliporeSigma
Life Science, Kiryat
Hamada 13, 9777613 Jerusalem, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Hadar Cohen
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Li-Av Segev-Zarko
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Christopher J. Arnusch
- Department
of Desalination and Water Treatment, Zuckerberg Institute for Water
Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
| | - Yechiel Shai
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Khan J, Gul P, Rashid MT, Li Q, Liu K. Composition of Whole Grain Dietary Fiber and Phenolics and Their Impact on Markers of Inflammation. Nutrients 2024; 16:1047. [PMID: 38613080 PMCID: PMC11013088 DOI: 10.3390/nu16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an important biological response to any tissue injury. The immune system responds to any stimulus, such as irritation, damage, or infection, by releasing pro-inflammatory cytokines. The overproduction of pro-inflammatory cytokines can lead to several diseases, e.g., cardiovascular diseases, joint disorders, cancer, and allergies. Emerging science suggests that whole grains may lower the markers of inflammation. Whole grains are a significant source of dietary fiber and phenolic acids, which have an inverse association with the risk of inflammation. Both cereals and pseudo-cereals are rich in dietary fiber, e.g., arabinoxylan and β-glucan, and phenolic acids, e.g., hydroxycinnamic acids and hydroxybenzoic acids, which are predominantly present in the bran layer. However, the biological mechanisms underlying the widely reported association between whole grain consumption and a lower risk of disease are not fully understood. The modulatory effects of whole grains on inflammation are likely to be influenced by several mechanisms including the effect of dietary fiber and phenolic acids. While some of these effects are direct, others involve the gut microbiota, which transforms important bioactive substances into more beneficial metabolites that modulate the inflammatory signaling pathways. Therefore, the purpose of this review is twofold: first, it discusses whole grain dietary fiber and phenolic acids and highlights their potential; second, it examines the health benefits of these components and their impacts on subclinical inflammation markers, including the role of the gut microbiota. Overall, while there is promising evidence for the anti-inflammatory properties of whole grains, further research is needed to understand their effects fully.
Collapse
Affiliation(s)
- Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Esmaealzadeh N, Ram M, Abdolghaffari A, Marques AM, Bahramsoltani R. Toll-like receptors in inflammatory bowel disease: A review of the role of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155178. [PMID: 38007993 DOI: 10.1016/j.phymed.2023.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation within the gastrointestinal tract with a remarkable impact on patients' quality of life. Toll-like receptors (TLR), as a key contributor of immune system in inflammation, has a critical role in the pathogenesis of IBD and thus, can be a suitable target of therapeutic agents. Medicinal plants have long been considered as a source of bioactive agents for different diseases, including IBD. PURPOSE This review discusses current state of the art on the role of plant-derived compounds for the management of IBD with a focus on TLRs. METHODS Electronic database including PubMed, Web of Science, and Scopus were searched up to January 2023 and all studies in which anticolitis effects of a phytochemical was assessed via modulation of TLRs were considered. RESULTS Different categories of phytochemicals, including flavonoids, lignans, alkaloids, terpenes, saccharides, and saponins have demonstrated modulatory effects on TLR in different animal and cell models of bowel inflammation. Flavonoids were the most studied phytochemicals amongst others. Also, TLR4 was the most important type of TLRs which were modulated by phytochemicals. Other mechanisms such as inhibition of pro-inflammatory cytokines, nuclear factor-κB pathway, nitric oxide synthesis pathway, cyclooxygenase-2, lipid peroxidation, as well as induction of endogenous antioxidant defense mechanisms were also reported for phytochemicals in various IBD models. CONCLUSION Taken together, a growing body of pre-clinical evidence support the efficacy of herbal compounds for the treatment of IBD via modulation of TLRs. Future clinical studies are recommended to assess the safety and efficacy of these compounds in human.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Ram
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - André Mesquita Marques
- Department of Natural Products, Institute of Drug Technology (Farmanguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Ye X, Zhang M, Zhang N, Wei H, Wang B. Gut-brain axis interacts with immunomodulation in inflammatory bowel disease. Biochem Pharmacol 2024; 219:115949. [PMID: 38036192 DOI: 10.1016/j.bcp.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The brain and the gastrointestinal (GI) tract are important sensory organs in the body and the two-way interaction that exists between them regulates key physiological and homeostatic functions. A growing body of research suggests that this bidirectional communication influences the development and progression of functional GI disorders and plays an important role in the treatment of central nervous system (CNS) disorders. Inflammatory bowel disease (IBD) is a classic intestinal disorder with a high prevalence but still unclear pathogenesis that has been widely discussed in recent years. However, in the studies available to date, we find that many authors have chosen to discuss the influence of the brain on intestinal disorders from the top down, starting with physical and psychological disorders. Coming very naturally, based on these substantial research evidence, we focus on exploring the links between bidirectional communication in the gut-brain axis and IBD, and highlight the role of the gut microbiota, vagus nerve (VN), receptors and immune cells involved in regulating IBD through the gut-brain axis in this review.
Collapse
Affiliation(s)
- Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| |
Collapse
|
5
|
Shmuel-Galia L, Humphries F, Vierbuchen T, Jiang Z, Santos N, Johnson J, Shklyar B, Joannas L, Mustone N, Sherman S, Ward D, Houghton J, Baer CE, O'Hara A, Henao-Mejia J, Hoebe K, Fitzgerald KA. The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab 2023; 35:1441-1456.e9. [PMID: 37494932 DOI: 10.1016/j.cmet.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
This study reveals a previously uncharacterized mechanism to restrict intestinal inflammation via a regulatory RNA transcribed from a noncoding genomic locus. We identified a novel transcript of the lncRNA HOXA11os specifically expressed in the distal colon that is reduced to undetectable levels in colitis. HOXA11os is localized to mitochondria under basal conditions and interacts with a core subunit of complex 1 of the electron transport chain (ETC) to maintain its activity. Deficiency of HOXA11os in colonic myeloid cells results in complex I deficiency, dysfunctional oxidative phosphorylation (OXPHOS), and the production of mitochondrial reactive oxygen species (mtROS). As a result, HOXA11os-deficient mice develop spontaneous intestinal inflammation and are hypersusceptible to colitis. Collectively, these studies identify a new regulatory axis whereby a lncRNA maintains intestinal homeostasis and restricts inflammation in the colon through the regulation of complex I activity.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tim Vierbuchen
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nolan Santos
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - John Johnson
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Mustone
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shany Sherman
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - JeanMarie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Aisling O'Hara
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kasper Hoebe
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Richter H, Gover O, Schwartz B. Anti-Inflammatory Activity of Black Soldier Fly Oil Associated with Modulation of TLR Signaling: A Metabolomic Approach. Int J Mol Sci 2023; 24:10634. [PMID: 37445812 DOI: 10.3390/ijms241310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary intervention in the treatment of ulcerative colitis involves, among other things, modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The Black Soldier Fly Larvae's (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus, the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0 suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways. Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery, reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response. These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.
Collapse
Affiliation(s)
- Hadas Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
7
|
Cohen H, Wani NA, Ben Hur D, Migliolo L, Cardoso MH, Porat Z, Shimoni E, Franco OL, Shai Y. Interaction of Pexiganan (MSI-78)-Derived Analogues Reduces Inflammation and TLR4-Mediated Cytokine Secretion: A Comparative Study. ACS OMEGA 2023; 8:17856-17868. [PMID: 37251186 PMCID: PMC10210221 DOI: 10.1021/acsomega.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.
Collapse
Affiliation(s)
- Hadar Cohen
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Ludovico Migliolo
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Marlon H. Cardoso
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
- Instituto
de Biociências (INBIO), Universidade
Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - Ziv Porat
- The
Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department
of Chemical Research Support, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Octavio Luiz Franco
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
库尔班乃木·卡合曼, 赵 健, 穆凯代斯·艾合买提, 王 汉, 朱 稷, 潘 文, 卡思木江·阿西木江. [E.faecium QH06 alleviates TNBS-induced colonic mucosal injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:976-987. [PMID: 35869759 PMCID: PMC9308865 DOI: 10.12122/j.issn.1673-4254.2022.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity. METHODS Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed. RESULTS The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae. CONCLUSION E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.
Collapse
Affiliation(s)
- 库尔班乃木·卡合曼
- 新疆医科大学第一附属医院康复医学科,新疆 乌鲁木齐 830011Department of Rehabilitation Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - 健锋 赵
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 穆凯代斯·艾合买提
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 汉铭 王
- 新疆医科大学第二临床医学院,新疆 乌鲁木齐 830011Second Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 稷蔚 朱
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 文涛 潘
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 卡思木江·阿西木江
- 新疆医科大学基础医学院物生化学与分子生物学教研室,新疆 乌鲁木齐 830017Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
9
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
11
|
Shmuel-Galia L, Humphries F, Lei X, Ceglia S, Wilson R, Jiang Z, Ketelut-Carneiro N, Foley SE, Pechhold S, Houghton J, Muneeruddin K, Shaffer SA, McCormick BA, Reboldi A, Ward D, Marshak-Rothstein A, Fitzgerald KA. Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity 2021; 54:1137-1153.e8. [PMID: 34051146 PMCID: PMC8237382 DOI: 10.1016/j.immuni.2021.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022]
Abstract
Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Fiachra Humphries
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Simona Ceglia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sage E Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susanne Pechhold
- Flow Cytometry core facility, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - JeanMarie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Khaja Muneeruddin
- Department of Biochemistry and molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Mass spectrometry facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Department of Biochemistry and molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Mass spectrometry facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Evaluation of E. coli Nissle1917 derived metabolites in modulating key mediator genes of the TLR signaling pathway. BMC Res Notes 2021; 14:156. [PMID: 33902702 PMCID: PMC8077910 DOI: 10.1186/s13104-021-05568-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Gut-microbiota plays key roles in many aspects like the health and illness of humans. It's well proved that modification of gut microbiota by probiotics is useful for improving inflammatory bowel disease (IBD) conditions. According to recent studies, different types of bacterial metabolites can affect immune cells and inflammation conditions. The present study aimed to evaluate the anti-inflammatory effects of metabolites of E. coli Nissle1917. Results The cell-free supernatant could modulate TNF-α production and affected many crucial mediators in the Toll-like receptor (TLR) signaling pathway. Also, supernatant showed significant dose-dependent properties in this regard. In this study, the TLR signaling pathway was found among probable mechanisms by which probiotics can affect inflammatory situations. These findings provide additional evidence on the use of probiotic metabolites for inhibiting and down-regulating numerous key mediator factors in the TLR signaling pathway. Aberrant or dysfunctional TLR signaling contributes to the development of acute and chronic intestinal inflammatory pathways in IBD. Therefore, finding a component that can affect this process might be considered for therapeutic targets in IBD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05568-x.
Collapse
|
13
|
Neumann A, Happonen L, Karlsson C, Bahnan W, Frick IM, Björck L. Streptococcal protein SIC activates monocytes and induces inflammation. iScience 2021; 24:102339. [PMID: 33855284 PMCID: PMC8027542 DOI: 10.1016/j.isci.2021.102339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pyogenes is a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g. TNFα and INFγ). In human plasma, SIC binds clusterin and histidine-rich glycoprotein, and whole plasma, and these two purified plasma proteins enhanced the activation of monocytes by SIC. Isolates of the M55 serotype secrete an SIC homolog, but this protein did not activate monocytes. M1 isolates are common in cases of invasive S. pyogenes infections characterized by massive inflammation, and the results of this study indicate that the pro-inflammatory property of SIC contributes to the pathology of these severe clinical conditions.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| |
Collapse
|
14
|
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Ethanolic Garcinia mangostana extract and α-mangostin improve dextran sulfate sodium-induced ulcerative colitis via the suppression of inflammatory and oxidative responses in ICR mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113384. [PMID: 32927006 DOI: 10.1016/j.jep.2020.113384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is an inflammatory disorder of the colon. Garcinia mangostana Linn. (GM) has been traditionally used for its anti-inflammatory and antioxidant activities. AIM OF THE STUDY The effects of GM and its bioactive constituent α-mangostin on dextran sulfate sodium (DSS)-induced UC in mice were investigated. MATERIALS AND METHODS Adult ICR mice (n = 63) were pretreated with ethanolic GM extract at 40, 200, and 1000 mg/kg/day (GM40, GM200, and GM1000), α-mangostin at 30 mg/kg/day, or sulfasalazine at 100 mg/kg/day (SA) for 7 consecutive days. On days 4-7, UC was induced in the mice by the oral administration of DSS (40 kDa, 6 g/kg/day), while control mice received distilled water. The UC disease activity index (DAI) and histological changes were recorded. The activities of myeloperoxidase, catalase, and superoxide dismutase, and the levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) were determined. The mRNA expression of inflammatory related genes including proinflammatory cytokine Tnf-α, Toll-like receptor (Tlr-2), adhesion molecules (Icam-1 and Vcam-1), and monocyte chemoattractant protein (Mcp-1) were evaluated. RESULTS Treatment with GM or α-mangostin decreased the UC DAI and protected against colon shortening and spleen and kidney enlargement. GM and α-mangostin prevented histological damage, reduced mast cell infiltration in the colon, and decreased myeloperoxidase activity. GM and α-mangostin increased catalase and superoxide dismutase activity and decreased ROS, NO, and MDA production. GM downregulated mRNA expression of Tnf-α, Tlr-2, Icam-1, Vcam-1, and Mcp-1. CONCLUSIONS GM and α-mangostin attenuated the severity of DSS-induced UC via anti-inflammatory and antioxidant effects. Therefore, GM is a promising candidate for development into a novel therapeutic agent for UC.
Collapse
Affiliation(s)
- Nitima Tatiya-Aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
15
|
Abstract
Toll-like receptors are transmembrane proteins which sense and transmit infectious and inflammatory responses to the cells expressing them. Therapeutic strategies for the blockade of excessive Toll-like receptor signaling are being actively pursued for several diseases. Recently, Sparstolonin B, isolated from Chinese herb, which suppresses selectively Toll-like receptors has been studied in various inflammatory models. The objective of this review is to summarize the current literature regarding the use of Sparstolonin B in various in vitro and in vivo studies and to provide an overview regarding the potential use of this agent in different inflammatory diseases. Additionally, the current knowledge regarding the role of Toll-like receptors in inflammatory disease and the usage of various Toll-like receptor antagonists will be summarized. Based on our review, we believe Sparstolonin B could serve as a potential therapeutic agent for treatment of Toll-like receptor-mediated inflammatory disorders.
Collapse
|
16
|
Sang S, Idehen E, Zhao Y, Chu Y. Emerging science on whole grain intake and inflammation. Nutr Rev 2020; 78:21-28. [DOI: 10.1093/nutrit/nuz079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Although the biological mechanisms surrounding the widely reported association between whole grain (WG) consumption and reduced risk of several diseases are not fully understood, there is growing evidence suggesting that inflammation may be an essential mediator in this multifaceted process. It also appears that several mechanisms influence the modulatory actions of WGs on inflammation, including the effect of fiber, phytochemicals, and their microbial-derived metabolites. While some of these effects are direct, others involve gut microbiota, which transform important bioactive substances into more useful metabolites that moderate inflammatory signaling pathways. This review evaluates emerging evidence of the relationship between WGs and their effects on markers of subclinical inflammation, and highlights the role of fiber, unique WG phytochemicals, and gut microbiota on the anti-inflammatory effects of WG intake.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Emmanuel Idehen
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, USA
| |
Collapse
|
17
|
Gross-Vered M, Shmuel-Galia L, Zarmi B, Humphries F, Thaiss C, Salame TM, David E, Chappell-Maor L, Fitzgerald KA, Shai Y, Jung S. TLR2 Dimerization Blockade Allows Generation of Homeostatic Intestinal Macrophages under Acute Colitis Challenge. THE JOURNAL OF IMMUNOLOGY 2020; 204:707-717. [PMID: 31882517 DOI: 10.4049/jimmunol.1900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/16/2019] [Indexed: 11/19/2022]
Abstract
Recruited blood monocytes contribute to the establishment, perpetuation, and resolution of tissue inflammation. Specifically, in the inflamed intestine, monocyte ablation was shown to ameliorate colitis scores in preclinical animal models. However, the majority of intestinal macrophages that seed the healthy gut are also monocyte derived. Monocyte ablation aimed to curb inflammation would therefore likely interfere with intestinal homeostasis. In this study, we used a TLR2 trans-membrane peptide that blocks TLR2 dimerization that is critical for TLR2/1 and TLR2/6 heterodimer signaling to blunt inflammation in a murine colitis model. We show that although the TLR2 peptide treatment ameliorated colitis, it allowed recruited monocytes to give rise to macrophages that lack the detrimental proinflammatory gene signature and reduced potentially damaging neutrophil infiltrates. Finally, we demonstrate TLR blocking activity of the peptide on in vitro cultured human monocyte-derived macrophages. Collectively, we provide a significantly improved anti-inflammatory TLR2 peptide and critical insights in its mechanism of action toward future potential use in the clinic.
Collapse
Affiliation(s)
- Mor Gross-Vered
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liraz Shmuel-Galia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Batya Zarmi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fiachra Humphries
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Christoph Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
18
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
19
|
Peng Y, Liu L, Wang Y, Yao J, Jin F, Tao T, Yuan H, Shi L, Lu S. Treatment with toll-like receptor 2 inhibitor ortho-vanillin alleviates lipopolysaccharide-induced acute kidney injury in mice. Exp Ther Med 2019; 18:4829-4837. [PMID: 31798708 PMCID: PMC6880436 DOI: 10.3892/etm.2019.8157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Reducing inflammation is a promising approach for the prevention and treatment of septic acute kidney injury (AKI), since AKI is characterized by excessive inflammation in the kidney. Previous studies have demonstrated that toll-like receptor 2 (TLR2) is overstimulated, which promotes inflammation by activating the NF-κB signaling pathway, in a lipopolysaccharide (LPS)-induced model of AKI mice. For the present study, it was hypothesized that TLR2 inhibition could reduce inflammation and consequently prevent septic AKI. Therefore, the potential renal protective effects of ortho-vanillin (OV), an inhibitor of TLR2, were investigated in the present study in vitro and in vivo. In vitro treatment with OV on LPS-stimulated mouse podocyte cell line MPC5 did not affect TLR2 expression but interrupted the interaction between TLR2 and its downstream adaptor MyD88, resulting in the reduction of inflammatory cytokines IL-6 and TNF-α expression. In vivo OV treatment in an LPS-challenged mouse model effectively alleviated LPS-induced kidney injury as indicated by histology analysis and the significantly reduced blood urea nitrogen and serum creatinine levels. Additionally, inflammatory cytokines TNF-α, IL-6 and IL-1β expression were also significantly reduced in mice with OV treatment. Signaling pathway analysis further demonstrated that OV treatment did not affect the expression of TLR2 and p65 but suppressed p65 phosphorylation. Taken together, data from the present study demonstrated that OV was effective in protecting renal function against LPS-induced AKI through the inhibition of TLR2/NF-κB signaling and subsequent inflammatory cytokine production. These findings indicated that OV or targeting TLR2 signaling in general, represents a novel therapeutic approach for use in the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China.,Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Long Liu
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Yongfang Wang
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jianyin Yao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Fang Jin
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Tao Tao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hua Yuan
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Lei Shi
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shiqi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
20
|
Eyking A, Ferber F, Köhler S, Reis H, Cario E. TRIM58 Restrains Intestinal Mucosal Inflammation by Negatively Regulating TLR2 in Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:1636-1649. [PMID: 31383741 DOI: 10.4049/jimmunol.1900413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
Balanced control of innate immune signaling in the intestine represents an important host defense mechanism to avoid inappropriate responses that may exacerbate mucosal injury in acute inflammation. In this study, we report that TRIM58, a RING E3-ubiquitin ligase, associates with TLR2. The interaction was found in a yeast two-hybrid screen (human leukocyte and mononuclear library) and confirmed by coimmunoprecipitation of tagged and endogenous proteins. TRIM58 was predominantly expressed by murine and human myeloid-derived cells. Stimulation with a TLR2 ligand modulated TRIM58 synthesis in myeloid cells. Overexpression of TRIM58, but only in presence of the RING domain, promoted proteasome-dependent degradation of TLR2, inhibiting its signaling activity. Genetic deletion of Trim58 in mice (Trim58 -/-) led to impaired resolution of acute dextran sodium sulfate-induced colitis, which was characterized by delayed recovery from colonic injury and associated with enhanced expression of TLR2 protein and proinflammatory cyto/chemokine production in inflamed colons. Using myeloid cell-specific deletion of Trim58 in mice, we demonstrated that the myeloid cell compartment was responsible for early colitis acceleration in Trim58 deficiency. In vitro studies revealed that Trim58 -/- myeloid cells, which showed constitutive upregulation of TLR2 protein, overreacted to a proinflammatory milieu (TNF-α and IFN-γ) with increased IL-1β protein production, which mechanistically depended on Tlr2 Finally, we found that TRIM58 mRNA and protein expression levels were reduced in colonic specimens from patients with ulcerative colitis. In conclusion, we identify TRIM58 as a novel negative mediator of innate immune control and mucosal homeostasis via TLR2 signaling. Dysfunction of TRIM58 in myeloid cells may contribute to ulcerative colitis pathogenesis.
Collapse
Affiliation(s)
- Annette Eyking
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Frederike Ferber
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Stefanie Köhler
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| | - Henning Reis
- Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and.,Institute of Pathology, University Hospital Essen, 45147 Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany; .,Medical School, University of Duisburg-Essen, 45147 Essen, Germany; and
| |
Collapse
|
21
|
Wang Y, Peng Y, Zhang B, Zhang X, Li H, Wilson AJ, Mineev KS, Wang X. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem Sci 2019; 10:7584-7590. [PMID: 31588309 PMCID: PMC6761861 DOI: 10.1039/c9sc02474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
A peptide inhibitor was designed in silico and validated experimentally to disrupt homotrimeric transmembrane helix assembly.
Protein–protein interactions are involved in diverse biological processes. These interactions are therefore vital targets for drug development. However, the design of peptide modulators targeting membrane-based protein–protein interactions is a challenging goal owing to the lack of experimentally-determined structures and efficient protocols to probe their functions. Here we employed rational peptide design and molecular dynamics simulations to design a membrane-insertable peptide that disrupts the strong trimeric self-association of the fifth transmembrane domain (TMD5) of the oncogenic Epstein–Barr virus (EBV) latent membrane protein-1 (LMP-1). The designed anti-TMD5 peptide formed 1 : 2 heterotrimers with TMD5 in micelles and inhibited TMD5 oligomerization in bacterial membranes. Moreover, the designed peptide inhibited LMP-1 homotrimerization based on NF-κB activity in EVB positive lymphoma cells. The results indicated that the designed anti-TMD5 peptide may represent a promising starting point for elaboration of anti-EBV therapeutics via inhibition of LMP-1 oligomerization. To the best of our knowledge, this represents the first example of disrupting homotrimeric transmembrane helices using a designed peptide inhibitor.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals , Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Bo Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Hongyuan Li
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , 117997 , Russian
| | - Xiaohui Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,Department of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
22
|
Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR. NAD metabolism fuels human and mouse intestinal inflammation. Gut 2018; 67:1813-1823. [PMID: 28877980 PMCID: PMC6145287 DOI: 10.1136/gutjnl-2017-314241] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nicotinamide phosphoribosyltransferase (NAMPT, also referred to as pre-B cell colony-enhancing factor or visfatin) is critically required for the maintenance of cellular nicotinamide adenine dinucleotide (NAD) supply catalysing the rate-limiting step of the NAD salvage pathway. NAMPT is strongly upregulated in inflammation including IBD and counteracts an increased cellular NAD turnover mediated by NAD-depleting enzymes. These constitute an important mechanistic link between inflammatory, metabolic and transcriptional pathways and NAD metabolism. DESIGN We investigated the impact of NAMPT inhibition by the small-molecule inhibitor FK866 in the dextran sulfate sodium (DSS) model of colitis and the azoxymethane/DSS model of colitis-associated cancer. The impact of NAD depletion on differentiation of mouse and human primary monocytes/macrophages was studied in vitro. Finally, we tested the efficacy of FK866 compared with dexamethasone and infliximab in lamina propria mononuclear cells (LPMNC) isolated from patients with IBD. RESULTS FK866 ameliorated DSS-induced colitis and suppressed inflammation-associated tumorigenesis in mice. FK866 potently inhibited NAMPT activity as demonstrated by reduced mucosal NAD, resulting in reduced abundances and activities of NAD-dependent enzymes including PARP1, Sirt6 and CD38, reduced nuclear factor kappa B activation, and decreased cellular infiltration by inflammatory monocytes, macrophages and activated T cells. Remarkably, FK866 effectively supressed cytokine release from LPMNCs of patients with IBD. As FK866 was also effective in Rag1-⁄- mice, we mechanistically linked FK866 treatment with altered monocyte/macrophage biology and skewed macrophage polarisation by reducing CD86, CD38, MHC-II and interleukin (IL)-6 and promoting CD206, Egr2 and IL-10. CONCLUSION Our data emphasise the importance of NAD immunometabolism for mucosal immunity and highlight FK866-mediated NAMPT blockade as a promising therapeutic approach in acute intestinal inflammation.
Collapse
Affiliation(s)
- Romana R Gerner
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Sophie Macheiner
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Kathrin Arnhard
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Lu Y, Li X, Liu S, Zhang Y, Zhang D. Toll-like Receptors and Inflammatory Bowel Disease. Front Immunol 2018; 9:72. [PMID: 29441063 PMCID: PMC5797585 DOI: 10.3389/fimmu.2018.00072] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is one relapsing and lifelong disease that affects millions of patients worldwide. Increasing evidence has recently highlighted immune-system dysfunction, especially toll-like receptors (TLRs)-mediated innate immune dysfunction, as central players in the pathogenesis of IBD. TLRs and TLR-activated signaling pathways are involved not only in the pathogenesis but also in the efficacy of treatment of IBD. By understanding these molecular mechanisms, we might develop a strategy for relieving the experience of long-lasting suffering of those patients and improving their quality of life. The purpose of this review article is to summarize the potential mechanisms of TLR signaling pathways in IBD and the novel potential therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yue Lu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinrui Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifan Zhang
- Center for Infectious and Inflammation Diseases, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Center for Infectious and Inflammation Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
25
|
Shmuel-Galia L, Klug Y, Porat Z, Charni M, Zarmi B, Shai Y. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J Biol Chem 2017; 292:13415-13427. [PMID: 28655763 DOI: 10.1074/jbc.m117.784983] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, a single study revealed a new complex composed of Toll-like receptor 4 (TLR4), TLR6, and CD36 induced by fibrillary Aβ peptides, the hallmark of Alzheimer's disease. Unlike TLRs located on the plasma membrane that dimerize on the membrane after ligand binding to their extracellular domain, the TLR4-TLR6-CD36 complex assembly has been suggested to be induced by intracellular signals from CD36, similar to integrin inside-out signaling. However, the assembly site of TLR4-TLR6-CD36 and the domains participating in Aβ-induced signaling is still unknown. By interfering with TLR4-TLR6 dimerization using a TLR4-derived peptide, we show that receptor assembly is abrogated within the plasma membrane. Furthermore, we reveal that the transmembrane domains of TLR4 and TLR6 have an essential role in receptor dimerization and activation. Inhibition of TLR4-TLR6 assembly was associated with reduced secretion of proinflammatory mediators from microglia cells, ultimately rescuing neurons from death. Our findings support TLR4-TLR6 dimerization induced by Aβ. Moreover, we shed new light on TLR4-TLR6 assembly and localization and show the potential of inhibiting TLR4-TLR6 dimerization as a treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Yoel Klug
- From the Departments of Biomolecular Science and
| | - Ziv Porat
- Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Batya Zarmi
- From the Departments of Biomolecular Science and
| | - Yechiel Shai
- From the Departments of Biomolecular Science and
| |
Collapse
|
26
|
Zeng X, Wu P, Yao C, Liang J, Zhang S, Yin H. Small Molecule and Peptide Recognition of Protein Transmembrane Domains. Biochemistry 2017; 56:2076-2085. [DOI: 10.1021/acs.biochem.6b00909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xianfeng Zeng
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Peiyao Wu
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Chengbo Yao
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Jiaqi Liang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Shuting Zhang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
- School
of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hang Yin
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| |
Collapse
|
27
|
Gravina HD, Goes AM, Murta SMF, Ropert C. MyD88 Adapter-like (Mal)/TIRAP Is Required for Cytokine Production by Splenic Ly6CloTLR2hi but Not by Ly6ChiTLR2hi Monocytes during Trypanosoma cruzi Infection. J Biol Chem 2016; 291:23832-23841. [PMID: 27646001 DOI: 10.1074/jbc.m116.729509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 01/13/2023] Open
Abstract
This study continues to explore the plasticity of Toll-like receptor 2 (TLR2) previously described in immune response during Trypanosoma cruzi infection. Here, we have shown that Ly6ChiTLR2hi monocytes were involved in TNF-α and IL-12 production, whereas Ly6CloTLR2hi monocytes were mainly committed to IL-10 and TNF-α production during T. cruzi infection independently of TLR agonist used (i.e. TLR2 or TLR9 agonists). Another difference between the monocyte populations is that the adapter Mal (encoded by TIRAP) has appeared crucial for the cytokine production by Ly6Clo but not by Ly6Chi monocytes. The protein Mal was necessary to induce cytokine synthesis by Ly6Clo monocytes after triggering TLR2 or TLR9. Finally, our data have suggested that TLR2, TLR9, and Mal/TIRAP controlled differentially the emergence of the different TLR2hi monocyte populations in the spleen. In summary, this study highlights the central role of the TLR2/Mal tandem in the distinct activity among the monocyte subsets during T. cruzi infection. Such findings provide a basis for understanding the challenge posed by the use of TLR2 agonist in immunotherapy.
Collapse
Affiliation(s)
- Humberto Doriguêtto Gravina
- From the Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil and
| | - Alfredo Miranda Goes
- From the Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil and
| | | | - Catherine Ropert
- From the Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Minas Gerais, Brazil and
| |
Collapse
|
28
|
McFarlin BK, Gary MA. Flow cytometry what you see matters: Enhanced clinical detection using image-based flow cytometry. Methods 2016; 112:1-8. [PMID: 27620330 DOI: 10.1016/j.ymeth.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, United States; University of North Texas, Department of Biological Sciences, United States.
| | - Melody A Gary
- University of North Texas, Applied Physiology Laboratory, United States
| |
Collapse
|
29
|
Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39:1032-49. [PMID: 27515048 DOI: 10.1007/s12272-016-0806-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
The health of living organisms is constantly challenged by bacterial and viral threats. The recognition of pathogenic microorganisms by diverse receptors triggers a variety of host defense mechanisms, leading to their eradication. Toll-like receptors (TLRs), which are type I transmembrane proteins, recognize specific signatures of the invading microbes and activate a cascade of downstream signals inducing the secretion of inflammatory cytokines, chemokines, and type I interferons. The TLR response not only counteracts the pathogens but also initiates and shapes the adaptive immune response. Under normal conditions, inflammation is downregulated after the removal of the pathogen and cellular debris. However, a dysfunctional TLR-mediated response maintains a chronic inflammatory state and leads to local and systemic deleterious effects in host cells and tissues. Such inappropriate TLR response has been attributed to the development and progression of multiple diseases such as cancer, autoimmune, and inflammatory diseases. In this review, we discuss the emerging role of TLRs in the pathogenesis of inflammatory diseases and how targeting of TLRs offers a promising therapeutic strategy for the prevention and treatment of various inflammatory diseases. Additionally, we highlight a number of TLR-targeting agents that are in the developmental stage or in clinical trials.
Collapse
Affiliation(s)
- Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
30
|
Shmuel-Galia L, Aychek T, Fink A, Porat Z, Zarmi B, Bernshtein B, Brenner O, Jung S, Shai Y. Neutralization of pro-inflammatory monocytes by targeting TLR2 dimerization ameliorates colitis. EMBO J 2016; 35:685-98. [PMID: 26884587 DOI: 10.15252/embj.201592649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/15/2016] [Indexed: 01/21/2023] Open
Abstract
Monocytes have emerged as critical driving force of acute inflammation. Here, we show that inhibition of Toll-like receptor 2(TLR2) dimerization by a TLR2 transmembrane peptide (TLR2-p) ameliorated DSS-induced colitis by interfering specifically with the activation of Ly6C(+) monocytes without affecting their recruitment to the colon. We report that TLR2-p directly interacts with TLR2 within the membrane, leading to inhibition of TLR2-TLR6/1 assembly induced by natural ligands. This was associated with decreased levels of extracellular signal-regulated kinases (ERK) signaling and reduced secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-23, IL-12, and IL-1β. Altogether, our study provides insights into the essential role of TLR2 dimerization in the activation of pathogenic pro-inflammatory Ly6C(hi) monocytes and suggests that inhibition of this aggregation by TLR2-p might have therapeutic potential in the treatment of acute gut inflammation.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Tegest Aychek
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avner Fink
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot, Israel
| | - Batya Zarmi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Biana Bernshtein
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|