1
|
Li C, Liang J, Allai L, Badaoui B, Shao Q, Ouyang Y, Wu G, Quan G, Lv C. Integrating proteomics and metabolomics to evaluate impact of semen collection techniques on the quality and cryotolerance of goat semen. Sci Rep 2024; 14:29489. [PMID: 39604559 PMCID: PMC11603158 DOI: 10.1038/s41598-024-80556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses. Semen samples were collected from Yunshang black goats and categorized into four groups: fresh sperm collected via AV (XAZ), fresh sperm collected via EE (XEZ), frozen sperm post-AV collection (DAZ) and frozen sperm post-EE collection (DEZ). Four comparisons (XAZ vs. XEZ, DAZ vs. XAZ, DEZ vs. XEZ, DAZ vs. DEZ) were performed, respectively. This study first evaluated sperm motility, acrosome integrity, plasma membrane integrity, mitochondrial activity, and reactive oxygen species (ROS) levels. The results indicated that there were no significant differences in fresh sperm quality parameters between the EE and AV methods. However, notable differences emerged post-cryopreservation. Specifically, the AV method proved more advantageous in preserving the motility, integrities of acrosome and plasma membrane, mitochondrial activity of frozen sperm compared to the EE method. Through the multi-omics approaches, a total of 210 differentially abundant proteins (DAPs) related to sperm characteristics and function were identified across the four comparations. Moreover, 32 differentially abundant metabolites (DAMs) were detected. Comprehensive bioinformatics analysis underscored significant molecular pathways in the co-enrichment of DAPs and DAMs, particularly focusing on the citrate cycle, ROS, oxidative phosphorylation, and glycine, serine, and threonine metabolism etc. We elucidated the differential impacts of AV and EE collection methods on the quality and cryotolerance of goat semen from omics perspectives, which offer a critical foundation for further exploration into optimizing semen collection and cryopreservation techniques in goat breeding program.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | | | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| |
Collapse
|
2
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
3
|
Lobez AP, Wu F, Di Trani JM, Rubinstein JL, Oliveberg M, Brzezinski P, Moe A. Electron transfer in the respiratory chain at low salinity. Nat Commun 2024; 15:8241. [PMID: 39300056 DOI: 10.1038/s41467-024-52475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have established that cellular electrostatic interactions are more influential than assumed previously. Here, we use cryo-EM and perform steady-state kinetic studies to investigate electrostatic interactions between cytochrome (cyt.) c and the complex (C) III2-IV supercomplex from Saccharomyces cerevisiae at low salinity. The kinetic studies show a sharp transition with a Hill coefficient ≥2, which together with the cryo-EM data at 2.4 Å resolution indicate multiple cyt. c molecules bound along the supercomplex surface. Negatively charged loops of CIII2 subunits Qcr6 and Qcr9 become structured to interact with cyt. c. In addition, the higher resolution allows us to identify water molecules in proton pathways of CIV and, to the best of our knowledge, previously unresolved cardiolipin molecules. In conclusion, the lowered electrostatic screening renders engagement of multiple cyt. c molecules that are directed by electrostatically structured CIII2 loops to conduct electron transfer between CIII2 and CIV.
Collapse
Affiliation(s)
- Ana Paula Lobez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Justin M Di Trani
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John L Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, Switzerland.
| |
Collapse
|
4
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Zhu D, Shan W, Xu B, Duan X, Wei S, Zhang J, Wang Y, Zhou L. Metallophthalocyanine as ideal antibiotics without light: Mechanisms and applications. J Inorg Biochem 2024; 257:112599. [PMID: 38749082 DOI: 10.1016/j.jinorgbio.2024.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
The urgent global health problem of antimicrobial resistance (AMR) calls for the discovery of new antibiotics with innovative modes of action while considering the low toxicity to mammalian cells. This paper proposes a novel strategy for designing antibiotics with selective bacterial toxicity by exploiting the positional differences of electron transport chains (ETC) in bacterial and mammalian cells. The focus is on cytochrome c (cyt C) and its maturation system in E. coli. The catalytic oxidative activity of metallophthalocyanine (MPc), which have a distinctive M-N4 structure, is being investigated. Unlike previous applications based on light-activated reactive oxygen species (ROS) generation, this study exploits the ability of MPcs to oxidize Fe2+ to Fe3+ in cyt C and catalyze the formation of disulfide bonds between cysteine residues to interfere with cyt C maturation, disrupt the bacterial respiratory chain and selectively kills bacteria. In contrast, in mammalian cells, these MPcs are located in the lysosomes and cannot access the ETC in the mitochondria, thus achieving selective bacterial toxicity. Two MPcs that showed effective antibacterial activity in a wound infection model were identified. This study provides a valuable reference for the design of novel antibiotics based on M-N4-based metal complex molecules.
Collapse
Affiliation(s)
- Dongsheng Zhu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Wanting Shan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Beibei Xu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Xiaomeng Duan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Jishuang Zhang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.
| | - Yicheng Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Mendes F, Santos-Pereira C, Vieira TF, Martins Pinto M, Castro BB, Sousa SF, Sousa MJ, Devin A, Chaves SR. The fungicide cymoxanil impairs respiration in Saccharomyces cerevisiae via cytochrome c oxidase inhibition. FEBS Lett 2024; 598:1655-1666. [PMID: 38750637 DOI: 10.1002/1873-3468.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024]
Abstract
Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.
Collapse
Affiliation(s)
- Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Tatiana F Vieira
- UCIBIO/REQUIMTE, BioSIM - Departamento de Medicina, Faculdade de Medicina da Universidade Do Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Portugal
| | | | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, Braga, Portugal
- IBS - Institute of Science and Innovation for Bio-Sustainability, School of Sciences, University of Minho, Braga, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM - Departamento de Medicina, Faculdade de Medicina da Universidade Do Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Maria João Sousa
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, Braga, Portugal
- IBS - Institute of Science and Innovation for Bio-Sustainability, School of Sciences, University of Minho, Braga, Portugal
| | - Anne Devin
- CNRS, UMR 5095, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Zhang Y, Liang H, Qi P, Xu Z, Fei H, Guo C. Deciphering the Roles of Interfacial Amino Acids in Inter-Protein Charge Transport. NANO LETTERS 2024; 24:4178-4185. [PMID: 38552164 DOI: 10.1021/acs.nanolett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Han Liang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhongchen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Houguo Fei
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BF, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 PMCID: PMC10969761 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. Euglena's atypical respiratory chain adapts to the discoidal cristae and flexible metabolism. Nat Commun 2024; 15:1628. [PMID: 38388527 PMCID: PMC10884005 DOI: 10.1038/s41467-024-46018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.
Collapse
Affiliation(s)
- Zhaoxiang He
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengchen Wu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongtao Tian
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Hu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fangzhu Han
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Moe A, Dimogkioka AR, Rapaport D, Öjemyr LN, Brzezinski P. Structure and function of the S. pombe III-IV-cyt c supercomplex. Proc Natl Acad Sci U S A 2023; 120:e2307697120. [PMID: 37939086 PMCID: PMC10655221 DOI: 10.1073/pnas.2307697120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023] Open
Abstract
The respiratory chain in aerobic organisms is composed of a number of membrane-bound protein complexes that link electron transfer to proton translocation across the membrane. In mitochondria, the final electron acceptor, complex IV (CIV), receives electrons from dimeric complex III (CIII2), via a mobile electron carrier, cytochrome c. In the present study, we isolated the CIII2CIV supercomplex from the fission yeast Schizosaccharomyces pombe and determined its structure with bound cyt. c using single-particle electron cryomicroscopy. A respiratory supercomplex factor 2 was found to be bound at CIV distally positioned in the supercomplex. In addition to the redox-active metal sites, we found a metal ion, presumably Zn2+, coordinated in the CIII subunit Cor1, which is encoded by the same gene (qcr1) as the mitochondrial-processing peptidase subunit β. Our data show that the isolated CIII2CIV supercomplex displays proteolytic activity suggesting a dual role of CIII2 in S. pombe. As in the supercomplex from S. cerevisiae, subunit Cox5 of CIV faces towards one CIII monomer, but in S. pombe, the two complexes are rotated relative to each other by ~45°. This orientation yields equal distances between the cyt. c binding sites at CIV and at each of the two CIII monomers. The structure shows cyt. c bound at four positions, but only along one of the two symmetrical branches. Overall, this combined structural and functional study reveals the integration of peptidase activity with the CIII2 respiratory system and indicates a two-dimensional cyt. c diffusion mechanism within the CIII2-CIV supercomplex.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Anna-Roza Dimogkioka
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| |
Collapse
|
12
|
Haider MZ, Sami A, Shafiq M, Anwar W, Ali S, Ali Q, Muhammad S, Manzoor I, Shahid MA, Ali D, Alarifi S. Genome-wide identification and in-silico expression analysis of carotenoid cleavage oxygenases gene family in Oryza sativa (rice) in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1269995. [PMID: 37954992 PMCID: PMC10634354 DOI: 10.3389/fpls.2023.1269995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Rice constitutes a foundational cereal and plays a vital role in the culinary sector. However, the detriments of abiotic stress on rice quality and productivity are noteworthy. Carotenoid cleavage oxygenases (CCO) hold vital importance as they enable the particular breakdown of carotenoids and significantly contribute towards the growth and response to abiotic stress in rice. Due to the insufficient information regarding rice CCOs and their potential role in abiotic stress, their utilization in stress-resistant genetic breeding remains limited. The current research identified 16 CCO genes within the Oryza sativa japonica group. These OsCCO genes can be bifurcated into three categories based on their conserved sequences: NCEDs (9-Cis-epoxycarotenoid dioxygenases), CCDs (Carotenoid cleavage dioxygenases) and CCD-like (Carotenoid cleavage dioxygenases-like). Conserved motifs were found in the OsCCO gene sequence via MEME analysis and multiple sequence alignment. Stress-related cis-elements were detected in the promoter regions of OsCCOs genes, indicating their involvement in stress response. Additionally, the promoters of these genes had various components related to plant light, development, and hormone responsiveness, suggesting they may be responsive to plant hormones and involved in developmental processes. MicroRNAs play a pivotal role in the regulation of these 16 genes, underscoring their significance in rice gene regulation. Transcriptome data analysis suggests a tissue-specific expression pattern for rice CCOs. Only OsNCED6 and OsNCED10 significantly up-regulated during salt stress, as per RNA seq analyses. CCD7 and CCD8 levels were also higher in the CCD group during the inflorescence growth stage. This provides insight into the function of rice CCOs in abiotic stress response and identifies possible genes that could be beneficial for stress-resistant breeding.
Collapse
Affiliation(s)
- Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Waheed Anwar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sajid Ali
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), North Florida Research and Education Center, Quincy, FL, United States
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Chertkova RV, Oleynikov IP, Pakhomov AA, Sudakov RV, Orlov VN, Semenova MA, Arutyunyan AM, Ptushenko VV, Kirpichnikov MP, Dolgikh DA, Vygodina TV. Mutant Cytochrome C as a Potential Detector of Superoxide Generation: Effect of Mutations on the Function and Properties. Cells 2023; 12:2316. [PMID: 37759538 PMCID: PMC10528150 DOI: 10.3390/cells12182316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Ilya P. Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Alexey A. Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Roman V. Sudakov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Victor N. Orlov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Tatiana V. Vygodina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| |
Collapse
|
14
|
Sato W, Ishimori K. Regulation of electron transfer in the terminal step of the respiratory chain. Biochem Soc Trans 2023; 51:1611-1619. [PMID: 37409479 DOI: 10.1042/bst20221449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In mitochondria, electrons are transferred along a series of enzymes and electron carriers that are referred to as the respiratory chain, leading to the synthesis of cellular ATP. The series of the interprotein electron transfer (ET) reactions is terminated by the reduction in molecular oxygen at Complex IV, cytochrome c oxidase (CcO) that is coupled with the proton pumping from the matrix to the inner membrane space. Unlike the ET reactions from Complex I to Complex III, the ET reaction to CcO, mediated by cytochrome c (Cyt c), is quite specific in that it is irreversible with suppressed electron leakage, which characterizes the ET reactions in the respiratory chain and is thought to play a key role in the regulation of mitochondrial respiration. In this review, we summarize the recent findings regarding the molecular mechanism of the ET reaction from Cyt c to CcO in terms of specific interaction between two proteins, a molecular breakwater, and the effects of the conformational fluctuation on the ET reaction, conformational gating. Both of these are essential factors, not only in the ET reaction from Cyt c to CcO, but also in the interprotein ET reactions in general. We also discuss the significance of a supercomplex in the terminal ET reaction, which provides information on the regulatory factors of the ET reactions that are specific to the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
15
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
16
|
Shimada A, Tsukihara T, Yoshikawa S. Recent progress in experimental studies on the catalytic mechanism of cytochrome c oxidase. Front Chem 2023; 11:1108190. [PMID: 37214485 PMCID: PMC10194837 DOI: 10.3389/fchem.2023.1108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces molecular oxygen (O2) to water, coupled with a proton pump from the N-side to the P-side, by receiving four electrons sequentially from the P-side to the O2-reduction site-including Fea3 and CuB-via the two low potential metal sites; CuA and Fea. The catalytic cycle includes six intermediates as follows, R (Fea3 2+, CuB 1+, Tyr244OH), A (Fea3 2+-O2, CuB 1+, Tyr244OH), Pm (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244O•), F (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244OH), O (Fea3 3+-OH-, CuB 2+-OH-, Tyr244OH), and E (Fea3 3+-OH-, CuB 1+-H2O, Tyr244OH). CcO has three proton conducting pathways, D, K, and H. The D and K pathways connect the N-side surface with the O2-reduction site, while the H-pathway is located across the protein from the N-side to the P-side. The proton pump is driven by electrostatic interactions between the protons to be pumped and the net positive charges created during the O2 reduction. Two different proton pump proposals, each including either the D-pathway or H-pathway as the proton pumping site, were proposed approximately 30 years ago and continue to be under serious debate. In our view, the progress in understanding the reaction mechanism of CcO has been critically rate-limited by the resolution of its X-ray crystallographic structure. The improvement of the resolutions of the oxidized/reduced bovine CcO up to 1.5/1.6 Å resolution in 2016 provided a breakthrough in the understanding of the reaction mechanism of CcO. In this review, experimental studies on the reaction mechanism of CcO before the appearance of the 1.5/1.6 Å resolution X-ray structures are summarized as a background description. Following the summary, we will review the recent (since 2016) experimental findings which have significantly improved our understanding of the reaction mechanism of CcO including: 1) redox coupled structural changes of bovine CcO; 2) X-ray structures of all six intermediates; 3) spectroscopic findings on the intermediate species including the Tyr244 radical in the Pm form, a peroxide-bound form between the A and Pm forms, and Fr, a one-electron reduced F-form; 4) time resolved X-ray structural changes during the photolysis of CO-bound fully reduced CcO using XFEL; 5) a simulation analysis for the Pm→Pr→F transition.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shinya Yoshikawa
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| |
Collapse
|
17
|
Golovynska I, Golovynskyi S, Qu J. Comparing the Impact of NIR, Visible and UV Light on ROS Upregulation via Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochem Photobiol 2023; 99:106-119. [PMID: 35689798 DOI: 10.1111/php.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm-2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10-100 mW cm-2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
19
|
Brand SE, Scharlau M, Geren L, Hendrix M, Parson C, Elmendorf T, Neel E, Pianalto K, Silva-Nash J, Durham B, Millett F. Accelerated Evolution of Cytochrome c in Higher Primates, and Regulation of the Reaction between Cytochrome c and Cytochrome Oxidase by Phosphorylation. Cells 2022; 11:cells11244014. [PMID: 36552779 PMCID: PMC9777161 DOI: 10.3390/cells11244014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome c (Cc) underwent accelerated evolution from the stem of the anthropoid primates to humans. Of the 11 amino acid changes that occurred from horse Cc to human Cc, five were at Cc residues near the binding site of the Cc:CcO complex. Single-point mutants of horse and human Cc were made at each of these positions. The Cc:CcO dissociation constant KD of the horse mutants decreased in the order: T89E > native horse Cc > V11I Cc > Q12M > D50A > A83V > native human. The largest effect was observed for the mutants at residue 50, where the horse Cc D50A mutant decreased KD from 28.4 to 11.8 μM, and the human Cc A50D increased KD from 4.7 to 15.7 μM. To investigate the role of Cc phosphorylation in regulating the reaction with CcO, phosphomimetic human Cc mutants were prepared. The Cc T28E, S47E, and Y48E mutants increased the dissociation rate constant kd, decreased the formation rate constant kf, and increased the equilibrium dissociation constant KD of the Cc:CcO complex. These studies indicate that phosphorylation of these residues plays an important role in regulating mitochondrial electron transport and membrane potential ΔΨ.
Collapse
Affiliation(s)
| | - Martha Scharlau
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lois Geren
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marissa Hendrix
- Independent Researcher, P.O. Box 603, Dardanelle, AR 72834, USA
| | - Clayre Parson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tyler Elmendorf
- School of Medicine, University of Kansas Medical Center, 2060 W 39th Ave, Kansas City, KS 66103, USA
| | - Earl Neel
- Tulsa Bone and Joint Associates, Tulsa, OK 74146, USA
| | - Kaila Pianalto
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Bill Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Francis Millett
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence:
| |
Collapse
|
20
|
Shojapour M, Farahmand S. Point mutation consideration in CcO protein of the electron transfer chain by MD simulation. J Mol Graph Model 2022; 117:108309. [PMID: 36037732 DOI: 10.1016/j.jmgm.2022.108309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023]
Abstract
In Acidithiobacillus ferrooxidans, proteins such as CcO are present in the electron transport pathway. They cause ferrous iron oxidation to ferric leading to the electron release. CcO has two copper atoms (CuA, CuB). CuA plays an important role in electron transfer. According to previous studies, the conversion of histidine to methionine in a similar protein increased the redox potential and was directly related to the number of electrons received. Also, the binding of methionine 233 to CuA and CuB in the wild protein structure is the reason for the selection of the H230 M mutation in the CuA site. Then, wild-type and H230 M mutant were simulated in the presence of a bilayer membrane POPC using the gromacs version 5.1.4. The changes performed in the H230 M mutant were evaluated by MD simulations analyzes. CcO and CoxA proteins are the last two proteins in the chain and were docked by the PatchDock server. By H230 M mutation, the connection between CuA and M230 weakens. The M230 moves further away from CuA, resulting become more flexible. Therefore, the Methionine gets closer to E149 of the CoxA leading to the higher stability of the CcO/CoxA complex. The results of RMSF analysis at the mutation point showed a significant increase. This indicates more flexibility in the active site. And leads to an increase in E0 in the mutation point, an increase in the rate of electron reception, and an improved bioleaching process.
Collapse
Affiliation(s)
- Mahnaz Shojapour
- Department of Biology, Payame Noor University (PNU), P.O.Box, 19395-4697, Tehran, Iran.
| | - Somayeh Farahmand
- Department of Biology, Payame Noor University (PNU), P.O.Box, 19395-4697, Tehran, Iran.
| |
Collapse
|
21
|
Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J. Mitochondrial Stress in Metabolic Inflammation: Modest Benefits and Full Losses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8803404. [PMID: 36457729 PMCID: PMC9708372 DOI: 10.1155/2022/8803404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/02/2023]
Abstract
Energy intake and metabolic balance are the pillars of health preservation. Overnutrition causes nonspecific, persistently low inflammatory state known as metabolic inflammation. This condition contributes to the pathophysiology of various metabolic disorders, such as atherosclerosis, obesity, diabetes mellitus, and metabolic syndrome. The mitochondria maintain the balance of energy metabolism. Excessive energy stress can lead to mitochondrial dysfunction, which promotes metabolic inflammation. The inflammatory environment further impairs mitochondrial function. Accordingly, excellent organism design keeps the body metabolically healthy in the context of mitochondrial dysfunction, and moderate mitochondrial stress can have a beneficial effect. This review summarises the research progress on the multifaceted characterisation of mitochondrial dysfunction and its role in metabolic inflammation.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Z. L. Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiqi Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Rottenberg H. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148595. [PMID: 35850262 DOI: 10.1016/j.bbabio.2022.148595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The cytochrome c oxidase complex, complex VI (CIV), catalyzes the terminal step of the mitochondrial electron transport chain where the reduction of oxygen to water by cytochrome c is coupled to the generation of a protonmotive force that drive the synthesis of ATP. CIV evolution was greatly accelerated in humans and other anthropoid primates and appears to be driven by adaptive selection. However, it is not known if there are significant functional differences between the anthropoid primates CIV, and other mammals. Comparison of the high-resolution structures of bovine CIV, mouse CIV and human CIV shows structural differences that are associated with anthropoid-specific substitutions. Here I examine the possible effects of these substitutions in four CIV peptides that are known to affect proton pumping: the mtDNA-coded subunits I, II and III, and the nuclear-encoded subunit VIa2. I conclude that many of the anthropoid-specific substitutions could be expected to modulate the rate and/or the efficiency of proton pumping. These results are compatible with the previously proposed hypothesis that the accelerated evolution of CIV in anthropoid primates is driven by selection pressure to lower the mitochondrial protonmotive force and thus decrease the rate of superoxide generation by mitochondria.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA 18938, USA.
| |
Collapse
|
23
|
Morse PT, Wan J, Bell J, Lee I, Goebel DJ, Malek MH, Sanderson TH, Hüttemann M. Sometimes less is more: inhibitory infrared light during early reperfusion calms hyperactive mitochondria and suppresses reperfusion injury. Biochem Soc Trans 2022; 50:1377-1388. [PMID: 36066188 PMCID: PMC10121102 DOI: 10.1042/bst20220446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Dennis J. Goebel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Kato M, Sano R, Yoshida N, Iwafuji M, Nishiyama Y, Oka S, Shinzawa-Itoh K, Nishida Y, Shintani Y, Yagi I. Effects of Interfacial Interactions on Electrocatalytic Activity of Cytochrome c Oxidase in Biomimetic Lipid Membranes on Gold Electrodes. J Phys Chem Lett 2022; 13:9165-9170. [PMID: 36166647 DOI: 10.1021/acs.jpclett.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Effects of interfacial interactions on the electrocatalytic activity of protein-tethered bilayer lipid membranes (ptBLMs) containing cytochrome c oxidase (CcO) for the oxygen reduction reaction are studied by using protein film electrochemistry and surface-enhanced infrared absorption (SEIRA) spectroscopy. Mammalian CcO was immobilized on a gold electrode via self-assembled monolayers (SAMs) of mixed alkanethiols. The protein orientation on the electrode is controlled by SAM-CcO interactions and is critical to the cytochrome c (cyt c) binding. The CcO-phospholipid and CcO-cyt c interactions modulate the electrocatalytic activity of CcO, and more densely packed ptBLMs show higher electrocatalytic activity. Our study indicates that spectroscopic and electrochemical studies of ptBLMs can provide insights into the effects of relatively weak protein-protein and protein-lipid interactions on the enzymatic activity of transmembrane enzymes.
Collapse
Affiliation(s)
- Masaru Kato
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Ryoya Sano
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Narumi Yoshida
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Masatoshi Iwafuji
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Yoshito Nishiyama
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | - Sayuki Oka
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| | | | - Yuya Nishida
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Ichizo Yagi
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
25
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
26
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
27
|
Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, Rubinstein JL. Structural basis of mammalian complex IV inhibition by steroids. Proc Natl Acad Sci U S A 2022; 119:e2205228119. [PMID: 35858451 PMCID: PMC9335260 DOI: 10.1073/pnas.2205228119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/18/2022] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Agnes Moe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
28
|
Zhou L, Maldonado M, Padavannil A, Guo F, Letts JA. Structures of Tetrahymena's respiratory chain reveal the diversity of eukaryotic core metabolism. Science 2022; 376:831-839. [PMID: 35357889 PMCID: PMC9169680 DOI: 10.1126/science.abn7747] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiration is a core biological energy-converting process whose last steps are carried out by a chain of multisubunit complexes in the inner mitochondrial membrane. To probe the functional and structural diversity of eukaryotic respiration, we examined the respiratory chain of the ciliate Tetrahymena thermophila (Tt). Using cryo-electron microscopy on a mixed sample, we solved structures of a supercomplex between Tt complex I (Tt-CI) and Tt-CIII2 (Tt-SC I+III2) and a structure of Tt-CIV2. Tt-SC I+III2 (~2.3 megadaltons) is a curved assembly with structural and functional symmetry breaking. Tt-CIV2 is a ~2.7-megadalton dimer with more than 50 subunits per protomer, including mitochondrial carriers and a TIM83-TIM133-like domain. Our structural and functional study of the T. thermophila respiratory chain reveals divergence in key components of eukaryotic respiration, thereby expanding our understanding of core metabolism.
Collapse
Affiliation(s)
- Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - María Maldonado
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fei Guo
- BIOEM Facility, University of California, Davis, CA 95616, USA
| | - James A. Letts
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
30
|
A Structural Perspective on the RNA Editing of Plant Respiratory Complexes. Int J Mol Sci 2022; 23:ijms23020684. [PMID: 35054870 PMCID: PMC8775464 DOI: 10.3390/ijms23020684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
The last steps of respiration, a core energy-harvesting process, are carried out by a chain of multi-subunit complexes in the inner mitochondrial membrane. Several essential subunits of the respiratory complexes are RNA-edited in plants, frequently leading to changes in the encoded amino acids. While the impact of RNA editing is clear at the sequence and phenotypic levels, the underlying biochemical explanations for these effects have remained obscure. Here, we used the structures of plant respiratory complex I, complex III2 and complex IV to analyze the impact of the amino acid changes of RNA editing in terms of their location and biochemical features. Through specific examples, we demonstrate how the structural information can explain the phenotypes of RNA-editing mutants. This work shows how the structural perspective can bridge the gap between sequence and phenotype and provides a framework for the continued analysis of RNA-editing mutants in plant mitochondria and, by extension, in chloroplasts.
Collapse
|
31
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Márquez I, Pérez‐Mejías G, Guerra‐Castellano A, Olloqui‐Sariego JL, Andreu R, Calvente JJ, De la Rosa MA, Díaz‐Moreno I. Structural and functional insights into lysine acetylation of cytochrome c using mimetic point mutants. FEBS Open Bio 2021; 11:3304-3323. [PMID: 34455704 PMCID: PMC8634867 DOI: 10.1002/2211-5463.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Post-translational modifications frequently modulate protein functions. Lysine acetylation in particular plays a key role in interactions between respiratory cytochrome c and its metabolic partners. To date, in vivo acetylation of lysines at positions 8 and 53 has specifically been identified in mammalian cytochrome c, but little is known about the structural basis of acetylation-induced functional changes. Here, we independently replaced these two residues in recombinant human cytochrome c with glutamine to mimic lysine acetylation and then characterized the structure and function of the resulting K8Q and K53Q mutants. We found that the physicochemical features were mostly unchanged in the two acetyl-mimetic mutants, but their thermal stability was significantly altered. NMR chemical shift perturbations of the backbone amide resonances revealed local structural changes, and the thermodynamics and kinetics of electron transfer in mutants immobilized on gold electrodes showed an increase in both protein dynamics and solvent involvement in the redox process. We also observed that the K8Q (but not the K53Q) mutation slightly increased the binding affinity of cytochrome c to its physiological electron donor, cytochrome c1 -which is a component of mitochondrial complex III, or cytochrome bc1 -thus suggesting that Lys8 (but not Lys53) is located in the interaction area. Finally, the K8Q and K53Q mutants exhibited reduced efficiency as electron donors to complex IV, or cytochrome c oxidase.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | | | - Rafael Andreu
- Departament of Physical ChemistryUniversity of SevilleSpain
| | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
33
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
34
|
Tsukihara T. Crystallographic studies of cytochrome c and cytochrome c oxidase. J Biochem 2021; 171:13-15. [PMID: 34697634 PMCID: PMC8826895 DOI: 10.1093/jb/mvab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Tomitake Tsukihara
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Akoh-gun, Hyogo 678-1297, Japan, and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Wehbie M, Bouchemal I, Deletraz A, Pebay-Peyroula E, Breyton C, Ebel C, Durand G. Glucose-Based Fluorinated Surfactants as Additives for the Crystallization of Membrane Proteins: Synthesis and Preliminary Physical-Chemical and Biochemical Characterization. ACS OMEGA 2021; 6:24397-24406. [PMID: 34604622 PMCID: PMC8482409 DOI: 10.1021/acsomega.1c02581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
We report herein the synthesis of a series of fluorinated surfactants with a glucose moiety as a polar head group and whose alkyl chain was varied in length and in fluorine/hydrogen ratio. They were synthesized in two or four steps in 20 to 50% overall yields allowing gram-scale synthesis. Their solubility in water is between 0.2 and 13.8 g/L, which indicates low water solubility. Two derivatives of the series were found to form micelles in water at ∼11 mM. Their hydrophilic-lipophilic balance was determined both by Griffin's and Davies' methods; they may exhibit a "harsh" character toward membrane proteins. This, combined with their low water solubility, suggest that they could advantageously be used in detergent mixtures containing a "mild" detergent. Finally, the potency of one of the derivatives, F3H5-β-Glu, to act as an additive for the crystallization of AcrB was evaluated in detergent mixtures with n-dodecyl-β-d-maltopyranoside (DDM). Among the six crystallization conditions investigated, adding F3H5-β-Glu improved the crystallization for three of them, as compared to control drops without additives. Moreover, preliminary tests with other compounds of the series showed that none of them hampered crystallization and suggested improvement for three of them. These novel glucose-based fluorinated detergents should be regarded as potential additives that could be included in screening kits used in crystallization.
Collapse
Affiliation(s)
- Moheddine Wehbie
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Ilham Bouchemal
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Anaïs Deletraz
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Eva Pebay-Peyroula
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Cécile Breyton
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Christine Ebel
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Grégory Durand
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
36
|
Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A 2021; 118:e2106950118. [PMID: 34548399 PMCID: PMC8488679 DOI: 10.1073/pnas.2106950118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Zenezeni Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
37
|
Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proc Natl Acad Sci U S A 2021; 118:2021157118. [PMID: 33836592 DOI: 10.1073/pnas.2021157118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.
Collapse
|
38
|
Wang Y, Lin W, Yan H, Neng J, Zheng Y, Yang K, Xing F, Sun P. iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4969-4979. [PMID: 33543481 DOI: 10.1002/jsfa.11140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/28/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aspergillus ochraceus causes food spoilage and produces mycotoxin ochratoxin A (OTA) during storage of agricultural commodities. In this study, citral was used to inhibit A. ochraceus growth and OTA accumulation, proteomic analysis was employed to verify the mechanism of citral. RESULTS Citral was found to significantly inhibit fungal growth and mycotoxin production in A. ochraceus. Specifically, 75, 125, 150 and 200 μL L-1 citral suppressed mycelial growth by 33%, 46%, 50% and 100%, respectively. Additionally, 75 μL L-1 citral inhibited OTA accumulation by 25%. Proteomic analysis was performed to elucidate the inhibitory mechanism of citral on mycelial growth and OTA production at subinhibitory concentrations (75 μL L-1 ). Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 218 were differentially expressed between control and 75 μL L-1 citral treatment samples. Differentially expressed proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of biological process, cellular component and molecular function terms. Potential factors affecting mycelial growth and OTA production were analysed, and OTA production was revealed to be a complex process involving many associated factors related to various processes including nutrient intake, sterol biosynthesis, ribosome biogenesis, energy metabolism, oxidative stress and amino acid metabolism. In addition, citral at 75 μL L-1 down-regulated OTA biosynthetic genes including pks and nrps, but slightly up-regulated the global regulatory factors veA, velB and laeA. CONCLUSION The findings further demonstrate the potential of citral for the preservation of grains and other agricultural products, and provide new insight into its antifungal mechanisms at subinhibitory concentrations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Wei Lin
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jing Neng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Yong Zheng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| |
Collapse
|
39
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Alderman SL, Riggs CL, Bullingham OMN, Gillis TE, Warren DE. Cold acclimation induces life stage-specific responses in the cardiac proteome of western painted turtles (Chrysemys picta bellii): implications for anoxia tolerance. J Exp Biol 2021; 224:271114. [PMID: 34328184 DOI: 10.1242/jeb.242387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis. The relative abundance of 1316 identified proteins was compared between temperatures and developmental stages. The effect of cold acclimation on the cardiac proteome was only evident in the context of an interaction with life stage, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope with age that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of the life stage- and temperature-induced changes to the cardiac proteome, including reduced Complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stage-specific anoxia tolerance in turtles.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Claire L Riggs
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
41
|
Shinzawa-Itoh K, Muramoto K. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome c oxidase. Biophys Physicobiol 2021; 18:186-195. [PMID: 34513548 PMCID: PMC8390318 DOI: 10.2142/biophysico.bppb-v18.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Cytochrome c oxidase (CcO), a terminal oxidase in the respiratory chain, catalyzes the reduction of O2 to water coupled with the proton pump across the membrane. Mitochondrial CcO exists in monomeric and dimeric forms, and as a monomer as part of the respiratory supercomplex, although the enzymatic reaction proceeds in the CcO monomer. Recent biochemical and crystallographic studies of monomeric and dimeric CcOs have revealed functional and structural differences among them. In solubilized mitochondrial membrane, the monomeric form is dominant, and a small amount of dimer is observed. The activity of the monomeric CcO is higher than that of the dimer, suggesting that the monomer is the active form. In the structure of monomeric CcO, a hydrogen bond network of water molecules is formed at the entrance of the proton transfer K-pathway, and in dimeric CcO, this network is altered by a cholate molecule binding between monomers. The specific binding of the cholate molecule at the dimer interface suggests that the binding of physiological ligands similar in size or shape to cholate could also trigger dimer formation as a physiological standby form. Because the dimer interface also contains weak interactions of nonspecifically bound lipid molecules, hydrophobic interactions between the transmembrane helices, and a Met-Met interaction between the extramembrane regions, these interactions could support the stabilization of the standby form. Structural analyses also suggest that hydrophobic interactions of cardiolipins bound to the trans-membrane surface of CcO are involved in forming the supercomplex.
Collapse
Affiliation(s)
- Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Muramoto
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
42
|
Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021; 40:9235-9252. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explore the mechanism of electron transfers mediated by cytochrome c, a soluble protein involved in mitochondrial oxidative phosphorylation and cytochrome b5, a microsomal membrane protein acting as a redox aide in xenobiotic metabolism. We found minimal conservation in the sequence and surface amino acid residues of cytochrome c/b5 proteins among divergent species. Therefore, we question the evolutionary logic for electron transfer (ET) occurring through affinity binding via recognition of specific surface residues/topography. Also, analysis of putative protein-protein interactions in the crystal structures of these proteins and their redox partners did not point to any specific interaction logic. A comparison of the kinetic and thermodynamic constants of wildtype vs. mutants did not provide strong evidence to support the binding-based ET paradigm, but indicated support for diffusible reactive species (DRS)-mediated process. Topographically divergent cytochromes from one species have been substituted for reaction with proteins from other species, implying the involvement of non-specific interactions. We provide a viable alternative (murburn concept) to classical protein-protein binding-based long range ET mechanism. To account for the promiscuity of interactions and solvent-accessible hemes, we propose that the two proteins act as non- specific redox capacitors, mediating one-electron redox equilibriums involving DRS and unbound ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Jesu Castin E
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Karthik Sudarsha
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India
| |
Collapse
|
43
|
Zhou S, Pettersson P, Björck ML, Dawitz H, Brzezinski P, Mäler L, Ädelroth P. NMR structural analysis of the yeast cytochrome c oxidase subunit Cox13 and its interaction with ATP. BMC Biol 2021; 19:98. [PMID: 33971868 PMCID: PMC8111780 DOI: 10.1186/s12915-021-01036-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Mitochondrial respiration is organized in a series of enzyme complexes in turn forming dynamic supercomplexes. In Saccharomyces cerevisiae (baker’s yeast), Cox13 (CoxVIa in mammals) is a conserved peripheral subunit of Complex IV (cytochrome c oxidase, CytcO), localized at the interface of dimeric bovine CytcO, which has been implicated in the regulation of the complex. Results Here, we report the solution NMR structure of Cox13, which forms a dimer in detergent micelles. Each Cox13 monomer has three short helices (SH), corresponding to disordered regions in X-ray or cryo-EM structures of homologous proteins. Dimer formation is mainly induced by hydrophobic interactions between the transmembrane (TM) helix of each monomer. Furthermore, an analysis of chemical shift changes upon addition of ATP revealed that ATP binds at a conserved region of the C terminus with considerable conformational flexibility. Conclusions Together with functional analysis of purified CytcO, we suggest that this ATP interaction is inhibitory of catalytic activity. Our results shed light on the structural flexibility of an important subunit of yeast CytcO and provide structure-based insight into how ATP could regulate mitochondrial respiration. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01036-x.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Current address: High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Markus L Björck
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
44
|
Miranda-Astudillo HV, Yadav KNS, Boekema EJ, Cardol P. Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis. J Bioenerg Biomembr 2021; 53:351-363. [PMID: 33646522 PMCID: PMC8124061 DOI: 10.1007/s10863-021-09882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - P Cardol
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Kawakami T, Yu LJ, Liang T, Okazaki K, Madigan MT, Kimura Y, Wang-Otomo ZY. Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP. Nat Commun 2021; 12:1104. [PMID: 33597527 PMCID: PMC7889895 DOI: 10.1038/s41467-021-21397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/26/2021] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transfers occur through multiple components ranging from small soluble proteins to large integral membrane protein complexes. Co-crystallization of a bacterial photosynthetic electron transfer complex that employs weak hydrophobic interactions was achieved by using high-molar-ratio mixtures of a soluble donor protein (high-potential iron-sulfur protein, HiPIP) with a membrane-embedded acceptor protein (reaction center, RC) at acidic pH. The structure of the co-complex offers a snapshot of a transient bioenergetic event and revealed a molecular basis for thermodynamically unfavorable interprotein electron tunneling. HiPIP binds to the surface of the tetraheme cytochrome subunit in the light-harvesting (LH1) complex-associated RC in close proximity to the low-potential heme-1 group. The binding interface between the two proteins is primarily formed by uncharged residues and is characterized by hydrophobic features. This co-crystal structure provides a model for the detailed study of long-range trans-protein electron tunneling pathways in biological systems. The high potential iron-sulfur (HiPIP) proteins are direct electron donors to the light-harvesting-reaction center complexes (LH1-RC) in photosynthetic β- and γ-Proteobacteria. Here, the authors present the 2.9 Å crystal structure of the HiPIP-bound LH1-RC complex from the thermophilic purple sulfur bacterium Thermochromatium tepidum and discuss mechanistic implications for the electron transfer pathway.
Collapse
Affiliation(s)
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Tai Liang
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
46
|
Cheng C, Hayashi S. Ab Initio Evaluation of the Redox Potential of Cytochrome c. J Chem Theory Comput 2021; 17:1194-1207. [PMID: 33459006 DOI: 10.1021/acs.jctc.0c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various biochemical activities of metabolism and biosynthesis are fulfilled by redox processes with explicit electron exchange, which furnish redox enzymes with high chemical reactivity. However, theoretical investigation of a redox process, which simultaneously involves a complex electronic change at a redox metal center and conformational reorganization of the surrounding protein environment coupled to the electronic change, requires computationally conflicting approaches, highly accurate quantum chemical calculations, and long-time molecular dynamics (MD) simulations, limiting the physicochemical understanding of biological redox processes. Here, we theoretically examined a redox process of cytochrome c by means of a hybrid molecular simulation technique, which enables one to consistently treat the redox center at the ab initio quantum chemistry level of theory and the protein reorganization with long-time MD simulations on the microsecond timescale. The calculations successfully evaluated a large absolute redox potential, 4.34 eV, with errors of only 0.03 to 0.34 eV to the experimental ones without any problem-specific empirical parameters. Through the long-time MD sampling, large and nonlinear reorganization of the protein environment was unveiled and the molecular determinants for the redox potential were identified. The present ab initio approach significantly expands the applicability of theoretical investigation to biological redox systems with more electronically complicated redox centers such as polynuclear transition metal complexes.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
48
|
Maldonado M, Guo F, Letts JA. Atomic structures of respiratory complex III 2, complex IV, and supercomplex III 2-IV from vascular plants. eLife 2021; 10:e62047. [PMID: 33463523 PMCID: PMC7815315 DOI: 10.7554/elife.62047] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial complex III (CIII2) and complex IV (CIV), which can associate into a higher-order supercomplex (SC III2+IV), play key roles in respiration. However, structures of these plant complexes remain unknown. We present atomic models of CIII2, CIV, and SC III2+IV from Vigna radiata determined by single-particle cryoEM. The structures reveal plant-specific differences in the MPP domain of CIII2 and define the subunit composition of CIV. Conformational heterogeneity analysis of CIII2 revealed long-range, coordinated movements across the complex, as well as the motion of CIII2's iron-sulfur head domain. The CIV structure suggests that, in plants, proton translocation does not occur via the H channel. The supercomplex interface differs significantly from that in yeast and bacteria in its interacting subunits, angle of approach and limited interactions in the mitochondrial matrix. These structures challenge long-standing assumptions about the plant complexes and generate new mechanistic hypotheses.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
- BIOEM Facility, University of California DavisDavisUnited States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| |
Collapse
|
49
|
Gusev ID, Firsov AM, Chertkova RV, Kotova EA, Dolgikh DA, Kirpichnikov MP, Antonenko YN. Study of Interaction of Fluorescent Cytochrome C with Liposomes, Mitochondria, and Mitoplasts by Fluorescence Correlation Spectroscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Glass GE. Photobiomodulation: A review of the molecular evidence for low level light therapy. J Plast Reconstr Aesthet Surg 2020; 74:1050-1060. [PMID: 33436333 DOI: 10.1016/j.bjps.2020.12.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Light energy is harnessed for therapeutic use in a number of ways, most recently by way of photobiomodulation (PBM). This phenomenon is a cascade of physiological events induced by the nonthermal exposure of tissue to light at the near infrared end of the visible spectrum. Therapeutic PBM has become a highly commercialized interest, marketed for everything from facial rejuvenation to fat loss, and diode-based devices are popular in both the clinic setting and for use at home. The lack of regulatory standards makes it difficult to draw clear conclusions about efficacy and safety but it is crucial that we understand the theoretical basis for PBM, so that we can engage in an honest dialogue with our patients and design better clinical studies to put claims of efficacy to the test. This article presents a summary of the science of PBM and examines the differences between laser light, on which much of the preclinical evidence is based and light from diodes, which are typically used in a clinical setting.
Collapse
Affiliation(s)
- Graeme E Glass
- Department of Surgery, Sidra Medicine, Doha, Qatar; Chair, laser safety committee, Sidra Medicine, Doha, Qatar; Weill Cornell Medical College, New York and Qatar.
| |
Collapse
|