1
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Castillo Duque de Estrada NM, Thoms M, Flemming D, Hammaren HM, Buschauer R, Ameismeier M, Baßler J, Beck M, Beckmann R, Hurt E. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways. Nat Struct Mol Biol 2023; 30:1119-1131. [PMID: 37291423 PMCID: PMC10442235 DOI: 10.1038/s41594-023-01006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/26/2023] [Indexed: 06/10/2023]
Abstract
The 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors. This reveals how the nascent 5S rRNA associates with the initial nuclear import complex Syo1-uL18-uL5 and, upon further recruitment of the nucleolar factors Rpf2 and Rrs1, develops into the 5S RNP precursor that can assemble into the pre-ribosome. In addition, we elucidate the structure of another 5S RNP intermediate, carrying the human ubiquitin ligase Mdm2, which unravels how this enzyme can be sequestered from its target substrate p53. Our data provide molecular insight into how the 5S RNP can mediate between ribosome biogenesis and cell proliferation.
Collapse
Affiliation(s)
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henrik M Hammaren
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robert Buschauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Jochen Baßler
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
4
|
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol 2023; 24:414-429. [PMID: 36732602 DOI: 10.1038/s41580-022-00573-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/04/2023]
Abstract
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
Collapse
|
5
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
6
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
8
|
Merkl PE, Schächner C, Pilsl M, Schwank K, Schmid C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae. Methods Mol Biol 2022; 2533:63-70. [PMID: 35796982 PMCID: PMC9761553 DOI: 10.1007/978-1-0716-2501-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.
Collapse
Affiliation(s)
- Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Catharina Schmid
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Gernot Längst
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
9
|
Pilsl M, Engel C. Structural Studies of Eukaryotic RNA Polymerase I Using Cryo-Electron Microscopy. Methods Mol Biol 2022; 2533:71-80. [PMID: 35796983 PMCID: PMC9761920 DOI: 10.1007/978-1-0716-2501-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Technical advances have pushed the resolution limit of single-particle cryo-electron microscopy (cryo-EM) throughout the past decade and made the technique accessible to a wide range of samples. Among them, multisubunit DNA-dependent RNA polymerases (Pols) are a prominent example. This review aims at briefly summarizing the architecture and structural adaptations of Pol I, highlighting the importance of cryo-electron microscopy in determining the structures of transcription complexes.
Collapse
Affiliation(s)
- Michael Pilsl
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
10
|
Trahan C, Oeffinger M. Targeted Cross-Linking Mass Spectrometry on Single-Step Affinity Purified Molecular Complexes in the Yeast Saccharomyces cerevisiae. Methods Mol Biol 2022; 2456:185-210. [PMID: 35612743 DOI: 10.1007/978-1-0716-2124-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein cross-linking mass spectrometry (XL-MS) has been developed into a powerful and robust tool that is now well implemented and routinely used by an increasing number of laboratories. While bulk cross-linking of complexes provides useful information on whole complexes, it is limiting for the probing of specific protein "neighbourhoods," or vicinity interactomes. For example, it is not unusual to find cross-linked peptide pairs that are disproportionately overrepresented compared to the surface areas of complexes, while very few or no cross-links are identified in other regions. When studying dynamic complexes along their pathways, some vicinity cross-links may be of too low abundance in the pool of heterogenous complexes of interest to be efficiently identified by standard XL-MS. In this chapter, we describe a targeted XL-MS approach from single-step affinity purified (ssAP) complexes that enables the investigation of specific protein "neighbourhoods" within molecular complexes in yeast, using a small cross-linker anchoring tag, the CH-tag. One advantage of this method over a general cross-linking strategy is the possibility to significantly enrich for localized anchored-cross-links within complexes, thus yielding a higher sensitivity to detect highly dynamic or low abundance protein interactions within a specific protein "neighbourhood" occurring along the pathway of a selected bait protein. Moreover, many variations of the method can be employed; the ssAP-tag and the CH-tag can either be fused to the same or different proteins in the complex, or the CH-tag can be fused to multiple protein components in the same cell line to explore dynamic vicinity interactions along a pathway.
Collapse
Affiliation(s)
- Christian Trahan
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.
- Département de biochimie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
11
|
Azouzi C, Jaafar M, Dez C, Abou Merhi R, Lesne A, Henras AK, Gadal O. Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning. Front Mol Biosci 2021; 8:778778. [PMID: 34765647 PMCID: PMC8575686 DOI: 10.3389/fmolb.2021.778778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, we present recent advances in understanding the coupling between rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing and nascent RNA folding. High density of Pol I per gene imposes topological constraints that establish a defined pattern of polymerase distribution along the gene, with a persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose that premature termination of transcription, at defined positions, can control rRNA production in vivo.
Collapse
Affiliation(s)
- Chaima Azouzi
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mariam Jaafar
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Annick Lesne
- CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Université Montpellier, Montpellier, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Zhao D, Liu W, Chen K, Wu Z, Yang H, Xu Y. Structure of the human RNA polymerase I elongation complex. Cell Discov 2021; 7:97. [PMID: 34671025 PMCID: PMC8528822 DOI: 10.1038/s41421-021-00335-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) transcribes ribosomal DNA and generates RNA for ribosome synthesis. Pol I accounts for the majority of cellular transcription activity and dysregulation of Pol I transcription leads to cancers and ribosomopathies. Despite extensive structural studies of yeast Pol I, structure of human Pol I remains unsolved. Here we determined the structures of the human Pol I in the pre-translocation, post-translocation, and backtracked states at near-atomic resolution. The single-subunit peripheral stalk lacks contacts with the DNA-binding clamp and is more flexible than the two-subunit stalk in yeast Pol I. Compared to yeast Pol I, human Pol I possesses a more closed clamp, which makes more contacts with DNA. The Pol I structure in the post-cleavage backtracked state shows that the C-terminal zinc ribbon of RPA12 inserts into an open funnel and facilitates “dinucleotide cleavage” on mismatched DNA–RNA hybrid. Critical disease-associated mutations are mapped on Pol I regions that are involved in catalysis and complex organization. In summary, the structures provide new sights into human Pol I complex organization and efficient proofreading.
Collapse
Affiliation(s)
- Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China. .,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
13
|
DNA Intercalators Inhibit Eukaryotic Ribosomal RNA Synthesis by Impairing the Initiation of Transcription. Genes (Basel) 2021; 12:genes12091412. [PMID: 34573394 PMCID: PMC8466728 DOI: 10.3390/genes12091412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.
Collapse
|
14
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
15
|
The Mammalian and Yeast A49 and A34 Heterodimers: Homologous but Not the Same. Genes (Basel) 2021; 12:genes12050620. [PMID: 33921963 PMCID: PMC8143541 DOI: 10.3390/genes12050620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Ribosomal RNA synthesis is the rate-limiting step in ribosome biogenesis. In eukaryotes, RNA polymerase I (Pol I) is responsible for transcribing the ribosomal DNA genes that reside in the nucleolus. Aberrations in Pol I activity have been linked to the development of multiple cancers and other genetic diseases. Therefore, it is key that we understand the mechanisms of Pol I transcription. Recent studies have demonstrated that there are many differences between Pol I transcription in yeast and mammals. Our goal is to highlight the similarities and differences between the polymerase-associated factors (PAFs) in yeast and mammalian cells. We focus on the PAF heterodimer A49/34 in yeast and PAF53/49 in mammals. Recent studies have demonstrated that while the structures between the yeast and mammalian orthologs are very similar, they may function differently during Pol I transcription, and their patterns of regulation are different.
Collapse
|
16
|
Heiss FB, Daiß JL, Becker P, Engel C. Conserved strategies of RNA polymerase I hibernation and activation. Nat Commun 2021; 12:758. [PMID: 33536435 PMCID: PMC7859239 DOI: 10.1038/s41467-021-21031-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
RNA polymerase (Pol) I transcribes the ribosomal RNA precursor in all eukaryotes. The mechanisms 'activation by cleft contraction' and 'hibernation by dimerization' are unique to the regulation of this enzyme, but structure-function analysis is limited to baker's yeast. To understand whether regulation by such strategies is specific to this model organism or conserved among species, we solve three cryo-EM structures of Pol I from Schizosaccharomyces pombe in different functional states. Comparative analysis of structural models derived from high-resolution reconstructions shows that activation is accomplished by a conserved contraction of the active center cleft. In contrast to current beliefs, we find that dimerization of the S. pombe polymerase is also possible. This dimerization is achieved independent of the 'connector' domain but relies on two previously undescribed interfaces. Our analyses highlight the divergent nature of Pol I transcription systems from their counterparts and suggest conservation of regulatory mechanisms among organisms.
Collapse
Affiliation(s)
- Florian B Heiss
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Philipp Becker
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
17
|
Abstract
RNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.
Collapse
|
18
|
Ramsay EP, Abascal-Palacios G, Daiß JL, King H, Gouge J, Pilsl M, Beuron F, Morris E, Gunkel P, Engel C, Vannini A. Structure of human RNA polymerase III. Nat Commun 2020; 11:6409. [PMID: 33335104 PMCID: PMC7747717 DOI: 10.1038/s41467-020-20262-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.
Collapse
Affiliation(s)
- Ewan Phillip Ramsay
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Helen King
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip Gunkel
- Max Planck Institute for Biophysical Chemistry, Research Group Nuclear Architecture, 37077, Göttingen, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Fondazione Human Technopole, Structural Biology Research Centre, 20157, Milan, Italy.
| |
Collapse
|
19
|
Knutson BA, McNamar R, Rothblum LI. Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review. Biochem Soc Trans 2020; 48:1917-1927. [PMID: 32915199 PMCID: PMC10793690 DOI: 10.1042/bst20190848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023]
Abstract
RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.
Collapse
Affiliation(s)
- Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Rachel McNamar
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Lawrence I. Rothblum
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| |
Collapse
|
20
|
Molecular Topology of RNA Polymerase I Upstream Activation Factor. Mol Cell Biol 2020; 40:MCB.00056-20. [PMID: 32253346 DOI: 10.1128/mcb.00056-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Upstream activation factor (UAF) is a multifunctional transcription factor in Saccharomyces cerevisiae that plays dual roles in activating RNA polymerase I (Pol I) transcription and repression of Pol II. For Pol I, UAF binds to a specific upstream element in the ribosomal DNA (rDNA) promoter and interacts with two other Pol I initiation factors, the TATA-binding protein (TBP) and core factor (CF). We used an integrated combination of chemical cross-linking mass spectrometry (CXMS), molecular genetics, protein biochemistry, and structural modeling to understand the topological framework responsible for UAF complex formation. Here, we report the molecular topology of the UAF complex, describe new structural and functional domains that play roles in UAF complex integrity, assembly, and biological function, and provide roles for previously identified UAF domains that include the Rrn5 SANT and histone fold domains. We highlight the role of new domains in Uaf30 that include an N-terminal winged helix domain and a disordered tethering domain as well as a BORCS6-like domain found in Rrn9. Together, our results reveal a unique network of topological features that coalesce around a histone tetramer-like core to form the dual-function UAF complex.
Collapse
|
21
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
22
|
Pilsl M, Engel C. Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nat Commun 2020; 11:1206. [PMID: 32139698 PMCID: PMC7057995 DOI: 10.1038/s41467-020-15052-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/15/2020] [Indexed: 11/09/2022] Open
Abstract
Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a prerequisite for the biosynthesis of ribosomes in eukaryotes. Compared to Pols II and III, the mechanisms underlying promoter recognition, initiation complex formation and DNA melting by Pol I substantially diverge. Here, we report the high-resolution cryo-EM reconstruction of a Pol I early initiation intermediate assembled on a double-stranded promoter scaffold that prevents the establishment of downstream DNA contacts. Our analyses demonstrate how efficient promoter-backbone interaction is achieved by combined re-arrangements of flexible regions in the ‘core factor’ subunits Rrn7 and Rrn11. Furthermore, structure-function analysis illustrates how destabilization of the melted DNA region correlates with contraction of the polymerase cleft upon transcription activation, thereby combining promoter recruitment with DNA-melting. This suggests that molecular mechanisms and structural features of Pol I initiation have co-evolved to support the efficient melting, initial transcription and promoter clearance required for high-level rRNA synthesis. RNA polymerase I (Pol I) catalyses the transcription of ribosomal RNA precursors, and its transcription initiation mechanism differs from that of Pol II and Pol III. Here the authors present the cryo-EM structure of a trapped early intermediate stage of promoter-recruited Pol I, which reveals the interactions of the basal rDNA transcription machinery with the native promoter, and discuss the mechanistic implications.
Collapse
Affiliation(s)
- Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
23
|
RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. Proc Natl Acad Sci U S A 2020; 117:5801-5809. [PMID: 32127479 DOI: 10.1073/pnas.1920747117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All organisms-bacteria, archaea, and eukaryotes-have a transcription initiation factor that contains a structural module that binds within the RNA polymerase (RNAP) active-center cleft and interacts with template-strand single-stranded DNA (ssDNA) in the immediate vicinity of the RNAP active center. This transcription initiation-factor structural module preorganizes template-strand ssDNA to engage the RNAP active center, thereby facilitating binding of initiating nucleotides and enabling transcription initiation from initiating mononucleotides. However, this transcription initiation-factor structural module occupies the path of nascent RNA and thus presumably must be displaced before or during initial transcription. Here, we report four sets of crystal structures of bacterial initially transcribing complexes that demonstrate and define details of stepwise, RNA-extension-driven displacement of the "σ-finger" of the bacterial transcription initiation factor σ. The structures reveal that-for both the primary σ-factor and extracytoplasmic (ECF) σ-factors, and for both 5'-triphosphate RNA and 5'-hydroxy RNA-the "σ-finger" is displaced in stepwise fashion, progressively folding back upon itself, driven by collision with the RNA 5'-end, upon extension of nascent RNA from ∼5 nt to ∼10 nt.
Collapse
|
24
|
Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 2020; 295:4782-4795. [PMID: 32060094 DOI: 10.1074/jbc.ra119.011827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.
Collapse
Affiliation(s)
- Philipp E Merkl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Michael Pilsl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Tobias Fremter
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Katrin Schwank
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Christoph Engel
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Gernot Längst
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Herbert Tschochner
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| |
Collapse
|
25
|
Sadian Y, Baudin F, Tafur L, Murciano B, Wetzel R, Weis F, Müller CW. Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nat Commun 2019; 10:5543. [PMID: 31804486 PMCID: PMC6895186 DOI: 10.1038/s41467-019-13510-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III. RNA polymerase I (Pol I) catalyses the transcription of pre-ribosomal RNA and for transcription initiation Pol I assembles with core factor and Rrn3 on the rDNA core promoter. Here the authors provide insights into the molecular mechanism of promoter opening by Pol I by determining the cryo-EM structures of two closed, two intermediate and two open Pol I pre-initiation complexes.
Collapse
Affiliation(s)
- Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Bioimaging Center, University of Geneva, 30, Quai Ernest-Ansermet 4, CH-1211, Geneva, Switzerland
| | - Florence Baudin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Lucas Tafur
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany.,Department of Molecular Biology, University of Geneva Sciences III, 30, Quai Ernest-Ansermet 4, CH-1211, Geneva, Switzerland
| | - Brice Murciano
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Rene Wetzel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Felix Weis
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
26
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
27
|
Roeder RG. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol 2019; 26:783-791. [PMID: 31439941 DOI: 10.1038/s41594-019-0287-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
The landmark 1969 discovery of nuclear RNA polymerases I, II and III in diverse eukaryotes represented a major turning point in the field that, with subsequent elucidation of the distinct structures and functions of these enzymes, catalyzed an avalanche of further studies. In this Review, written from a personal and historical perspective, I highlight foundational biochemical studies that led to the discovery of an expanding universe of the components of the transcriptional and regulatory machineries, and a parallel complexity in gene-specific mechanisms that continue to be explored to the present day.
Collapse
Affiliation(s)
- Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
28
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
29
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
30
|
Tafur L, Sadian Y, Hanske J, Wetzel R, Weis F, Müller CW. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. eLife 2019; 8:43204. [PMID: 30913026 PMCID: PMC6435322 DOI: 10.7554/elife.43204] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/09/2019] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-electron microscopy (EM) structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-EM structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the Pol I-specific transcription-like factors A49-A34.5 and A12.2. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our structural and biochemical data suggest a mechanism where reversible binding of the A49-A34.5 heterodimer could contribute to the regulation of Pol I transcription initiation and elongation.
Collapse
Affiliation(s)
- Lucas Tafur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree, European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Yashar Sadian
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Hanske
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rene Wetzel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
31
|
Structural basis of ECF-σ-factor-dependent transcription initiation. Nat Commun 2019; 10:710. [PMID: 30755604 PMCID: PMC6372665 DOI: 10.1038/s41467-019-08443-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023] Open
Abstract
Extracytoplasmic (ECF) σ factors, the largest class of alternative σ factors, are related to primary σ factors, but have simpler structures, comprising only two of six conserved functional modules in primary σ factors: region 2 (σR2) and region 4 (σR4). Here, we report crystal structures of transcription initiation complexes containing Mycobacterium tuberculosis RNA polymerase (RNAP), M. tuberculosis ECF σ factor σL, and promoter DNA. The structures show that σR2 and σR4 of the ECF σ factor occupy the same sites on RNAP as in primary σ factors, show that the connector between σR2 and σR4 of the ECF σ factor–although shorter and unrelated in sequence–follows the same path through RNAP as in primary σ factors, and show that the ECF σ factor uses the same strategy to bind and unwind promoter DNA as primary σ factors. The results define protein-protein and protein-DNA interactions involved in ECF-σ-factor-dependent transcription initiation. No structural data have been available for RNA polymerase holoenzymes or transcription initiation complexes that contain extracytoplasmic σ factors. Here the authors report the crystal structures of transcription initiation complexes comprising Mycobacterium tuberculosis RNA polymerase, extracytoplasmic σ factor σL and promoter DNA.
Collapse
|
32
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
33
|
Dienemann C, Schwalb B, Schilbach S, Cramer P. Promoter Distortion and Opening in the RNA Polymerase II Cleft. Mol Cell 2019; 73:97-106.e4. [DOI: 10.1016/j.molcel.2018.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/04/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
|
34
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
35
|
Hanske J, Sadian Y, Müller CW. The cryo-EM resolution revolution and transcription complexes. Curr Opin Struct Biol 2018; 52:8-15. [PMID: 30015202 PMCID: PMC6302067 DOI: 10.1016/j.sbi.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023]
Abstract
Direct electron detector technology combined with improved imaging processing procedures has dramatically increased the resolution that can be obtained by single-particle cryo-electron microscopy and cryo-electron tomography. These developments-often referred to as the `resolution revolution' in cryo-EM-have had a profound impact on the structural biology of transcription as they allow the determination of atomic or near-atomic resolution structures of very large, flexible and often transient transcription complexes that in many cases had resisted crystal structure determination for decades. In this review, we will discuss recent advances and breakthroughs in the structural biology of transcription complexes enabled by the revolution in cryo-electron microscopy with particular focus on eukaryotic RNA polymerases and their pre-initiation complexes, but also chromatin remodelers and epigenetic regulators.
Collapse
Affiliation(s)
- Jonas Hanske
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
36
|
Structural visualization of RNA polymerase III transcription machineries. Cell Discov 2018; 4:40. [PMID: 30083386 PMCID: PMC6066478 DOI: 10.1038/s41421-018-0044-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III-TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.
Collapse
|
37
|
Chaker-Margot M. Assembly of the small ribosomal subunit in yeast: mechanism and regulation. RNA (NEW YORK, N.Y.) 2018; 24:881-891. [PMID: 29712726 PMCID: PMC6004059 DOI: 10.1261/rna.066985.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The eukaryotic ribosome is made of four intricately folded ribosomal RNAs and 79 proteins. During rapid growth, yeast cells produce an incredible 2000 ribosomes every minute. Ribosome assembly involves more than 200 trans-acting factors, intervening from the transcription of the preribosomal RNA in the nucleolus to late maturation events in the cytoplasm. The biogenesis of the small ribosomal subunit, or 40S, is especially intricate, requiring more than four times the mass of the small subunit in assembly factors for its full maturation. Recent studies have provided new insights into the complex assembly of the 40S subunit. These data from cryo-electron microscopy, X-ray crystallography, and other biochemical and molecular biology methods, have elucidated the role of many factors required in small subunit maturation. Mechanisms of the regulation of ribosome assembly have also emerged from this body of work. This review aims to integrate these new results into an updated view of small subunit biogenesis and its regulation, in yeast, from transcription to the formation of the mature small subunit.
Collapse
Affiliation(s)
- Malik Chaker-Margot
- The Rockefeller University, New York, New York 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, New York 10065, USA
| |
Collapse
|
38
|
Engel C, Neyer S, Cramer P. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. Annu Rev Biophys 2018; 47:425-446. [DOI: 10.1146/annurev-biophys-070317-033058] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerases I and II (Pol I and Pol II) are the eukaryotic enzymes that catalyze DNA-dependent synthesis of ribosomal RNA and messenger RNA, respectively. Recent work shows that the transcribing forms of both enzymes are similar and the fundamental mechanisms of RNA chain elongation are conserved. However, the mechanisms of transcription initiation and its regulation differ between Pol I and Pol II. Recent structural studies of Pol I complexes with transcription initiation factors provided insights into how the polymerase recognizes its specific promoter DNA, how it may open DNA, and how initiation may be regulated. Comparison with the well-studied Pol II initiation system reveals a distinct architecture of the initiation complex and visualizes promoter- and gene-class-specific aspects of transcription initiation. On the basis of new structural studies, we derive a model of the Pol I transcription cycle and provide a molecular movie of Pol I transcription that can be used for teaching.
Collapse
Affiliation(s)
- Christoph Engel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Current affiliation: Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Simon Neyer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Molecular mechanism of promoter opening by RNA polymerase III. Nature 2018; 553:295-300. [PMID: 29345638 PMCID: PMC5777638 DOI: 10.1038/nature25440] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III (Pol III) assembles together with transcription factor IIIB (TFIIIB) on different promoter types to initiate the transcription of small, structured RNAs. Here, we present structures of Pol III pre-initiation complexes comprising the 17-subunit Pol III and hetero-trimeric transcription factor TFIIIB with subunits TATA-binding protein (TBP), B-related factor 1 (Brf1) and B double prime 1 (Bdp1) bound to a natural promoter in different functional states. Electron cryo-microscopy (cryo-EM) reconstructions varying from 3.7 Å to 5.5 Å resolution include two early intermediates in which the DNA duplex is closed, an open DNA complex and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight and multivalent interaction of TFIIIB with promoter DNA and explain how TFIIIB recruits Pol III. TFIIIB and Pol III subunit C37 together activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate melting of double-stranded DNA in a mechanism similar as used in the Pol II system.
Collapse
|
40
|
Abstract
In yeast, transcription of ribosomal DNA (rDNA) by RNA polymerase I (Pol I) is regulated by unique mechanisms acting at the level of the enzyme. Under stress situations such as starvation, Pol I hibernates through dimerization. When growth conditions are restored, dimer disassembly and Rrn3 binding drive enzyme activation and subsequent recruitment to rDNA.
Collapse
|
41
|
Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A. Structural basis of RNA polymerase III transcription initiation. Nature 2018; 553:301-306. [PMID: 29345637 DOI: 10.1038/nature25441] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4-4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Collapse
Affiliation(s)
| | | | | | - Edward Morris
- The Institute of Cancer Research, London SW7 3RP, UK
| | | |
Collapse
|
42
|
Jackobel AJ, Han Y, He Y, Knutson BA. Breaking the mold: structures of the RNA polymerase I transcription complex reveal a new path for initiation. Transcription 2018; 9:255-261. [PMID: 29264963 PMCID: PMC6104693 DOI: 10.1080/21541264.2017.1416268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
While structures of the RNA polymerase (Pol) II initiation complex have been resolved and extensively studied, the Pol I initiation complex remained elusive. Here, we review the recent structural analyses of the yeast Pol I transcription initiation complex that reveal several unique and unexpected Pol I-specific properties.
Collapse
Affiliation(s)
- Ashleigh J. Jackobel
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210
| | - Yan Han
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, IL 60208
| | - Yuan He
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, IL 60208
| | - Bruce A. Knutson
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210,Bruce A. Knutson , SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
43
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
44
|
Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P. Structural Basis of Mitochondrial Transcription Initiation. Cell 2017; 171:1072-1081.e10. [PMID: 29149603 DOI: 10.1016/j.cell.2017.10.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022]
Abstract
Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yaroslav I Morozov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Azadeh Sarfallah
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Dmitry Temiakov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
45
|
Abstract
Transcription initiation is one of the key regulatory steps in expressing the genetic information encoded in the DNA . Mechanisms of RNA Pol II transcription have been extensively studied, whereas the structural basis of RNA Pol I and III transcription is still poorly defined. Three recent studies discussed here give a first glimpse into the molecular mechanisms underlying the process of RNA Pol I transcriptional initiation and reveal unexpected structural differences compared to the previously described homologous Pol II structures.
Collapse
|
46
|
Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Müller CW. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J 2017; 36:2698-2709. [PMID: 28739580 PMCID: PMC5599796 DOI: 10.15252/embj.201796958] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre‐rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi‐subunit pre‐initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo‐EM structure of the 18‐subunit yeast Pol I PIC bound to a transcription scaffold. The cryo‐EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB‐related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.
Collapse
Affiliation(s)
- Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Lucas Tafur
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arjen J Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Hamburg, Germany
| | - Rene Wetzel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Katarzyna Buczak
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Wim Jh Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
47
|
Khatter H, Vorländer MK, Müller CW. RNA polymerase I and III: similar yet unique. Curr Opin Struct Biol 2017; 47:88-94. [PMID: 28743025 DOI: 10.1016/j.sbi.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
The majority of non-protein-coding RNAs present in eukaryotic cells comprises rRNAs, tRNAs and U6 snRNA that are involved in protein biosynthesis and are synthesized by DNA-dependent-RNA polymerase I and III. The transcription cycle (initiation, elongation and termination) has similar principles in all three nuclear RNA polymerases with specific features that are reflected back in their structures. Recently, owing to the 'resolution revolution' in electron cryo-microscopy, there has been a significant advancement in the understanding of these molecular machines. Here, we highlight the structure-function adaptation in specificity and activity of these molecular machines and present parallels and distinctions between their transcription mechanisms.
Collapse
Affiliation(s)
- Heena Khatter
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|