1
|
Chen H, Yan G, Wen MH, Brooks KN, Zhang Y, Huang PS, Chen TY. Advancements and Practical Considerations for Biophysical Research: Navigating the Challenges and Future of Super-resolution Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:331-344. [PMID: 38817319 PMCID: PMC11134610 DOI: 10.1021/cbmi.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kameron N. Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
D’Angiolini S, Basile MS, Mazzon E, Gugliandolo A. In Silico Analysis Reveals the Modulation of Ion Transmembrane Transporters in the Cerebellum of Alzheimer's Disease Patients. Int J Mol Sci 2023; 24:13924. [PMID: 37762226 PMCID: PMC10530854 DOI: 10.3390/ijms241813924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. AD hallmarks are extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangles in the brain. It is interesting to notice that Aβ plaques appear in the cerebellum only in late stages of the disease, and then it was hypothesized that it can be resistant to specific neurodegenerative mechanisms. However, the role of cerebellum in AD pathogenesis is not clear yet. In this study, we performed an in silico analysis to evaluate the transcriptional profile of cerebellum in AD patients and non-AD subjects in order to deepen the knowledge on its role in AD. The analysis evidenced that only the molecular function (MF) "active ion transmembrane transporter activity" was overrepresented. Regarding the 21 differentially expressed genes included in this MF, some of them may be involved in the ion dyshomeostasis reported in AD, while others assumed, in the cerebellum, an opposite regulation compared to those reported in other brain regions in AD patients. They might be associated to a protective phenotype, that may explain the initial resistance of cerebellum to neurodegeneration in AD. Of note, this MF was not overrepresented in prefrontal cortex and visual cortex indicating that it is a peculiarity of the cerebellum.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.D.); (M.S.B.); (A.G.)
| | | |
Collapse
|
3
|
Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. J Neurosci 2023; 43:5870-5879. [PMID: 37491315 PMCID: PMC10423043 DOI: 10.1523/jneurosci.0082-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Amyloid β protein (Aβ) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aβ aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aβ and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aβ and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aβ to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aβ-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid β protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Róisín Winters
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael S Perkinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Andy Billinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Jack A Prenderville
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin 2, Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
4
|
Yu J, Wu D, Zhao Y, Guo L, Liu P. Study on multi-target effects of PIMPC on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2023; 1802:148226. [PMID: 36586663 DOI: 10.1016/j.brainres.2022.148226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3), a key role in the pathogenesis of Alzheimer's disease (AD), has been linked with the formation of β-amyloid (Aβ), tubulin-associated unit (tau) protein phosphorylation and apoptosis. Moreover, the excessive presence of elements such as copper (Cu) can promote Aβ aggregation and increase the risk of AD. Combined with the role of GSK-3 and metal elements in AD, a metal-chelating imine GSK-3 inhibitor N-(4-{[(2-amino-5-phenylpyridin-3-ylidene)imino]methyl}pyridin-2-yl)cyclopropanecarboxamide (PIMPC) was designed and synthesized. In our study, Aβ/Cu2+-induced AD rat model was established and treated with PIMPC. The results indicated that PIMPC can not only down-regulate the high expression levels of Aβ, tau and p-tau proteins of the AD rats, but also chelate Cu and aluminum (Al) elements in the brain. In addition, PIMPC may play an anti-apoptotic effect by down-regulating the high expression of cleaved Caspase-3 protein, and it can modulate ATPase and nitric oxide synthase (NOS) levels, oxidative stress and neurotransmitter disturbance. In summary, PIMPC acts on multiple targets to relieve the learning and memory impairment of AD rats induced by Aβ/Cu2+.
Collapse
Affiliation(s)
- Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
6
|
Verzelli P, Nold A, Sun C, Heilemann M, Schuman EM, Tchumatchenko T. Unbiased choice of global clustering parameters for single-molecule localization microscopy. Sci Rep 2022. [PMID: 36581654 DOI: 10.1101/2021.02.22.432198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.
Collapse
Affiliation(s)
- Pietro Verzelli
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Nold
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Chao Sun
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Erin M Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
7
|
Verzelli P, Nold A, Sun C, Heilemann M, Schuman EM, Tchumatchenko T. Unbiased choice of global clustering parameters for single-molecule localization microscopy. Sci Rep 2022; 12:22561. [PMID: 36581654 PMCID: PMC9800574 DOI: 10.1038/s41598-022-27074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Single-molecule localization microscopy resolves objects below the diffraction limit of light via sparse, stochastic detection of target molecules. Single molecules appear as clustered detection events after image reconstruction. However, identification of clusters of localizations is often complicated by the spatial proximity of target molecules and by background noise. Clustering results of existing algorithms often depend on user-generated training data or user-selected parameters, which can lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion and target molecule density. We benchmarked FINDER against the most common density based clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can keep the number of false positive inclusions low while also maintaining a low number of false negative detections in densely populated regions.
Collapse
Affiliation(s)
- Pietro Verzelli
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Nold
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Chao Sun
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Erin M Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
8
|
Zhang X, Lee W, Bian JS. Recent Advances in the Study of Na +/K +-ATPase in Neurodegenerative Diseases. Cells 2022; 11:cells11244075. [PMID: 36552839 PMCID: PMC9777075 DOI: 10.3390/cells11244075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Na+/K+-ATPase (NKA), a large transmembrane protein, is expressed in the plasma membrane of most eukaryotic cells. It maintains resting membrane potential, cell volume and secondary transcellular transport of other ions and neurotransmitters. NKA consumes about half of the ATP molecules in the brain, which makes NKA highly sensitive to energy deficiency. Neurodegenerative diseases (NDDs) are a group of diseases characterized by chronic, progressive and irreversible neuronal loss in specific brain areas. The pathogenesis of NDDs is sophisticated, involving protein misfolding and aggregation, mitochondrial dysfunction and oxidative stress. The protective effect of NKA against NDDs has been emerging gradually in the past few decades. Hence, understanding the role of NKA in NDDs is critical for elucidating the underlying pathophysiology of NDDs and identifying new therapeutic targets. The present review focuses on the recent progress involving different aspects of NKA in cellular homeostasis to present in-depth understanding of this unique protein. Moreover, the essential roles of NKA in NDDs are discussed to provide a platform and bright future for the improvement of clinical research in NDDs.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weithye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
9
|
Increased Subcortical Sodium Levels in Patients with Progressive Supranuclear Palsy. Biomedicines 2022; 10:biomedicines10071728. [PMID: 35885033 PMCID: PMC9313136 DOI: 10.3390/biomedicines10071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a debilitating neurodegenerative disease characterized by an aggressive disease course. Total and intracellular-weighted sodium imaging (23Na-MRI) is a promising method for investigating neurodegeneration in vivo. We enrolled 10 patients with PSP and 20 age- and gender-matched healthy control subjects; all study subjects underwent a neurological examination, whole-brain structural, and (total and intracellular-weighted) 23Na-MRI. Voxel-wise analyses revealed increased brainstem total sodium content in PSP that correlated with disease severity. The ROI-wise analysis highlighted additional sodium level changes in other regions implicated in the pathophysiology of PSP. 23Na-MRI yields substantial benefits for the diagnostic workup of patients with PSP and adds complementary information on the underlying neurodegenerative tissue changes in PSP.
Collapse
|
10
|
NMDA and AMPA Receptors at Synapses: Novel Targets for Tau and α-Synuclein Proteinopathies. Biomedicines 2022; 10:biomedicines10071550. [PMID: 35884851 PMCID: PMC9313101 DOI: 10.3390/biomedicines10071550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of neurodegenerative diseases is synaptic dysfunction and spine loss as early signs of neurodegeneration. In this context, accumulation of misfolded proteins has been identified as one of the most common causes driving synaptic toxicity at excitatory glutamatergic synapses. In particular, a great effort has been placed on dissecting the interplay between the toxic deposition of misfolded proteins and synaptic defects, looking for a possible causal relationship between them. Several studies have demonstrated that misfolded proteins could directly exert negative effects on synaptic compartments, altering either the function or the composition of pre- and post-synaptic receptors. In this review, we focused on the physiopathological role of tau and α-synuclein at the level of postsynaptic glutamate receptors. Tau is a microtubule-associated protein mainly expressed by central nervous system neurons where it exerts several physiological functions. In some cases, it undergoes aberrant post-translational modifications, including hyperphosphorylation, leading to loss of function and toxic aggregate formation. Similarly, aggregated species of the presynaptic protein α-synuclein play a key role in synucleinopathies, a group of neurological conditions that includes Parkinson’s disease. Here, we discussed how tau and α-synuclein target the postsynaptic compartment of excitatory synapses and, specifically, AMPA- and NMDA-type glutamate receptors. Notably, recent studies have reported their direct functional interactions with these receptors, which in turn could contribute to the impaired glutamatergic transmission observed in many neurodegenerative diseases.
Collapse
|
11
|
Tuck BJ, Miller LVC, Katsinelos T, Smith AE, Wilson EL, Keeling S, Cheng S, Vaysburd MJ, Knox C, Tredgett L, Metzakopian E, James LC, McEwan WA. Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Rep 2022; 39:110776. [PMID: 35508140 PMCID: PMC9108550 DOI: 10.1016/j.celrep.2022.110776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.
Collapse
Affiliation(s)
- Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| | - Lauren V C Miller
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Emma L Wilson
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Marina J Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lucy Tredgett
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| |
Collapse
|
12
|
Berrocal M, Mata AM. The Plasma Membrane Ca 2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience 2022; 518:112-118. [PMID: 35469971 DOI: 10.1016/j.neuroscience.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid β-peptides (Aβ) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aβ has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
13
|
Puma DDL, Ripoli C, Puliatti G, Pastore F, Lazzarino G, Tavazzi B, Arancio O, Piacentini R, Grassi C. Extracellular tau oligomers affect extracellular glutamate handling by astrocytes through downregulation of GLT-1 expression and impairment of NKA1A2 function. Neuropathol Appl Neurobiol 2022; 48:e12811. [PMID: 35274343 PMCID: PMC9262805 DOI: 10.1111/nan.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
AIMS Several studies reported that astrocytes support neuronal communication by the release of gliotransmitters, including ATP and glutamate. Astrocytes also play a fundamental role in buffering extracellular glutamate in the synaptic cleft, thus limiting the risk of excitotoxicity in neurons. We previously demonstrated that extracellular tau oligomers (ex-oTau), by specifically targeting astrocytes, affect glutamate-dependent synaptic transmission via a reduction in gliotransmitter release. The aim of this work was to determine if ex-oTau also impair the ability of astrocytes to uptake extracellular glutamate, thus further contributing to ex-oTau-dependent neuronal dysfunction. METHODS Primary cultures of astrocytes and organotypic brain slices were exposed to ex-oTau (200 nM) for 1 hour. Extracellular glutamate buffering by astrocytes was studied by: Na+ imaging; electrophysiological recordings; high-performance liquid chromatography; Western blot and immunofluorescence. Experimental paradigms avoiding ex-oTau internalization (i.e., heparin pre-treatment and amyloid precursor protein knockout astrocytes) were used to dissect intracellular vs. extracellular effects of oTau. RESULTS Ex-oTau uploading in astrocytes significantly affected glutamate-transporter-1 expression and function, thus impinging on glutamate buffering activity. Ex-oTau also reduced Na-K-ATPase activity because of pump mislocalization on the plasma membrane, with no significant changes in expression. This effect was independent of oTau internalization and it caused Na+ overload and membrane depolarization in ex-oTau-targeted astrocytes. CONCLUSIONS Ex-oTau exerted a complex action on astrocytes, at both intracellular and extracellular levels. The net effect was dysregulated glutamate signalling in terms of both release and uptake that relied on reduced expression of glutamate-transporter-1, altered function and localization of NKA1A1, and NKA1A2. Consequently, Na+ gradients and all Na+ -dependent transports were affected.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Barbara Tavazzi
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Medicine, Columbia University, New York, NY, United States
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Haeger A, Bottlaender M, Lagarde J, Porciuncula Baptista R, Rabrait-Lerman C, Luecken V, Schulz JB, Vignaud A, Sarazin M, Reetz K, Romanzetti S, Boumezbeur F. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer's disease? Alzheimers Dement 2021; 17:1843-1854. [PMID: 34855281 DOI: 10.1002/alz.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
The pathophysiological processes underlying the development and progression of Alzheimer's disease (AD) on the neuronal level are still unclear. Previous research has hinted at metabolic energy deficits and altered sodium homeostasis with impaired neuronal function as a potential metabolic marker relevant for neurotransmission in AD. Using sodium (23 Na) magnetic resonance (MR) imaging on an ultra-high-field 7 Tesla MR scanner, we found increased cerebral tissue sodium concentration (TSC) in 17 biomarker-defined AD patients compared to 22 age-matched control subjects in vivo. TSC was highly discriminative between controls and early AD stages and was predictive for cognitive state, and associated with regional tau load assessed with flortaucipir-positron emission tomography as a possible mediator of TSC-associated neurodegeneration. TSC could therefore serve as a non-invasive, stage-dependent, metabolic imaging marker. Setting a focus on cellular metabolism and potentially disturbed interneuronal communication due to energy-dependent altered cell homeostasis could hamper progressive cognitive decline by targeting these processes in future interventions.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | | | | | - Volker Luecken
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Linsenmeier L, Mohammadi B, Shafiq M, Frontzek K, Bär J, Shrivastava AN, Damme M, Song F, Schwarz A, Da Vela S, Massignan T, Jung S, Correia A, Schmitz M, Puig B, Hornemann S, Zerr I, Tatzelt J, Biasini E, Saftig P, Schweizer M, Svergun D, Amin L, Mazzola F, Varani L, Thapa S, Gilch S, Schätzl H, Harris DA, Triller A, Mikhaylova M, Aguzzi A, Altmeppen HC, Glatzel M. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. SCIENCE ADVANCES 2021; 7:eabj1826. [PMID: 34818048 PMCID: PMC8612689 DOI: 10.1126/sciadv.abj1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer’s disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Julia Bär
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Markus Damme
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Schwarz
- Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation, UKE, Hamburg, Germany
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Federica Mazzola
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Marina Mikhaylova
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
16
|
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 2021; 22:723-740. [PMID: 34725519 DOI: 10.1038/s41583-021-00531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-β (Aβ) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aβ and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.
Collapse
|
17
|
Structural mapping techniques distinguish the surfaces of fibrillar 1N3R and 1N4R human tau. J Biol Chem 2021; 297:101252. [PMID: 34592311 PMCID: PMC8551503 DOI: 10.1016/j.jbc.2021.101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
The rigid core of intracellular tau filaments from Alzheimer's disease (AD), Pick's disease (PiD), and Corticobasal disease (CBD) brains has been shown to differ in their cryo-EM atomic structure. Despite providing critical information on the intimate arrangement of a fraction of htau molecule within the fibrillar scaffold, the cryo-EM studies neither yield a complete picture of tau fibrillar assemblies structure nor contribute insights into the surfaces that define their interactions with numerous cellular components. Here, using proteomic approaches such as proteolysis and molecular covalent painting, we mapped the exposed amino acid stretches at the surface and those constituting the fibrillar core of in vitro-assembled fibrils of human htau containing one N-terminal domain and three (1N3R) or four (1N4R) C-terminal microtubule-binding repeat domains as a result of alternative splicing. Using limited proteolysis, we identified the proteolytic fragments composing the molecular “bar-code” for each type of fibril. Our results are in agreement with structural data reported for filamentous tau from AD, PiD, and CBD cases predigested with the protease pronase. Finally, we report two amino acid stretches, exposed to the solvent in 1N4R not in 1N3R htau, which distinguish the surfaces of these two kinds of fibrils. Our findings open new perspectives for the design of highly specific ligands with diagnostic and therapeutic potential.
Collapse
|
18
|
Sasahara T, Satomura K, Tada M, Kakita A, Hoshi M. Alzheimer's Aβ assembly binds sodium pump and blocks endothelial NOS activity via ROS-PKC pathway in brain vascular endothelial cells. iScience 2021; 24:102936. [PMID: 34458695 PMCID: PMC8379508 DOI: 10.1016/j.isci.2021.102936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023] Open
Abstract
Amyloid β-protein (Aβ) may contribute to worsening of Alzheimer's disease (AD) through vascular dysfunction, but the molecular mechanism involved is unknown. Using ex vivo blood vessels and primary endothelial cells from human brain microvessels, we show that patient-derived Aβ assemblies, termed amylospheroids (ASPD), exist on the microvascular surface in patients' brains and inhibit vasorelaxation through binding to the α3 subunit of sodium, potassium-ATPase (NAKα3) in caveolae on endothelial cells. Interestingly, NAKα3 is also the toxic target of ASPD in neurons. ASPD-NAKα3 interaction elicits neurodegeneration through calcium overload in neurons, while the same interaction suppresses vasorelaxation by increasing the inactive form of endothelial nitric oxide synthase (eNOS) in endothelial cells via mitochondrial ROS and protein kinase C, independently of the physiological relaxation system. Thus, ASPD may contribute to both neuronal and vascular pathologies through binding to NAKα3. Therefore, blocking the ASPD-NAKα3 interaction may be a useful target for AD therapy.
Collapse
Affiliation(s)
- Tomoya Sasahara
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, CLIK 6F 6-3-7 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kaori Satomura
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, CLIK 6F 6-3-7 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, CLIK 6F 6-3-7 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Kopach O, Esteras N, Wray S, Abramov AY, Rusakov DA. Genetically engineered MAPT 10+16 mutation causes pathophysiological excitability of human iPSC-derived neurons related to 4R tau-induced dementia. Cell Death Dis 2021; 12:716. [PMID: 34274950 PMCID: PMC8286258 DOI: 10.1038/s41419-021-04007-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Human iPSC lines represent a powerful translational model of tauopathies. We have recently described a pathophysiological phenotype of neuronal excitability of human cells derived from the patients with familial frontotemporal dementia and parkinsonism (FTDP-17) caused by the MAPT 10+16 splice-site mutation. This mutation leads to the increased splicing of 4R tau isoforms. However, the role of different isoforms of tau protein in initiating neuronal dementia-related dysfunction, and the causality between the MAPT 10+16 mutation and altered neuronal activity have remained unclear. Here, we employed genetically engineered cells, in which the IVS10+16 mutation was introduced into healthy donor iPSCs to increase the expression of 4R tau isoform in exon 10, aiming to explore key physiological traits of iPSC-derived MAPT IVS10+16 neurons using patch-clamp electrophysiology and multiphoton fluorescent imaging techniques. We found that during late in vitro neurogenesis (from ~180 to 230 days) iPSC-derived cortical neurons of the control group (parental wild-type tau) exhibited membrane properties compatible with "mature" neurons. In contrast, MAPT IVS10+16 neurons displayed impaired excitability, as reflected by a depolarized resting membrane potential, an increased input resistance, and reduced voltage-gated Na+- and K+-channel-mediated currents. The mutation changed the channel properties of fast-inactivating Nav and decreased the Nav1.6 protein level. MAPT IVS10+16 neurons exhibited reduced firing accompanied by a changed action potential waveform and severely disturbed intracellular Ca2+ dynamics, both in the soma and dendrites, upon neuronal depolarization. These results unveil a causal link between the MAPT 10+16 mutation, hence overproduction of 4R tau, and a dysfunction of human cells, identifying a biophysical basis of changed neuronal activity in 4R tau-triggered dementia. Our study lends further support to using iPSC lines as a suitable platform for modelling tau-induced human neuropathology in vitro.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
20
|
Esteras N, Kopach O, Maiolino M, Lariccia V, Amoroso S, Qamar S, Wray S, Rusakov DA, Jaganjac M, Abramov AY. Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia. Alzheimers Dement 2021; 18:318-338. [PMID: 34057756 DOI: 10.1002/alz.12394] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Marta Maiolino
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche,", Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche,", Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche,", Ancona, Italy
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti-Doping Lab Qatar, Doha, Qatar.,Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
21
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
22
|
Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, Leclerc N. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem 2021; 295:17827-17841. [PMID: 33454017 DOI: 10.1074/jbc.ra120.013553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/03/2020] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.
Collapse
Affiliation(s)
- Julie Pilliod
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Alexandre Desjardins
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
23
|
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration. Cell Rep 2021; 34:108895. [PMID: 33761362 DOI: 10.1016/j.celrep.2021.108895] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Here, we examine the cellular changes triggered by tumor necrosis factor alpha (TNF-α) and different alpha-synuclein (αSYN) species in astrocytes derived from induced pluripotent stem cells. Human astrocytes treated with TNF-α display a strong reactive pro-inflammatory phenotype with upregulation of pro-inflammatory gene networks, activation of the nuclear factor κB (NF-κB) pathway, and release of pro-inflammatory cytokines, whereas those treated with high-molecular-weight αSYN fibrils acquire a reactive antigen (cross)-presenting phenotype with upregulation of major histocompatibility complex (MHC) genes and increased human leukocyte antigen (HLA) molecules at the cell surface. Surprisingly, the cell surface location of MHC proteins is abrogated by larger F110 fibrillar polymorphs, despite the upregulation of MHC genes. Interestingly, TNF-α and αSYN fibrils compete to drive the astrocyte immune reactive response. The astrocyte immune responses are accompanied by an impaired mitochondrial respiration, which is exacerbated in Parkinson's disease (PD) astrocytes. Our data provide evidence for astrocytic involvement in PD pathogenesis and reveal their complex immune reactive responses to exogenous stressors.
Collapse
|
24
|
Niewiadomska G, Niewiadomski W, Steczkowska M, Gasiorowska A. Tau Oligomers Neurotoxicity. Life (Basel) 2021; 11:28. [PMID: 33418848 PMCID: PMC7824853 DOI: 10.3390/life11010028] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although the mechanisms of toxic activity of tau are not fully recognized, it is supposed that the tau toxicity is related rather not to insoluble tau aggregates but to its intermediate forms. It seems that neurofibrillar tangles (NFTs) themselves, despite being composed of toxic tau, are probably neither necessary nor sufficient for tau-induced neuronal dysfunction and toxicity. Tau oligomers (TauOs) formed during the early stages of tau aggregation are the pathological forms that play a key role in eliciting the loss of neurons and behavioral impairments in several neurodegenerative disorders called tauopathies. They can be found in tauopathic diseases, the most common of which is Alzheimer's disease (AD). Evidence of co-occurrence of b-amyloid, α-synuclein, and tau into their most toxic forms, i.e., oligomers, suggests that these species interact and influence each other's aggregation in several tauopathies. The mechanism responsible for oligomeric tau neurotoxicity is a subject of intensive investigation. In this review, we summarize the most recent literature on the damaging effect of TauOs on the stability of the genome and the function of the nucleus, energy production and mitochondrial function, cell signaling and synaptic plasticity, the microtubule assembly, neuronal cytoskeleton and axonal transport, and the effectiveness of the protein degradation system.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Marta Steczkowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| |
Collapse
|
25
|
Pizzarelli R, Pediconi N, Di Angelantonio S. Molecular Imaging of Tau Protein: New Insights and Future Directions. Front Mol Neurosci 2021; 13:586169. [PMID: 33384582 PMCID: PMC7769805 DOI: 10.3389/fnmol.2020.586169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein (MAPT) that is highly expressed in neurons and implicated in several cellular processes. Tau misfolding and self-aggregation give rise to proteinaceous deposits known as neuro-fibrillary tangles. Tau tangles play a key role in the genesis of a group of diseases commonly referred to as tauopathies; notably, these aggregates start to form decades before any clinical symptoms manifest. Advanced imaging methodologies have clarified important structural and functional aspects of tau and could have a role as diagnostic tools in clinical research. In the present review, recent progresses in tau imaging will be discussed. We will focus mainly on super-resolution imaging methods and the development of near-infrared fluorescent probes.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Natalia Pediconi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Cente M, Zorad S, Smolek T, Fialova L, Paulenka Ivanovova N, Krskova K, Balazova L, Skrabana R, Filipcik P. Plasma Leptin Reflects Progression of Neurofibrillary Pathology in Animal Model of Tauopathy. Cell Mol Neurobiol 2020; 42:125-136. [PMID: 32997211 DOI: 10.1007/s10571-020-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia. .,Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| |
Collapse
|
27
|
Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS One 2020; 15:e0237328. [PMID: 32790707 PMCID: PMC7425896 DOI: 10.1371/journal.pone.0237328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (αSyn) fibrils spread from one neuronal cell to another. This prion-like phenomenon is believed to contribute to the progression of the pathology in Parkinson’s disease and other synucleinopathies. The binding of αSyn fibrils originating from affected cells to the plasma membrane of naïve cells is key in their prion-like propagation propensity. To interfere with this process, we designed polypeptides derived from proteins we previously showed to interact with αSyn fibrils, namely the molecular chaperone Hsc70 and the sodium/potassium pump NaK-ATPase and assessed their capacity to bind αSyn fibrils and/or interfere with their take-up by cells of neuronal origin. We demonstrate here that polypeptides that coat αSyn fibrils surfaces in such a way that they are changed affect αSyn fibrils binding to the plasma membrane components and/or their take-up by cells. Altogether our observations suggest that the rationale design of αSyn fibrils polypeptide binders that interfere with their propagation between neuronal cells holds therapeutic potential.
Collapse
|
28
|
Hoshi M. Multi-angle development of therapeutic methods for Alzheimer's disease. Br J Pharmacol 2020; 178:770-783. [PMID: 32592177 DOI: 10.1111/bph.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Recent clinical trial results support the idea that treatment based on the so-called amyloid hypothesis is a promising approach in Alzheimer's disease (AD), but actually, developing effective treatments for AD remains highly challenging. The discovery that neuron-specific sodium pump activity is impaired in AD and other neurodegenerative diseases such as Parkinson's disease has suggested a role for the sodium pump in the pathogenesis of these diseases. This opens up new possibilities for intervention, such as inhibiting the aberrant interaction of the sodium pump with the disease-specific ligand(s) or activating the sodium pump itself or its downstream signalling. In this review article, I would like to discuss possible anti-amyloid therapies, focusing especially on our own research. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
29
|
Zhang H, Bramham CR. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front Synaptic Neurosci 2020; 12:26. [PMID: 32754026 PMCID: PMC7366028 DOI: 10.3389/fnsyn.2020.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
AMPA receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission throughout the brain. Changes in the properties and postsynaptic abundance of AMPARs are pivotal mechanisms in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. A wide range of neurodegenerative, neurodevelopmental and neuropsychiatric disorders, despite their extremely diverse etiology, pathogenesis and symptoms, exhibit brain region-specific and AMPAR subunit-specific aberrations in synaptic transmission or plasticity. These include abnormally enhanced or reduced AMPAR-mediated synaptic transmission or plasticity. Bidirectional reversal of these changes by targeting AMPAR subunits or trafficking ameliorates drug-seeking behavior, chronic pain, epileptic seizures, or cognitive deficits. This indicates that bidirectional dysregulation of AMPAR-mediated synaptic transmission or plasticity may contribute to the expression of many brain disorders and therefore serve as a therapeutic target. Here, we provide a synopsis of bidirectional AMPAR dysregulation in animal models of brain disorders and review the preclinical evidence on the therapeutic targeting of AMPARs.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Bendifallah M, Redeker V, Monsellier E, Bousset L, Bellande T, Melki R. Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces. Biochem Biophys Res Commun 2020; 527:760-769. [PMID: 32430178 DOI: 10.1016/j.bbrc.2020.04.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
The spread of fibrillar alpha-synuclein from affected to naïve neuronal cells is thought to contribute to the progression of synucleinopathies. The binding of fibrillar alpha-synuclein to the plasma membrane is key in this process. We and others previously showed that coating fibrillar alpha-synuclein by the molecular chaperone Hsc70 affects fibrils properties. Here we assessed the effect of the two molecular chaperones alpha B-crystallin and CHIP on alpha-synuclein fibrils uptake by Neuro-2a cells. We demonstrate that both chaperones diminish fibrils take up by cells. We identify through a cross-linking and mass spectrometry strategy the interaction interfaces between alpha-synuclein fibrils and alpha B-crystallin or CHIP. Our results open the way for designing chaperone-derived polypeptide binders that interfere with the propagation of pathogenic alpha-synuclein assemblies.
Collapse
Affiliation(s)
- Maya Bendifallah
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Virginie Redeker
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Elodie Monsellier
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Tracy Bellande
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
31
|
Abstract
The microtubule-associated protein tau has been identified in several intraneuronal compartments, including in association with synapses. In Alzheimer's disease, frontotemporal dementia and related tauopathies, highly phosphorylated tau accumulates as intraneuronal protein aggregates that are likely responsible for the demise of neurons and the subsequent progressive cognitive decline. However, the molecular mechanisms underlying such tau-mediated damage in the tauopathies is not fully understood. Tauopathy induces loss of synapses, which is one of the earliest structural correlates of cognitive dysfunction and disease progression. Notably, altered post-translational modifications of tau, including increased phosphorylation and acetylation, augment the mislocalisation of tau to synapses, impair synaptic vesicle release and might influence the activity-dependent release of tau from neurons. Thus, disease-associated accumulation of modified tau at the synapse adversely affects critical neuronal processes that are linked to neuronal activity and synaptic function. These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.
Collapse
|
32
|
Shrivastava AN, Bousset L, Renner M, Redeker V, Savistchenko J, Triller A, Melki R. Differential Membrane Binding and Seeding of Distinct α-Synuclein Fibrillar Polymorphs. Biophys J 2020; 118:1301-1320. [PMID: 32059758 PMCID: PMC7091477 DOI: 10.1016/j.bpj.2020.01.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
The aggregation of the protein α-synuclein (α-Syn) leads to different synucleinopathies. We recently showed that structurally distinct fibrillar α-Syn polymorphs trigger either Parkinson’s disease or multiple system atrophy hallmarks in vivo. Here, we establish a structural-molecular basis for these observations. We show that distinct fibrillar α-Syn polymorphs bind to and cluster differentially at the plasma membrane in both primary neuronal cultures and organotypic hippocampal slice cultures from wild-type mice. We demonstrate a polymorph-dependent and concentration-dependent seeding. We show a polymorph-dependent differential synaptic redistribution of α3-Na+/K+-ATPase, GluA2 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and GluN2B-subunit containing N-methyl-D-aspartate receptors, but not GluA1 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic glutamate receptor 5 receptors. We also demonstrate polymorph-dependent alteration in neuronal network activity upon seeded aggregation of α-Syn. Our findings bring new, to our knowledge, insight into how distinct α-Syn polymorphs differentially bind to and seed monomeric α-Syn aggregation within neurons, thus affecting neuronal homeostasis through the redistribution of synaptic proteins.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France.
| | - Luc Bousset
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Marianne Renner
- INSERM, UMR- S 839 Institut du Fer à Moulin, Sorbonne Université, Paris, France
| | - Virginie Redeker
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Jimmy Savistchenko
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL, Research University, Paris, France.
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France.
| |
Collapse
|
33
|
From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139:3-25. [PMID: 31686182 PMCID: PMC6942016 DOI: 10.1007/s00401-019-02087-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.
Collapse
|
34
|
Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, Zuo Y, Yin Y, Ke D, Wang J. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell 2020; 19:e13055. [PMID: 31668016 PMCID: PMC6974714 DOI: 10.1111/acel.13055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/28/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
Intraneuronal accumulation of wild-type tau plays a key role in Alzheimer's disease, while the mechanisms underlying tauopathy and memory impairment remain unclear. Here, we report that overexpressing full-length wild-type human tau (hTau) in mouse hippocampus induces learning and memory deficits with remarkably reduced levels of multiple synapse- and memory-associated proteins. Overexpressing hTau inhibits the activity of protein kinase A (PKA) and decreases the phosphorylation level of cAMP-response element binding protein (CREB), GluA1, and TrkB with reduced BDNF mRNA and protein levels both in vitro and in vivo. Simultaneously, overexpressing hTau increased PKAR2α (an inhibitory subunit of PKA) in nuclear fraction and inactivated proteasome activity. With an increased association of PKAR2α with PA28γ (a nuclear proteasome activator), the formation of PA28γ-20S proteasome complex remarkably decreased in the nuclear fraction, followed by a reduced interaction of PKAR2α with 20S proteasome. Both downregulating PKAR2α by shRNA and upregulating proteasome by expressing PA28γ rescued hTau-induced PKA inhibition and CREB dephosphorylation, and upregulating PKA improved hTau-induced cognitive deficits in mice. Together, these data reveal that intracellular tau accumulation induces synapse and memory impairments by inhibiting PKA/CREB/BDNF/TrkB and PKA/GluA1 signaling, and deficit of PA28γ-20S proteasome complex formation contributes to PKAR2α elevation and PKA inhibition.
Collapse
Affiliation(s)
- Jinwang Ye
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yaling Yin
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Huanhuan Liu
- School of Pharmacy Xinxiang Medical University Xinxiang China
| | - Lin Fang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiaoqing Tao
- Department of Physiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Linyu Wei
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Yue Zuo
- School of Pharmacy Xinxiang Medical University Xinxiang China
| | - Ying Yin
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Ke
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jian‐Zhi Wang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
- Co‐innovation Center of Neurodegeneration Nantong University Nantong China
| |
Collapse
|
35
|
Pernègre C, Duquette A, Leclerc N. Tau Secretion: Good and Bad for Neurons. Front Neurosci 2019; 13:649. [PMID: 31293374 PMCID: PMC6606725 DOI: 10.3389/fnins.2019.00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer’s disease (AD), neurofibrillary tangles (NFTs), lesions composed of hyperphosphorylated and aggregated tau, spread from the transentorhinal cortex to the hippocampal formation and neocortex. Growing evidence indicates that tau pathology propagates trans-synaptically, implying that pathological tau released by pre-synaptic neurons is taken up by post-synaptic neurons where it accumulates and aggregates. Observations such as the presence of tau in the cerebrospinal fluid (CSF) from control individuals and in the CSF of transgenic mice overexpressing human tau before the detection of neuronal death indicate that tau can be secreted by neurons. The increase of tau in the CSF in pathological conditions such as AD suggests that tau secretion is enhanced and/or other secretory pathways take place when neuronal function is compromised. In physiological conditions, extracellular tau could exert beneficial effects as observed for other cytosolic proteins also released in the extracellular space. In such a case, blocking tau secretion could have negative effects on neurons unless the mechanism of tau secretion are different in physiological and pathological conditions allowing the prevention of pathological tau secretion without affecting the secretion of physiological tau. Furthermore, distinct extracellular tau species could be secreted in physiological and pathological conditions, species having the capacity to induce tau pathology being only secreted in the latter condition. In the present review, we will focus on the mechanisms and function of tau secretion in both physiological and pathological conditions and how this information can help to elaborate an efficient therapeutic strategy to prevent tau pathology and its propagation.
Collapse
Affiliation(s)
- Camille Pernègre
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antoine Duquette
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
36
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|