1
|
Tornesello AL, Cerasuolo A, Starita N, Amiranda S, Cimmino TP, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello ML. Emerging role of endogenous peptides encoded by non-coding RNAs in cancer biology. Noncoding RNA Res 2025; 10:231-241. [PMID: 39554691 PMCID: PMC11567935 DOI: 10.1016/j.ncrna.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Non-coding RNAs have long been recognized for their regulatory roles in various cellular processes, including cancer development and progression. Recent advancements have shed light on a novel aspect of non-coding RNA biology, revealing their ability to encode endogenous peptides also named micropeptides or microprotein through short open reading frames (sORFs). These small proteins play crucial roles in oncogenic processes, acting as either tumour suppressors or tumour promoters, and hold enormous potential as biomarkers for early diagnosis of cancer and as therapeutic targets. This comprehensive review highlights the state of the art on peptides encoded by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), elucidating their regulatory functions and implications in different cancer types, including breast cancer, hepatocellular carcinoma and colorectal cancer. The review also discusses challenges and future directions in the exploration of these emerging players in cancer biology, emphasizing the importance of further investigation for their clinical translation in diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Tiziana Pecchillo Cimmino
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
2
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2025; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
3
|
Li Z, Chen S, Li S, Chao H, Hao W, Zhang S, Li Z, Wang J, Li X, Wan Y, Liu H. Nucleolar protein PEXF controls ribosomal RNA synthesis and pluripotency exit. Dev Cell 2024:S1534-5807(24)00726-3. [PMID: 39729985 DOI: 10.1016/j.devcel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
Maintenance and exit from pluripotency of embryonic stem cells (ESCs) are controlled by highly coordinated processes of protein synthesis and ribosome biogenesis (RiBi). ESCs are characterized by low rates of global protein synthesis and high levels of RiBi. Transient reduction of RiBi is a characteristic molecular event during the exit from pluripotency, of which the regulatory mechanism is unclear. Here, we identify that a previously uncharacterized nucleolar protein, pluripotency exit factor (PEXF), encoded by long noncoding RNA LINC00472, plays a role in the transient reduction of RiBi. PEXF dissociates RNA polymerase I from the rDNA through interaction with the rDNA promoter region in a liquid-liquid phase separation-dependent manner, therefore inhibiting the production of pre-ribosomal RNA, a key component of ribosomes. This finding reveals a potential mechanism of exit from pluripotency gated by ribosome levels in human ESCs.
Collapse
Affiliation(s)
- Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
de Azevedo ALK, Gomig THB, Batista M, de Oliveira JC, Cavalli IJ, Gradia DF, Ribeiro EMDSF. Peptidomics and Machine Learning-based Evaluation of Noncoding RNA-Derived Micropeptides in Breast Cancer: Expression Patterns and Functional/Therapeutic Insights. J Transl Med 2024; 104:102150. [PMID: 39393531 DOI: 10.1016/j.labinv.2024.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease characterized by different subtypes arising from molecular alterations that give the disease different phenotypes, clinical behaviors, and prognostic. The noncoding RNA (ncRNA)-derived micropeptides (MPs) represent a novel layer of complexity in cancer study once they can be biologically active and can present potential as biomarkers and also in therapeutics. However, few large-scale studies address the expression of these peptides at the peptidomics level or evaluate their functions and potential in peptide-based therapeutics for breast cancer. In this study, we propose deepening the landscape of ncRNA-derived MPs in breast cancer subtypes and advance the comprehension of the relevance of these molecules to the disease. First, we constructed a 16,349 unique putative MP sequence data set by integrating 2 previously published lists of predicted ncRNA-derived MPs. We evaluated its expression on high-throughput mass spectrometry data of breast tumor samples from different subtypes. Next, we applied several machine and deep learning tools, such as AntiCP 2.0, MULocDeep, PEPstrMOD, Peptipedia, and PreAIP, to predict its functions, cellular localization, tertiary structure, physicochemical features, and other properties related to therapeutics. We identified 58 peptides expressed on breast tissue, including 27 differentially expressed MPs in tumor compared with nontumor samples and MPs exhibiting tumor or subtype specificity. These peptides presented physicochemical features compatible with the canonical proteome and were predicted to influence the tumor immune environment and participate in cell communication, metabolism, and signaling processes. In addition, some MPs presented potential as anticancer, antiinflammatory, and antiangiogenic molecules. Our data demonstrate that MPs derived from ncRNAs have expression patterns associated with specific breast cancer subtypes and tumor specificity, thus highlighting their potential as biomarkers for molecular classification. We also reinforce the relevance of MPs as biologically active molecules that play a role in breast tumorigenesis, besides their potential in peptide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Michel Batista
- Laboratory of Applied Sciences and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil; Mass Spectrometry Facility-RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | | | - Iglenir João Cavalli
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | - Daniela Fiori Gradia
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
5
|
Huang J, Yang P, Pan W, Wu F, Qiu J, Ma Z. The role of polypeptides encoded by ncRNAs in cancer. Gene 2024; 928:148817. [PMID: 39098512 DOI: 10.1016/j.gene.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
It was previously thought that ncRNA could not encode polypeptides, but recent reports have challenged this notion. As research into ncRNA progresses, it is increasingly clear that it serves roles beyond traditional mechanisms, playing significant regulatory roles in various diseases, notably cancer, which is responsible for 70% of human deaths. Numerous studies have highlighted the diverse regulatory mechanisms of ncRNA that are pivotal in cancer initiation and progression. The role of ncRNA-encoded polypeptides in cancer regulation has gained prominence. This article explores the newly identified regulatory functions of these polypeptides in three types of ncRNA-lncRNA, pri-miRNA, and circRNA. These polypeptides can interact with proteins, influence signaling pathways, enhance miRNA stability, and regulate cancer progression, malignancy, resistance, and other clinical challenges. Furthermore, we discuss the evolutionary significance of these polypeptides in the transition from RNA to protein, examining their emergence and conservation throughout evolution.
Collapse
Affiliation(s)
- Jiayuan Huang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ping Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118,China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianhua Qiu
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201800, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
7
|
Vrbnjak K, Sewduth RN. Recent Advances in Peptide Drug Discovery: Novel Strategies and Targeted Protein Degradation. Pharmaceutics 2024; 16:1486. [PMID: 39598608 PMCID: PMC11597556 DOI: 10.3390/pharmaceutics16111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Recent technological advancements, including computer-assisted drug discovery, gene-editing techniques, and high-throughput screening approaches, have greatly expanded the palette of methods for the discovery of peptides available to researchers. These emerging strategies, driven by recent advances in bioinformatics and multi-omics, have significantly improved the efficiency of peptide drug discovery when compared with traditional in vitro and in vivo methods, cutting costs and improving their reliability. An added benefit of peptide-based drugs is the ability to precisely target protein-protein interactions, which are normally a particularly challenging aspect of drug discovery. Another recent breakthrough in this field is targeted protein degradation through proteolysis-targeting chimeras. These revolutionary compounds represent a noteworthy advancement over traditional small-molecule inhibitors due to their unique mechanism of action, which allows for the degradation of specific proteins with unprecedented specificity. The inclusion of a peptide as a protein-of-interest-targeting moiety allows for improved versatility and the possibility of targeting otherwise undruggable proteins. In this review, we discuss various novel wet-lab and computational multi-omic methods for peptide drug discovery, provide an overview of therapeutic agents discovered through these cutting-edge techniques, and discuss the potential for the therapeutic delivery of peptide-based drugs.
Collapse
Affiliation(s)
- Katarina Vrbnjak
- VIB-KU Leuven Center for Cancer Biology (VIB), 3000 Leuven, Belgium
| | | |
Collapse
|
8
|
Zhang S, Xu S, Li D, Wu S, Han M, Han Y, Wang Z, Qiao D, Yuan H, Du B, Chen H, Zhang Z. The small protein LINC01547-ORF inhibits colorectal cancer progression by regulating the CLDN18-FAK-AKT axis. Am J Cancer Res 2024; 14:5504-5520. [PMID: 39659940 PMCID: PMC11626262 DOI: 10.62347/pnkh7683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Long non-coding RNA (lncRNA)-encoded small proteins play a major role in colorectal cancer. To identify more functional encoded small proteins, ribosome profiling data from colorectal cancer (CRC) cells were screened for ribosome-associated lncRNAs. The search identified LINC01547 that was shown to encode a small protein of 76 amino acids, termed LINC01547-ORF. Real-time quantitative fluorescence showed that LINC01547 expression was downregulated in colorectal cancer tissues. However, cell functional assays revealed that LINC01547 inhibited the proliferation and migration of colorectal cancer cell lines. Meanwhile, western blot and immunofluorescence assays confirmed that LINC01547 encoded LINC01547-ORF. Cellular functional assays indicated that compared with LINC01547 itself, LINC01547-ORF inhibited the proliferation and migration of colorectal cancer cell lines. Gene set enrichment analysis identified enrichment in the focal adhesion pathway and association with CLDN18 protein, whereas protein molecular docking models revealed interacting domains and amino acid residue sites. Of note, co-immunoprecipitation and immunofluorescence experiments showed that LINC01547-ORF could bind to the CLDN18 protein and that this interaction reduced CLDN18 ubiquitination, thereby promoting protein expression. Finally, western blot and immunofluorescence assays confirmed that LINC01547-ORF could target CLDN18 to inhibit the FAK/PI3K/AKT signaling pathway, suppressing colorectal cancer cell development. These findings suggest that the LINC01547-ORF-encoded small protein inhibits proliferation and migration in colorectal cancer, thereby offering a promising direction for treating this disease.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Siguang Xu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Dandan Li
- Department of Emergency Center Emergency Critical Care, The Fourth Clinical College of Xinxiang Medical CollegeXinxiang 453003, Henan, China
| | - Songxin Wu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Miaomiao Han
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Yifei Han
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Zixi Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Dan Qiao
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Hang Yuan
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central HospitalXinxiang 453003, Henan, China
| | - Hongwei Chen
- Department of Emergency Center Emergency Critical Care, The Fourth Clinical College of Xinxiang Medical CollegeXinxiang 453003, Henan, China
| | - Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| |
Collapse
|
9
|
Xiao Y, Ren Y, Hu W, Paliouras AR, Zhang W, Zhong L, Yang K, Su L, Wang P, Li Y, Ma M, Shi L. Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications. Cell Death Discov 2024; 10:450. [PMID: 39443468 PMCID: PMC11499885 DOI: 10.1038/s41420-024-02175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are typically described as RNA transcripts exceeding 200 nucleotides in length, which do not code for proteins. Recent advancements in technology, including ribosome RNA sequencing and ribosome nascent-chain complex sequencing, have demonstrated that many lncRNAs retain small open reading frames and can potentially encode micropeptides. Emerging studies have revealed that these micropeptides, rather than lncRNAs themselves, are responsible for vital functions, including but not limited to regulating homeostasis, managing inflammation and the immune system, moderating metabolism, and influencing tumor progression. In this review, we initially outline the rapidly advancing computational analytical methods and public tools to predict and validate the potential encoding of lncRNAs. We then focus on the diverse functions of micropeptides and their underlying mechanisms in the pathogenesis of disease. This review aims to elucidate the functions of lncRNA-encoded micropeptides and explore their potential applications as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenteng Hu
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | | | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Su
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, PR China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Minjie Ma
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
10
|
Zhou X, Qin Y, Li J, Fan L, Zhang S, Zhang B, Wu L, Gao A, Yang Y, Lv X, Guo B, Sun L. LncPepAtlas: a comprehensive resource for exploring the translational landscape of long non-coding RNAs. Nucleic Acids Res 2024:gkae905. [PMID: 39435995 DOI: 10.1093/nar/gkae905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Long non-coding RNAs were commonly viewed as non-coding elements. However, they are increasingly recognized for their ability to be translated into proteins, thereby playing a significant role in various cellular processes and diseases. With developments in biotechnology and computational algorithms, a range of novel approaches are being applied to investigate the translation of long non-coding RNA (lncRNAs). Herein, we developed the LncPepAtlas database (http://www.cnitbiotool.net/LncPepAtlas/), which aims to compile multiple evidences for the translation of lncRNAs and annotations for the upstream regulation of lncRNAs across various species. LncPepAtlas integrated compelling evidence from nine distinct sources for the translation of lncRNAs. These include a dataset comprising 2631 publicly available Ribo-seq samples from nine species, which has been collected and analysed. LncPepAtlas offers extensive annotation for lncRNA upstream regulation and expression profiles across various cancers, tissues or cell lines at transcriptional and translational levels. Importantly, it enables novel antigen predictions for lncRNA-encoded peptides. By identifying numerous peptide candidates that could potentially bind to major histocompatibility complex class I and II molecules, this work may provide new insights into cancer immunotherapy. The function of peptides were inferred by aligning them with experimentally detected proteins. LncPepAtlas aims to become a convenient resource for exploring translatable lncRNAs.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanxia Qin
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiangxue Li
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Linyuan Fan
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Shun Zhang
- School of Information Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bing Zhang
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Luoxuan Wu
- College of Ophthalmology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anwei Gao
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongsan Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueqin Lv
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
- College of Basic Science, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Bingzhou Guo
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liang Sun
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
11
|
Hofman DA, Prensner JR, van Heesch S. Microproteins in cancer: identification, biological functions, and clinical implications. Trends Genet 2024:S0168-9525(24)00211-7. [PMID: 39379206 DOI: 10.1016/j.tig.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Cancer continues to be a major global health challenge, accounting for 10 million deaths annually worldwide. Since the inception of genome-wide cancer sequencing studies 20 years ago, a core set of ~700 oncogenes and tumor suppressor genes has become the basis for cancer research. However, this research has been based largely on an understanding that the human genome encodes ~19 500 protein-coding genes. Complementing this genomic landscape, recent advances have described numerous microproteins which are now poised to redefine our understanding of oncogenic processes and open new avenues for therapeutic intervention. This review explores the emerging evidence for microprotein involvement in cancer mechanisms and discusses potential therapeutic applications, with an emphasis on highlighting recent advances in the field.
Collapse
Affiliation(s)
- Damon A Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Rodrigues P, Bangali H, Ali E, Sharma MK, Abdullaev B, Alkhafaji AT, Deorari MM, Zabibah RS, Haslany A. Microproteins/micropeptides dysregulation contributes to cancer progression and development: A mechanistic review. Cell Biol Int 2024; 48:1395-1405. [PMID: 39010637 DOI: 10.1002/cbin.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Microproteins, known as micropeptides, are small protein molecules encoded by short open reading frames. These recently identified molecules have been proven to be an essential part of the human proteome that participates in multiple processes, such as DNA repair, mitochondrial respiration, and regulating different signaling pathways. A growing body of studies has evidenced that microproteins exhibit dysregulated expression levels in various malignancies and contribute to tumor progression. It has been reported that microproteins interact with many proteins, such as enzymes (e.g., adenosine triphosphate synthase) and signal transducers (e.g., c-Jun), and regulate malignant cell metabolism, proliferation, and metastasis. Moreover, microproteins have been found to play a significant role in multidrug resistance in vitro and in vivo by their activity in DNA repair pathways. Considering that, this review intended to summarize the roles of microproteins in different aspects of tumorigenesis with diagnostic and therapeutic perspectives.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - M K Sharma
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Bekhzod Abdullaev
- Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan
| | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rahman S Zabibah
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
13
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
14
|
Deng X, Yu YV, Jin YN. Non-canonical translation in cancer: significance and therapeutic potential of non-canonical ORFs, m 6A-modification, and circular RNAs. Cell Death Discov 2024; 10:412. [PMID: 39333489 PMCID: PMC11437038 DOI: 10.1038/s41420-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Translation is a decoding process that synthesizes proteins from RNA, typically mRNA. The conventional translation process consists of four stages: initiation, elongation, termination, and ribosome recycling. Precise control over the translation mechanism is crucial, as dysregulation in this process is often linked to human diseases such as cancer. Recent discoveries have unveiled translation mechanisms that extend beyond typical well-characterized components like the m7G cap, poly(A)-tail, or translation factors like eIFs. These mechanisms instead utilize atypical elements, such as non-canonical ORF, m6A-modification, and circular RNA, as key components for protein synthesis. Collectively, these mechanisms are classified as non-canonical translations. It is increasingly clear that non-canonical translation mechanisms significantly impact the various regulatory pathways of cancer, including proliferation, tumorigenicity, and the behavior of cancer stem cells. This review explores the involvement of a variety of non-canonical translation mechanisms in cancer biology and provides insights into potential therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
16
|
Vrbnjak K, Sewduth RN. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes 2024; 12:26. [PMID: 39311199 PMCID: PMC11417835 DOI: 10.3390/proteomes12030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Despite the advances in modern cancer therapy, malignant diseases are still a leading cause of morbidity and mortality worldwide. Conventional treatment methods frequently lead to side effects and drug resistance in patients, highlighting the need for novel therapeutic approaches. Recent findings have identified the existence of non-canonical micropeptides, an additional layer of the proteome complexity, also called the microproteome. These small peptides are a promising class of therapeutic agents with the potential to address the limitations of current cancer treatments. The microproteome is encoded by regions of the genome historically annotated as non-coding, and its existence has been revealed thanks to recent advances in proteomic and bioinformatic technology, which dramatically improved the understanding of proteome complexity. Micropeptides have been shown to be biologically active in several cancer types, indicating their therapeutic role. Furthermore, they are characterized by low toxicity and high target specificity, demonstrating their potential for the development of better tolerated drugs. In this review, we survey the current landscape of known micropeptides with a role in cancer progression or treatment, discuss their potential as anticancer agents, and describe the methodological challenges facing the proteome field of research.
Collapse
Affiliation(s)
- Katarina Vrbnjak
- VIB-KU Leuven Center for Cancer Biology (VIB), 3000 Leuven, Belgium
| | | |
Collapse
|
17
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Daisy Precilla S, Biswas I, Anitha TS, Agieshkumar B. Microproteins unveiling new dimensions in cancer. Funct Integr Genomics 2024; 24:152. [PMID: 39223429 DOI: 10.1007/s10142-024-01426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
In the complex landscape of cancer biology, the discovery of microproteins has triggered a paradigm shift, thereby, challenging the conventional conceptions of gene regulation. Though overlooked for years, these entities encoded by the small open reading frames (100-150 codons), have a significant impact on various cellular processes. As precision medicine pioneers delve deeper into the genome and proteome, microproteins have come into the limelight. Typically characterized by a single protein domain that directly binds to the target protein complex and regulates their assembly, these microproteins have been shown to play a key role in fundamental biological processes such as RNA processing, DNA repair, and metabolism regulation. Techniques for identification and characterization, such as ribosome profiling and proteogenomic approaches, have unraveled unique mechanisms by which these microproteins regulate cell signaling or pathological processes in most diseases including cancer. However, the functional relevance of these microproteins in cancer remains unclear. In this context, the current review aims to "rethink the essence of these genes" and explore "how these hidden players-microproteins orchestrate the signaling cascades of cancer, both as accelerators and brakes.".
Collapse
Affiliation(s)
- S Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India.
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| | - T S Anitha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | - B Agieshkumar
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| |
Collapse
|
19
|
Wang BY, Gao Q, Sun Y, Qiu XB. Biochemical targets of the micropeptides encoded by lncRNAs. Noncoding RNA Res 2024; 9:964-969. [PMID: 38764490 PMCID: PMC11098672 DOI: 10.1016/j.ncrna.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides, which play important roles in regulating various cellular activities by the action of the RNA itself. However, about 40% of lncRNAs in human cells are potentially translated into micropeptides (also referred to as microproteins) usually shorter than 100 amino acids. Thus, these lncRNAs may function by both RNAs directly and their encoded micropeptides. The micropeptides encoded by lncRNAs may regulate transcription, translation, protein phosphorylation or degradation, or subcellular membrane functions. This review attempts to summarize the biochemical targets of the micropeptides-encoded by lncRNAs, which function by both RNAs and micropeptides, and discuss their associations with various diseases and their potentials as drug targets.
Collapse
Affiliation(s)
- Bi-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qi Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| |
Collapse
|
20
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
21
|
Periasamy P, Joseph C, Campos A, Rajandran S, Batho C, Hudson JE, Sivakumaran H, Kore H, Datta K, Yeong J, Gowda H. Regulation of non-canonical proteins from diverse origins through the nonsense-mediated mRNA decay pathway. Proteomics 2024; 24:e2300361. [PMID: 38350726 DOI: 10.1002/pmic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.
Collapse
Affiliation(s)
- Parthiban Periasamy
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Craig Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Adrian Campos
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Sureka Rajandran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Flow Cytometry Department, Covance Central Laboratory Services, Singapore, 609917, Singapore
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hitesh Kore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Keshava Datta
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Zuo R, Gong J, Gao X, Nepovimova E, Zhang J, Jiang S, Kuca K, Wu W, Guo D. Injectable nano-in situ-thermosensitive-hydrogels based on halofuginone and silver for postoperative treatment against triple-negative breast cancer. Int J Pharm 2024; 661:124384. [PMID: 38917957 DOI: 10.1016/j.ijpharm.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/27/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China; Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Zhang Y. LncRNA-encoded peptides in cancer. J Hematol Oncol 2024; 17:66. [PMID: 39135098 PMCID: PMC11320871 DOI: 10.1186/s13045-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), once considered transcriptional noise, have emerged as critical regulators of gene expression and key players in cancer biology. Recent breakthroughs have revealed that certain lncRNAs can encode small open reading frame (sORF)-derived peptides, which are now understood to contribute to the pathogenesis of various cancers. This review synthesizes current knowledge on the detection, functional roles, and clinical implications of lncRNA-encoded peptides in cancer. We discuss technological advancements in the detection and validation of sORFs, including ribosome profiling and mass spectrometry, which have facilitated the discovery of these peptides. The functional roles of lncRNA-encoded peptides in cancer processes such as gene transcription, translation regulation, signal transduction, and metabolic reprogramming are explored in various types of cancer. The clinical potential of these peptides is highlighted, with a focus on their utility as diagnostic biomarkers, prognostic indicators, and therapeutic targets. The challenges and future directions in translating these findings into clinical practice are also discussed, including the need for large-scale validation, development of sensitive detection methods, and optimization of peptide stability and delivery.
Collapse
Affiliation(s)
- Yaguang Zhang
- Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Andriani L, Ling YX, Yang SY, Zhao Q, Ma XY, Huang MY, Zhang YL, Zhang FL, Li DQ, Shao ZM. Sideroflexin-1 promotes progression and sensitivity to lapatinib in triple-negative breast cancer by inhibiting TOLLIP-mediated autophagic degradation of CIP2A. Cancer Lett 2024; 597:217008. [PMID: 38849012 DOI: 10.1016/j.canlet.2024.217008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.
Collapse
Affiliation(s)
- Lisa Andriani
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun-Xiao Ling
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Liu X, Chen Y, Li Y, Bai J, Zeng Z, Wang M, Dong Y, Zhou Y. STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer. Biol Direct 2024; 19:59. [PMID: 39080743 PMCID: PMC11288052 DOI: 10.1186/s13062-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development. METHODS We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP. RESULTS LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context. CONCLUSIONS lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jinling Bai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
26
|
Ge A, Chan C, Yang X. Exploring the Dark Matter of Human Proteome: The Emerging Role of Non-Canonical Open Reading Frame (ncORF) in Cancer Diagnosis, Biology, and Therapy. Cancers (Basel) 2024; 16:2660. [PMID: 39123386 PMCID: PMC11311765 DOI: 10.3390/cancers16152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (C.C.)
| |
Collapse
|
27
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q, Yin M, You H, Xiao Z, Shen J. Current understanding of functional peptides encoded by lncRNA in cancer. Cancer Cell Int 2024; 24:252. [PMID: 39030557 PMCID: PMC11265036 DOI: 10.1186/s12935-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.
Collapse
Affiliation(s)
- Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zihan Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 646000
| | - Yanxi Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Huili You
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
28
|
Ma Q, Ma F, Zhang B, Zhang Y, Peng L, Li X. The short peptide encoded by long non-coding RNA RNF217-AS1 inhibits stomach cancer tumorigenesis, macrophage recruitment, and pro-inflammatory responses. Amino Acids 2024; 56:45. [PMID: 39007996 PMCID: PMC11249698 DOI: 10.1007/s00726-024-03404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-coding potential were searched by bioinformatics analysis. The gene mRNA and protein levels were examined by RT-qPCR and western blot assays, respectively. Cell viability, migratory, and invasive abilities were measured by CCK-8, Transwell migration, and Transwell invasion assays, respectively. The potential biological processes related to lncRNA RNF217-AS1 were identified by single-gene GSEA analysis. The effect of RNF217-AS1-encoded peptide on SC tumorigenesis was examined by mouse xenograft experiments. The results showed that lncRNA NR2F1-AS1 and RNF217-AS1 were differentially expressed and associated with macrophage infiltration in SC, and they had the ability to translate into short peptides. The RNF217-AS1 ORF-encoded peptide could reduce SC cell viability, inhibit cell migration and invasion, as well as hinder the development of SC xenograft tumors. The RNF217-AS1 ORF-encoded peptide in human SC AGS cells suppressed THP-1 cell migration, triggered the differential expression of CXCL1/CXCL2/CXCL8/CXCL12, and inactivated the TLR4/NF-κB/STAT1 signaling pathways. As a conclusion, the RNF217-AS1 ORF-encoded peptide hindered SC progression in vitro and in vivo and suppressed macrophage recruitment and pro-inflammatory responses in SC.
Collapse
Affiliation(s)
- Qi Ma
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Fei Ma
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Bin Zhang
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yonglei Zhang
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Liangqun Peng
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Xiangnan Li
- Department of Cerebral Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
29
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
30
|
Mahé M, Rios-Fuller T, Katsara O, Schneider RJ. Non-canonical mRNA translation initiation in cell stress and cancer. NAR Cancer 2024; 6:zcae026. [PMID: 38828390 PMCID: PMC11140632 DOI: 10.1093/narcan/zcae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
The now well described canonical mRNA translation initiation mechanism of m7G 'cap' recognition by cap-binding protein eIF4E and assembly of the canonical pre-initiation complex consisting of scaffolding protein eIF4G and RNA helicase eIF4A has historically been thought to describe all cellular mRNA translation. However, the past decade has seen the discovery of alternative mechanisms to canonical eIF4E mediated mRNA translation initiation. Studies have shown that non-canonical alternate mechanisms of cellular mRNA translation initiation, whether cap-dependent or independent, serve to provide selective translation of mRNAs under cell physiological and pathological stress conditions. These conditions typically involve the global downregulation of canonical eIF4E1/cap-mediated mRNA translation, and selective translational reprogramming of the cell proteome, as occurs in tumor development and malignant progression. Cancer cells must be able to maintain physiological plasticity to acquire a migratory phenotype, invade tissues, metastasize, survive and adapt to severe microenvironmental stress conditions that involve inhibition of canonical mRNA translation initiation. In this review we describe the emerging, important role of non-canonical, alternate mechanisms of mRNA translation initiation in cancer, particularly in adaptation to stresses and the phenotypic cell fate changes involved in malignant progression and metastasis. These alternate translation initiation mechanisms provide new targets for oncology therapeutics development.
Collapse
Affiliation(s)
- Mélanie Mahé
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tiffany Rios-Fuller
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Du B, Zhang Z, Jia L, Zhang H, Zhang S, Wang H, Cheng Z. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci Rep 2024; 14:12090. [PMID: 38802444 PMCID: PMC11130299 DOI: 10.1038/s41598-024-62710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Micropeptides hidden in long non-coding RNAs (lncRNAs) have been uncovered to program various cell-biological changes associated with malignant transformation-glioblastoma (GBM) cascade. Here, we identified and characterized a novel hidden micropeptide implicated in GBM. We screened potential candidate lncRNAs by establishing a workflow involving ribosome-bound lncRNAs, publicly available MS/MS data, and prognosis-related lncRNAs. Micropeptide expression was detected by western blot (WB), immunofluorescence (IF), and immunohistochemistry (IHC). Cell proliferation rate was assessed by calcein/PI staining and EdU assay. Proteins interacted with the micropeptide were analyzed by proteomics after co-immunoprecipitation (Co-IP). We discovered that lncRNA AF127577.4 indeed encoded an endogenous micropeptide, named AF127577.4-ORF. AF127577.4-ORF was associated with GBM clinical grade. In vitro, AF127577.4-ORF could suppress GBM cell proliferation. Moreover, AF127577.4-ORF reduced m6A methylation level of GBM cells. Mechanistically, AF127577.4-ORF diminished ERK2 interaction with m6A reader methyltransferase like 3 (METTL3) and downregulated phosphorylated ERK (p-ERK) level. The ERK inhibitor reduced p-ERK level and downregulated METTL3 protein expression. AF127577.4-ORF weakened the stability of METTL3 protein by ERK. Also, AF127577.4-ORF suppressed GBM cell proliferation via METTL3. Our study identifies a novel micropeptide AF127577.4-ORF hidden in a lncRNA, with a potent anti-proliferating function in GBM by diminishing METTL3 protein stability by reducing the ERK2/METTL3 interaction. This micropeptide may be beneficial for development of therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Baoshun Du
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Zheying Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China.
| | - Linlin Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 450053, Henan, People's Republic of China
| | - Huan Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Shuai Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Haijun Wang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhenguo Cheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| |
Collapse
|
32
|
Singh AK. Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1853. [PMID: 38741356 DOI: 10.1002/wrna.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
33
|
Yang LH, Wang GZ, Gao C. SEPT3 as a Potential Molecular Target of Triple-Negative Breast Cancer. Int J Gen Med 2024; 17:1605-1613. [PMID: 38686040 PMCID: PMC11057513 DOI: 10.2147/ijgm.s462541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background The survival rate for triple-negative breast cancer (TNBC) is very low due to its advanced metastatic and aggressive nature, and there is no specific target to improve the survival rate. The expression and clinical signature of neuronal-specific septin-3 (Septin3, SEPT3) in TNBC remain undetermined. Methods SEPT3 differential expression in TNBC was detected with the use of bioinformatic approaches based on TCGA and GEO database, which was verified with immunohistochemistry in TNBC tissues. Next, the effect of SEPT3 on survival and the association between SEPT3 expression and clinical characteristics were assessed for TNBC patients. We performed Cox analysis to evaluate whether SEPT3 is an independent predictor for TNBC patients. Results SEPT3 was identified as a key differentially expressed gene. SEPT3 was observed to be elevated in 112 TNBC significantly. Increased expression of SEPT3 contributed to an unfavorable prognosis in patients with TNBC. Additionally, SEPT3 was associated with several factors including TNM stage, lymph node metastasis, Ki67 level and histological grade. SEPT3 was determined to be an independent risk factor for TNBC patients through Cox regression analysis. Conclusion This study demonstrated that SEPT3 could be a potential disease marker for TNBC patients by bioinformatics analysis and validation in clinical samples.
Collapse
Affiliation(s)
- Li-Hua Yang
- Department of Breast Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, People’s Republic of China
| | - Guo-Zhou Wang
- Department of Breast Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, People’s Republic of China
| | - Chao Gao
- Department of General Practitioner, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, People’s Republic of China
| |
Collapse
|
34
|
Zhou H, Wu Y, Cai J, Zhang D, Lan D, Dai X, Liu S, Song T, Wang X, Kong Q, He Z, Tan J, Zhang J. Micropeptides: potential treatment strategies for cancer. Cancer Cell Int 2024; 24:134. [PMID: 38622617 PMCID: PMC11020647 DOI: 10.1186/s12935-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, 563000, China
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
35
|
Zhang Q, Liu L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett 2024; 587:216691. [PMID: 38360139 DOI: 10.1016/j.canlet.2024.216691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
36
|
Liang X, Zhou J, Li C, Wang H, Wan Y, Ling C, Pu L, Zhang W, Fan M, Hong J, Zhai Z. The roles and mechanisms of TGFB1 in acute myeloid leukemia chemoresistance. Cell Signal 2024; 116:111027. [PMID: 38171389 DOI: 10.1016/j.cellsig.2023.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML) patients usually have very poor prognoses, and drug-resistance is one of the major limiting factors. In this study, we aimed to explore the functions of Transforming Growth Factor-β1 (TGFB1) in AML drug-resistance. First, TGFB1 levels in serum and bone marrow are higher in R/R patients compared with newly diagnosed patients, this phenomenon could be due to different sources of secreted TGFB1 according to immunohistochemistry of marrow biopsies. Similarly, TGFB1 expression in AML drug-resistant cell lines is higher than that in their parental cell lines, and blocking the TGFB signaling pathway by specific inhibitors decreased resistance to chemotherapeutic agents. On the other hand, exogenous TGFB1 can also promote AML parental cells senescence and chemotherapy resistance. Next, we found SOX4 level is upregulated in drug-resistant cells, and parental cells treated with exogenous TGFB1 induced upregulation of SOX4 levels. Interference of SOX4 expression by siRNA diminished the TGFB1-induced sensitivity to chemotherapeutic agents. Finally, we conduct metabolomic analysis and find Alanine, aspartate and glutamate metabolism pathway, and Glycerophospholipid metabolism pathway are decreased after inhibiting TGFB signaling pathway or interfering SOX4 expression. This study concludes that TGFB1 level in R/R AML patients and drug-resistant strains is significantly increased. Blocking the TGFB signaling pathway can enhance the chemosensitivity of drug-resistant cells by suppressing SOX4 expression and metabolic reprogramming.
Collapse
Affiliation(s)
- Xue Liang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ji Zhou
- Department of Epidemiology and Health Statistics, Anhui Medical University, School of Public Health, Hefei, Anhui, China; School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Cong Li
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiping Wang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chun Ling
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianfang Pu
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wanqiu Zhang
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Fan
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jingfang Hong
- Department of Epidemiology and Health Statistics, Anhui Medical University, School of Public Health, Hefei, Anhui, China; School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Hematologic Department/Hematologic Disease Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
37
|
Hou G, Hu W, Sang Y, Gan X, Xu H, Hu Q, Cao X. Corynoxine triggers cell death via activating PP2A and regulating AKT-mTOR/GSK3β axes in NSCLC. Biochem Pharmacol 2024; 222:116110. [PMID: 38460908 DOI: 10.1016/j.bcp.2024.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3β signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.
Collapse
Affiliation(s)
- Guoqing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yazhou Sang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaocai Gan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hui Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qiongying Hu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
38
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Xiang S, Yan W, Ren X, Feng J, Zu X. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer. Cell Mol Biol Lett 2024; 29:40. [PMID: 38528461 DOI: 10.1186/s11658-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.
Collapse
Affiliation(s)
- Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xing Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
40
|
Tang S, Zhang J, Lou F, Zhou H, Cai X, Wang Z, Sun L, Sun Y, Li X, Fan L, Li Y, Jin X, Deng S, Yin Q, Bai J, Wang H, Wang H. A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Rep 2024; 25:1208-1232. [PMID: 38291338 PMCID: PMC10933344 DOI: 10.1038/s44319-024-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.
Collapse
Affiliation(s)
- Sibei Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Junxun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Zhou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiangxiao Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xinping Jin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China.
| |
Collapse
|
41
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Han X, Chen L, Sun P, Wang X, Zhao Q, Liao L, Lou D, Zhou N, Wang Y. A novel lncRNA-hidden polypeptide regulates malignant phenotypes and pemetrexed sensitivity in A549 pulmonary adenocarcinoma cells. Amino Acids 2024; 56:15. [PMID: 38351332 PMCID: PMC10864564 DOI: 10.1007/s00726-023-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
The advance of high-throughput sequencing enhances the discovery of short ORFs embedded in long non-coding RNAs (lncRNAs). Here, we uncovered the production and biological activity of lncRNA-hidden polypeptides in lung adenocarcinoma (LUAD). In the present study, bioinformatics was used to screen the lncRNA-hidden polypeptides in LUAD. Analysis of protein expression was done by western blot or immunofluorescence assay. The functions of the polypeptide were determined by detecting its effects on cell viability, proliferation, migration, invasion, and pemetrexed (PEM) sensitivity. The protein interactors of the polypeptide were analyzed by mass spectrometry after Co-immunoprecipitation (Co-IP) assay. The results showed that the lncRNA LINC00954 was confirmed to encode a novel polypeptide LINC00954-ORF. The polypeptide had tumor-suppressor features in A549 cells by repressing cell growth, motility and invasion. Moreover, the polypeptide enhanced PEM sensitivity and suppressed growth in A549/PEM cells. The protein interactors of this polypeptide had close correlations with RNA processing, amide metabolic process, translation, RNA binding, RNA transport, and DNA replication. As a conclusion, the LINC00954-ORF polypeptide embedded in lncRNA LINC00954 possesses tumor-suppressor features in A549 and PEM-resistant A549 cells and sensitizes PEM-resistant A549 cells to PEM, providing evidence that the LINC00954-ORF polypeptide is a potential anti-cancer agent in LUAD.
Collapse
Affiliation(s)
- Xiaobing Han
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China.
| | - Liangxin Chen
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Peng Sun
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Xiuqing Wang
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Qian Zhao
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Lingfeng Liao
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Dejin Lou
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Nan Zhou
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Yujun Wang
- Department of Gastroenterology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China.
| |
Collapse
|
43
|
Zhou B, Yu G, Zhao M, Li Y, Li J, Xiang Y, Tong L, Chu X, Wang C, Song Y. The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways. J Assist Reprod Genet 2024; 41:493-504. [PMID: 38049704 PMCID: PMC10894799 DOI: 10.1007/s10815-023-02995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.
Collapse
Affiliation(s)
- Bo Zhou
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, People's Republic of China
| | - Guo Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Mingqi Zhao
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Jing Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Lili Tong
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Xiying Chu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
44
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
45
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
46
|
Nagelli S, Westermarck J. CIP2A coordinates phosphosignaling, mitosis, and the DNA damage response. Trends Cancer 2024; 10:52-64. [PMID: 37793965 DOI: 10.1016/j.trecan.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Human cancers share requirements for phosphorylation-dependent signaling, mitotic hyperactivity, and survival after DNA damage. The oncoprotein CIP2A (cancerous inhibitor of PP2A) can coordinate all these cancer cell characteristics. In addition to controlling cancer cell phosphoproteomes via inhibition of protein phosphatase PP2A, CIP2A directly interacts with the DNA damage protein TopBP1 (topoisomerase II-binding protein 1). Consequently, CIP2A allows DNA-damaged cells to enter mitosis and is essential for mitotic cells that are defective in homologous recombination (HR)-mediated DNA repair (e.g., BRCA mutants). The CIP2A-TopBP1 complex is also important for clustering fragmented chromosomes at mitosis. Clinically, CIP2A is a disease driver for basal-like triple-negative breast cancer (BL-TNBC) and a promising cancer therapy target across many cancer types.
Collapse
Affiliation(s)
- Srikar Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
47
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
48
|
Kore H, Datta KK, Nagaraj SH, Gowda H. Protein-coding potential of non-canonical open reading frames in human transcriptome. Biochem Biophys Res Commun 2023; 684:149040. [PMID: 37897910 DOI: 10.1016/j.bbrc.2023.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023]
Abstract
In recent years, proteogenomics and ribosome profiling studies have identified a large number of proteins encoded by noncoding regions in the human genome. They are encoded by small open reading frames (sORFs) in the untranslated regions (UTRs) of mRNAs and long non-coding RNAs (lncRNAs). These sORF encoded proteins (SEPs) are often <150AA and show poor evolutionary conservation. A subset of them have been functionally characterized and shown to play an important role in fundamental biological processes including cardiac and muscle function, DNA repair, embryonic development and various human diseases. How many novel protein-coding regions exist in the human genome and what fraction of them are functionally important remains a mystery. In this review, we discuss current progress in unraveling SEPs, approaches used for their identification, their limitations and reliability of these identifications. We also discuss functionally characterized SEPs and their involvement in various biological processes and diseases. Lastly, we provide insights into their distinctive features compared to canonical proteins and challenges associated with annotating these in protein reference databases.
Collapse
Affiliation(s)
- Hitesh Kore
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.
| | - Keshava K Datta
- Proteomics and Metabolomics Platform, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Harsha Gowda
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Medicine, The University of Queensland, Queensland, 4072, Australia.
| |
Collapse
|
49
|
Sahgal A, Uversky V, Davé V. Microproteins transitioning into a new Phase: Defining the undefined. Methods 2023; 220:38-54. [PMID: 37890707 DOI: 10.1016/j.ymeth.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.
Collapse
Affiliation(s)
- Aayushi Sahgal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States.
| |
Collapse
|
50
|
Deng J, Xu W, Jie Y, Chong Y. Subcellular localization and relevant mechanisms of human cancer-related micropeptides. FASEB J 2023; 37:e23270. [PMID: 37994683 DOI: 10.1096/fj.202301019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023]
Abstract
Rapid advances in high-quality sequencing and bioinformatics have invalidated the argument that noncoding RNAs (ncRNAs) are junk transcripts that do not encode proteins. Increasing evidence suggests that small open reading frames (sORFs) in ncRNAs can encode micropeptides and polypeptides within 100 amino acids in length. Several micropeptides have been characterized and proven to have various functions in human physiology and pathology, particularly in cancer. The present review mainly highlights the latest studies on ncRNA-encoded micropeptides in different cancers and categorizes them based on their subcellular localization, thereby providing a theoretical basis for micropeptide applications in the early diagnosis and prognosis of cancer and as therapeutic targets. However, considering the inherent characteristics of micropeptides and the limitations of the assay technology methods, more detailed information is warranted.
Collapse
Affiliation(s)
- Jing Deng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenli Xu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|