1
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases. Front Neurosci 2024; 18:1397106. [PMID: 39582602 PMCID: PMC11582054 DOI: 10.3389/fnins.2024.1397106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly prevalent in our aging population, imposing significant social and economic burdens. Currently, most ND patients receive only symptomatic treatment due to limited understanding of their underlying causes. Consequently, there is a pressing need for comprehensive research into the pathological mechanisms of NDs by both researchers and clinicians. Autophagy, a cellular mechanism responsible for maintaining cellular equilibrium by removing dysfunctional organelles and misfolded proteins, plays a vital role in cell health and is implicated in various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold promise for treating these diseases. These small oligonucleotides bind to the 3'-untranslated region (UTR) of target mRNAs, leading to mRNA silencing, degradation, or translation blockade. This review explores recent findings on the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including neurodegeneration and inflammation-related diseases. The recognition of miRNAs as key regulators of autophagy in human diseases has spurred investigations into pharmacological compounds and traditional medicines targeting these miRNAs in disease models. This has catalyzed a new wave of therapeutic interventions aimed at modulating autophagy.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Lee Y, Tuan NM, Lee GJ, Kim B, Park JH, Lee CH. Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its inhibitors. Biomol Ther (Seoul) 2024; 32:723-735. [PMID: 39370737 PMCID: PMC11535298 DOI: 10.4062/biomolther.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 10/08/2024] Open
Abstract
VPS34 is a crucial protein in cells, essential for handling cellular stress through its involvement in autophagy and endocytosis. This protein functions as a Class III phosphatidylinositol 3-kinase, producing phosphatidylinositol 3-phosphate, which is necessary for autophagy and vesicle trafficking. Additionally, VPS34 forms two mutually exclusive complexes, each playing a vital role in autophagy and endocytic sorting. These complexes share common subunits, including VPS15, VPS34, and Beclin 1, with complex I having ATG14 as a specific subunit. Due to its association with various human diseases, regulation of the VPS34 complex I has garnered significant interest, emerging as a potential therapeutic target for drug discovery. Summaries of the structure, function of VPS34 complexes, and developed VPS34 inhibitors have been provided, along with discussions on the regulation mechanism of VPS34, particularly in relation to the initiation complex I of autophagy. This offers valuable insights for treating autophagy-related diseases.
Collapse
Affiliation(s)
- Yongook Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Nguyen Minh Tuan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jung Ho Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, Antonioli M, Fimia GM, Dengjel J. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep 2024; 43:114689. [PMID: 39207901 DOI: 10.1016/j.celrep.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Collapse
Affiliation(s)
| | | | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sebastian Favre
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lais de Oliveira Marchioro
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo CEP 05508-000, Brazil
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jianwen Zhou
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Werner Josef Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", 00185 Rome, Italy
| | - Jӧrn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
4
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
7
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
8
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
9
|
Wu L, Jin W, Yu H, Liu B. Modulating autophagy to treat diseases: A revisited review on in silico methods. J Adv Res 2024; 58:175-191. [PMID: 37192730 PMCID: PMC10982871 DOI: 10.1016/j.jare.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Autophagy refers to the conserved cellular catabolic process relevant to lysosome activity and plays a vital role in maintaining the dynamic equilibrium of intracellular matter by degrading harmful and abnormally accumulated cellular components. Accumulating evidence has recently revealed that dysregulation of autophagy by genetic and exogenous interventions may disrupt cellular homeostasis in human diseases. In silico approaches as powerful aids to experiments have also been extensively reported to play their critical roles in the storage, prediction, and analysis of massive amounts of experimental data. Thus, modulating autophagy to treat diseases by in silico methods would be anticipated. AIM OF REVIEW Here, we focus on summarizing the updated in silico approaches including databases, systems biology network approaches, omics-based analyses, mathematical models, and artificial intelligence (AI) methods that sought to modulate autophagy for potential therapeutic purposes, which will provide a new insight into more promising therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Autophagy-related databases are the data basis of the in silico method, storing a large amount of information about DNA, RNA, proteins, small molecules and diseases. The systems biology approach is a method to systematically study the interrelationships among biological processes including autophagy from a macroscopic perspective. Omics-based analyses are based on high-throughput data to analyze gene expression at different levels of biological processes involving autophagy. mathematical models are visualization methods to describe the dynamic process of autophagy, and its accuracy is related to the selection of parameters. AI methods use big data related to autophagy to predict autophagy targets, design targeted small molecules, and classify diverse human diseases for potential therapeutic applications.
Collapse
Affiliation(s)
- Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Jin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Kim DH. Contrasting views on the role of AMPK in autophagy. Bioessays 2024; 46:e2300211. [PMID: 38214366 PMCID: PMC10922896 DOI: 10.1002/bies.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Cong Z, Xiong Y, Lyu L, Fu B, Guo D, Sha Z, Yang B, Wu H. The relationship between Listeria infections and host immune responses: Listeriolysin O as a potential target. Biomed Pharmacother 2024; 171:116129. [PMID: 38194738 DOI: 10.1016/j.biopha.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Listeria monocytogenes (Lm), a foodborne bacterium, can infect people and has a high fatality rate in immunocompromised individuals. Listeriolysin O (LLO), the primary virulence factor of Lm, is critical in regulating the pathogenicity of Lm. This review concludes that LLO may either directly or indirectly activate a number of host cell viral pathophysiology processes, such as apoptosis, pyroptosis, autophagy, necrosis and necroptosis. We describe the invasion of host cells by Lm and the subsequent removal of Lm by CD8 T cells and CD4 T cells upon receipt of the LLO epitopes from major histocompatibility complex class I (MHC-I) and major histocompatibility complex class II (MHC-II). The development of several LLO-based vaccines that make use of the pore-forming capabilities of LLO and the immune response of the host cells is then described. Finally, we conclude by outlining the several natural substances that have been shown to alter the three-dimensional conformation of LLO by binding to particular amino acid residues of LLO, which reduces LLO pathogenicity and may be a possible pharmacological treatment for Lm.
Collapse
Affiliation(s)
- Zixuan Cong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lyu Lyu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
12
|
Li L, Zhu XM, Bao JD, Wang JY, Liu XH, Lin FC. The cell cycle, autophagy, and cell wall integrity pathway jointly governed by MoSwe1 in Magnaporthe oryzae. Cell Commun Signal 2024; 22:19. [PMID: 38195499 PMCID: PMC10775494 DOI: 10.1186/s12964-023-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Proikas-Cezanne T, Haas ML, Pastor-Maldonado CJ, Schüssele DS. Human WIPI β-propeller function in autophagy and neurodegeneration. FEBS Lett 2024; 598:127-139. [PMID: 38058212 DOI: 10.1002/1873-3468.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The four human WIPI β-propellers, WIPI1 through WIPI4, belong to the ancient PROPPIN family and fulfill scaffold functions in the control of autophagy. In this context, WIPI β-propellers function as PI3P effectors during autophagosome formation and loss of WIPI function negatively impacts autophagy and contributes to neurodegeneration. Of particular interest are mutations in WDR45, the human gene that encodes WIPI4. Sporadic WDR45 mutations are the cause of a rare human neurodegenerative disease called BPAN, hallmarked by high brain iron accumulation. Here, we discuss the current understanding of the functions of human WIPI β-propellers and address unanswered questions with a particular focus on the role of WIPI4 in autophagy and BPAN.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
14
|
Dupont N, Claude-Taupin A, Codogno P. A historical perspective of macroautophagy regulation by biochemical and biomechanical stimuli. FEBS Lett 2024; 598:17-31. [PMID: 37777819 DOI: 10.1002/1873-3468.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.
Collapse
Affiliation(s)
- Nicolas Dupont
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Aurore Claude-Taupin
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Patrice Codogno
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| |
Collapse
|
15
|
Nguyen A, Faesen AC. The role of the HORMA domain proteins ATG13 and ATG101 in initiating autophagosome biogenesis. FEBS Lett 2024; 598:114-126. [PMID: 37567770 DOI: 10.1002/1873-3468.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Autophagy is a process of regulated degradation. It eliminates damaged and unnecessary cellular components by engulfing them with a de novo-generated organelle: the double-membrane autophagosome. The past three decades have provided us with a detailed parts list of the autophagy initiation machinery, have developed important insights into how these processes function and have identified regulatory proteins. It is now clear that autophagosome biogenesis requires the timely assembly of a complex machinery. However, it is unclear how a putative stable machine is assembled and disassembled and how the different parts cooperate to perform its overall function. Although they have long been somewhat enigmatic in their precise role, HORMA domain proteins (first identified in Hop1p, Rev7p and MAD2 proteins) autophagy-related protein 13 (ATG13) and ATG101 of the ULK-kinase complex have emerged as important coordinators of the autophagy-initiating subcomplexes. Here, we will particularly focus on ATG13 and ATG101 and the role of their unusual metamorphosis in initiating autophagosome biogenesis. We will also explore how this metamorphosis could potentially be purposefully rate-limiting and speculate on how it could regulate the spontaneous self-assembly of the autophagy-initiating machinery.
Collapse
Affiliation(s)
- Anh Nguyen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alex C Faesen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
16
|
Wang Y, Que H, Li C, Wu Z, Jian F, Zhao Y, Tang H, Chen Y, Gao S, Wong CC, Li Y, Zhao C, Rong Y. ULK phosphorylation of STX17 controls autophagosome maturation via FLNA. J Cell Biol 2023; 222:e202211025. [PMID: 37389864 PMCID: PMC10316704 DOI: 10.1083/jcb.202211025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.
Collapse
Affiliation(s)
- Yufen Wang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Que
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - ChuangPeng Li
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wu
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Fenglei Jian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhao
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Haohao Tang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Shuaixin Gao
- Human Nutrition Program and James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Catherine C.L. Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ying Li
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chongchong Zhao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Ning J, Pei Z, Wang M, Hu H, Chen M, Liu Q, Wu M, Yang P, Geng Z, Zheng J, Du Z, Hu W, Wang Q, Pang Y, Bao L, Niu Y, Leng S, Zhang R. Site-specific Atg13 methylation-mediated autophagy regulates epithelial inflammation in PM2.5-induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131791. [PMID: 37295326 DOI: 10.1016/j.jhazmat.2023.131791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Fine particulate matters (PM2.5) increased the risk of pulmonary fibrosis. However, the regulatory mechanisms of lung epithelium in pulmonary fibrosis remained elusive. Here we developed PM2.5-exposure lung epithelial cells and mice models to investigate the role of autophagy in lung epithelia mediating inflammation and pulmonary fibrosis. PM2.5 exposure induced autophagy in lung epithelial cells and then drove pulmonary fibrosis by activation of NF-κB/NLRP3 signaling pathway. PM2.5-downregulated ALKBH5 protein expression promotes m6A modification of Atg13 mRNA at site 767 in lung epithelial cells. Atg13-mediated ULK complex positively regulated autophagy and inflammation in epithelial cells with PM2.5 treatment. Knockout of ALKBH5 in mice further accelerated ULK complex-regulated autophagy, inflammation and pulmonary fibrosis. Thus, our results highlighted that site-specific m6A methylation on Atg13 mRNA regulated epithelial inflammation-driven pulmonary fibrosis in an autophagy-dependent manner upon PM2.5 exposure, and it provided target intervention strategies towards PM2.5-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zijie Pei
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zihan Geng
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lei Bao
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
18
|
Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X, Zhan R, Mo K, Zhang L, Qian Y, Sun Y, Wang A, Zou Y, Chen W, Li Y, Huang L, Yang Y, Zhao Y, Cheng X. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. SCIENCE ADVANCES 2023; 9:eadg4993. [PMID: 37267363 PMCID: PMC10413652 DOI: 10.1126/sciadv.adg4993] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.
Collapse
Affiliation(s)
- Mengshu Jia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Yue
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Weixia Sun
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Qianjun Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weihua Gong
- Department of Surgery of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310012, China
| | - Jian Feng
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruonan Zhan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Kemin Mo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuying Sun
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weicai Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Li Huang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiawei Cheng
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun 2023; 14:2994. [PMID: 37225695 PMCID: PMC10209092 DOI: 10.1038/s41467-023-38401-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Autophagy maintains cellular homeostasis during low energy states. According to the current understanding, glucose-depleted cells induce autophagy through AMPK, the primary energy-sensing kinase, to acquire energy for survival. However, contrary to the prevailing concept, our study demonstrates that AMPK inhibits ULK1, the kinase responsible for autophagy initiation, thereby suppressing autophagy. We found that glucose starvation suppresses amino acid starvation-induced stimulation of ULK1-Atg14-Vps34 signaling via AMPK activation. During an energy crisis caused by mitochondrial dysfunction, the LKB1-AMPK axis inhibits ULK1 activation and autophagy induction, even under amino acid starvation. Despite its inhibitory effect, AMPK protects the ULK1-associated autophagy machinery from caspase-mediated degradation during energy deficiency, preserving the cellular ability to initiate autophagy and restore homeostasis once the stress subsides. Our findings reveal that dual functions of AMPK, restraining abrupt induction of autophagy upon energy shortage while preserving essential autophagy components, are crucial to maintain cellular homeostasis and survival during energy stress.
Collapse
Affiliation(s)
- Ji-Man Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Da-Hye Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Nguyen TN, Sawa-Makarska J, Khuu G, Lam WK, Adriaenssens E, Fracchiolla D, Shoebridge S, Bernklau D, Padman BS, Skulsuppaisarn M, Lindblom RSJ, Martens S, Lazarou M. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol Cell 2023; 83:1693-1709.e9. [PMID: 37207627 DOI: 10.1016/j.molcel.2023.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double-membrane structure termed an "autophagosome" on the surface of cargoes. NDP52, TAX1BP1, and p62 bind FIP200, which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding or require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1, which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1's role as a selective autophagy-initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Justyna Sawa-Makarska
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Grace Khuu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wai Kit Lam
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elias Adriaenssens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stephen Shoebridge
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daniel Bernklau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Runa S J Lindblom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sascha Martens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Tran S, Juliani J, Fairlie WD, Lee EF. The emerging roles of autophagy in intestinal epithelial cells and its links to inflammatory bowel disease. Biochem Soc Trans 2023; 51:811-826. [PMID: 37052218 PMCID: PMC10212545 DOI: 10.1042/bst20221300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Landmark genome-wide association studies (GWAS) identified that mutations in autophagy genes correlated with inflammatory bowel disease (IBD), a heterogenous disease characterised by prolonged inflammation of the gastrointestinal tract, that can reduce a person's quality of life. Autophagy, the delivery of intracellular components to the lysosome for degradation, is a critical cellular housekeeping process that removes damaged proteins and turns over organelles, recycling their amino acids and other constituents to supply cells with energy and necessary building blocks. This occurs under both basal and challenging conditions such as nutrient deprivation. An understanding of the relationship between autophagy, intestinal health and IBD aetiology has improved over time, with autophagy having a verified role in the intestinal epithelium and immune cells. Here, we discuss research that has led to an understanding that autophagy genes, including ATG16L, ATG5, ATG7, IRGM, and Class III PI3K complex members, contribute to innate immune defence in intestinal epithelial cells (IECs) via selective autophagy of bacteria (xenophagy), how autophagy contributes to the regulation of the intestinal barrier via cell junctional proteins, and the critical role of autophagy genes in intestinal epithelial secretory subpopulations, namely Paneth and goblet cells. We also discuss how intestinal stem cells can utilise autophagy. Importantly, mouse studies have provided evidence that autophagy deregulation has serious physiological consequences including IEC death and intestinal inflammation. Thus, autophagy is now established as a key regulator of intestinal homeostasis. Further research into how its cytoprotective mechanisms can prevent intestinal inflammation may provide insights into the effective management of IBD.
Collapse
Affiliation(s)
- Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Juliani Juliani
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
22
|
Shafique A, Brughera M, Lualdi M, Alberio T. The Role of Rab Proteins in Mitophagy: Insights into Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6268. [PMID: 37047239 PMCID: PMC10094445 DOI: 10.3390/ijms24076268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial dysfunction and vesicular trafficking alterations have been implicated in the pathogenesis of several neurodegenerative diseases. It has become clear that pathogenetic pathways leading to neurodegeneration are often interconnected. Indeed, growing evidence suggests a concerted contribution of impaired mitophagy and vesicles formation in the dysregulation of neuronal homeostasis, contributing to neuronal cell death. Among the molecular factors involved in the trafficking of vesicles, Ras analog in brain (Rab) proteins seem to play a central role in mitochondrial quality checking and disposal through both canonical PINK1/Parkin-mediated mitophagy and novel alternative pathways. In turn, the lack of proper elimination of dysfunctional mitochondria has emerged as a possible causative/early event in some neurodegenerative diseases. Here, we provide an overview of major findings in recent years highlighting the role of Rab proteins in dysfunctional mitochondrial dynamics and mitophagy, which are characteristic of neurodegenerative diseases. A further effort should be made in the coming years to clarify the sequential order of events and the molecular factors involved in the different processes. A clear cause-effect view of the pathogenetic pathways may help in understanding the molecular basis of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Tiziana Alberio
- Department of Science and High Technology, Center of Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| |
Collapse
|
23
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
24
|
Oroń M, Grochowski M, Jaiswar A, Legierska J, Jastrzębski K, Nowak-Niezgoda M, Kołos M, Kaźmierczak W, Olesiński T, Lenarcik M, Cybulska M, Mikula M, Żylicz A, Miączyńska M, Zettl K, Wiśniewski JR, Walerych D. The molecular network of the proteasome machinery inhibition response is orchestrated by HSP70, revealing vulnerabilities in cancer cells. Cell Rep 2022; 40:111428. [PMID: 36170818 DOI: 10.1016/j.celrep.2022.111428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Proteasome machinery is a major proteostasis control system in human cells, actively compensated upon its inhibition. To understand this compensation, we compared global protein landscapes upon the proteasome inhibition with carfilzomib, in normal fibroblasts, cells of multiple myeloma, and cancers of lung, colon, and pancreas. Molecular chaperones, autophagy, and endocytosis-related proteins are the most prominent vulnerabilities in combination with carfilzomib, while targeting of the HSP70 family chaperones HSPA1A/B most specifically sensitizes cancer cells to the proteasome inhibition. This suggests a central role of HSP70 in the suppression of the proteasome downregulation, allowing to identify pathways impinging on HSP70 upon the proteasome inhibition. HSPA1A/B indeed controls proteasome-inhibition-induced autophagy, unfolded protein response, and endocytic flux, and directly chaperones the proteasome machinery. However, it does not control the NRF1/2-driven proteasome subunit transcriptional bounce-back. Consequently, targeting of NRF1 proves effective in decreasing the viability of cancer cells with the inhibited proteasome and HSP70.
Collapse
Affiliation(s)
- Magdalena Oroń
- Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | | | | | - Kamil Jastrzębski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Małgorzata Kołos
- Central Clinical Hospital of Ministry of Interior and Administration, Warsaw, Poland
| | | | | | | | | | | | - Alicja Żylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | - Dawid Walerych
- Mossakowski Medical Research Institute PAS, Warsaw, Poland.
| |
Collapse
|
25
|
Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091747. [PMID: 36139821 PMCID: PMC9495910 DOI: 10.3390/antiox11091747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrovascular disease is highly prevalent and has a complex etiology and variable pathophysiological activities. It thus poses a serious threat to human life and health. Currently, pathophysiological research on cerebrovascular diseases is gradually improving, and oxidative stress and autophagy have been identified as important pathophysiological activities that are gradually attracting increasing attention. Many studies have found some effects of oxidative stress and autophagy on cerebrovascular diseases, and studies on the crosstalk between the two in cerebrovascular diseases have made modest progress. However, further, more detailed studies are needed to determine the specific mechanisms. This review discusses nuclear factor erythroid 2-related factor 2 (Nrf2) molecules, which are closely associated with oxidative stress and autophagy, and the crosstalk between them, with the aim of providing clues for studying the two important pathophysiological changes and their crosstalk in cerebrovascular diseases as well as exploring new target treatments.
Collapse
|
26
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
27
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
28
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
29
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Herb M, Gluschko A, Farid A, Krönke M. When the Phagosome Gets Leaky: Pore-Forming Toxin-Induced Non-Canonical Autophagy (PINCA). Front Cell Infect Microbiol 2022; 12:834321. [PMID: 35372127 PMCID: PMC8968195 DOI: 10.3389/fcimb.2022.834321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.
Collapse
Affiliation(s)
- Marc Herb
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexander Gluschko
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alina Farid
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Infection Research, Bonn-Cologne, Germany
| |
Collapse
|
31
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
32
|
Schreiber A, Collins BC, Davis C, Enchev RI, Sedra A, D'Antuono R, Aebersold R, Peter M. Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation. Mol Cell 2021; 81:5066-5081.e10. [PMID: 34798055 PMCID: PMC8693860 DOI: 10.1016/j.molcel.2021.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.
Collapse
Affiliation(s)
- Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Ben C Collins
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Angie Sedra
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy (CALM) STP, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
33
|
Iriondo MN, Etxaniz A, Antón Z, Montes LR, Alonso A. Molecular and mesoscopic geometries in autophagosome generation. A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183731. [PMID: 34419487 DOI: 10.1016/j.bbamem.2021.183731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of 'intrinsic curvature', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
Collapse
Affiliation(s)
- Marina N Iriondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - L Ruth Montes
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain.
| |
Collapse
|
34
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
35
|
Lechado Terradas A, Zittlau KI, Macek B, Fraiberg M, Elazar Z, Kahle PJ. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J Biol Chem 2021; 297:101339. [PMID: 34688664 PMCID: PMC8591368 DOI: 10.1016/j.jbc.2021.101339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
Collapse
Affiliation(s)
- Anna Lechado Terradas
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
36
|
Hu Z, Sankar DS, Vu B, Leytens A, Vionnet C, Wu W, Stumpe M, Martínez-Martínez E, Stork B, Dengjel J. ULK1 phosphorylation of striatin activates protein phosphatase 2A and autophagy. Cell Rep 2021; 36:109762. [PMID: 34592149 DOI: 10.1016/j.celrep.2021.109762] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023] Open
Abstract
The evolutionarily conserved ULK1 kinase complex acts as gatekeeper of canonical autophagy and regulates induction of autophagosome biogenesis. To better understand control of ULK1 and analyze whether ULK1 has broader functions that are also linked to the later steps of autophagy, we perform comprehensive phosphoproteomic analyses. Combining in vivo with in vitro data, we identify numerous direct ULK1 target sites within autophagy-relevant proteins that are critical for autophagosome maturation and turnover. In addition, we highlight an intimate crosstalk between ULK1 and several phosphatase complexes. ULK1 is not only a PP2A target but also directly phosphorylates the regulatory PP2A subunit striatin, activating PP2A and serving as positive feedback to promote autophagy-dependent protein turnover. Thus, ULK1 and phosphatase activities are tightly coordinated to robustly regulate protein degradation by autophagy.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Bich Vu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
37
|
Mercer TJ, Tooze SA. The ingenious ULKs: expanding the repertoire of the ULK complex with phosphoproteomics. Autophagy 2021; 17:4491-4493. [PMID: 34520329 PMCID: PMC8726633 DOI: 10.1080/15548627.2021.1968615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian ULK kinase complex is the most upstream component in the macroautophagy/autophagy signaling pathway. ULK1 and homolog ULK2, the sole serine/threonine kinases in autophagy, transduce an array of autophagy-inducing stimuli to downstream autophagic machinery, regulating autophagy from autophagosome initiation to fusion of autophagosomes with lysosomes. ULK signaling is also implicated in a diverse array of non-canonical processes from necroptosis to ER-Golgi trafficking to stress granule clearance. However, the exact mechanisms by which ULK regulates these diverse processes remain largely unknown. Most notably, the number of validated ULK substrates is surprisingly low. Our study identifies new ULK substrates from a wide array of protein families and signaling pathways and supports an expanded range of physiological roles for the ULKs. We further characterize several new substrates, including the PIK3C3/VPS34-containing complex subunit PIK3R4/VPS15 and the AMPK component PRKAG2. Finally, by analyzing PIK3R4/VPS15-deficient models we discover novel aspects of ULK signaling with potential relevance in selective autophagy.
Collapse
Affiliation(s)
- Thomas J Mercer
- The Francis Crick Institute, Molecular Cell Biology of Autophagy, London, UK
| | - Sharon A Tooze
- The Francis Crick Institute, Molecular Cell Biology of Autophagy, London, UK
| |
Collapse
|