1
|
Lv Z, Sun L, Chen X, Guo P, Xie X, Yao X, Tian S, Wang C, Shao Y, Liu J. TMC7 is required for spermiogenesis and male fertility by regulating TGN-derived vesicles. Int J Biol Macromol 2024; 293:139070. [PMID: 39732242 DOI: 10.1016/j.ijbiomac.2024.139070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Infertility affects 10-12 % of couples worldwide, 50 % of which are male. Abnormal spermatogenesis is among the main causes of male infertility. We were curious about the possible role of transmembrane channel-like protein 7 (TMC7) in spermatogenesis because of its aberrant expression in several male infertility patients. In this study, we found that deletion of Tmc7, which is highly expressed during spermiogenesis, causes a human oligoasthenoteratozoospermia (OAT)-like phenotype in male mice. By histological analysis, TEM, RNA-seq and library-free data-independent acquisition mass spectrometry (DIA-MS) of TMC7-null mouse testes, we found that Tmc7 deletion caused abnormal swelling of trans-Golgi network (TGN) vesicles in elongated spermatids. Further immunofluorescence localization analysis revealed that these vesicles were defined by synaptophysin-like 1 (SYPL1). In addition, TMC7 may act as a potential chloride transport channel to regulate the size of transport vesicles. In conclusion, this study demonstrated that TMC7 is essential for male fertility and may be used as a potential protein for the identification and recognition of OAT. On the other hand, TMC7 may be a potential male contraceptive target.
Collapse
Affiliation(s)
- Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peilan Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Marchesini MI, Spera JM, Comerci DJ. The 'ins and outs' of Brucella intracellular journey. Curr Opin Microbiol 2024; 78:102427. [PMID: 38309247 DOI: 10.1016/j.mib.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
Members of the genus Brucella are the causative agents of brucellosis, a worldwide zoonosis affecting wild and domestic animals and humans. These facultative intracellular pathogens cause long-lasting chronic infections by evolving sophisticated strategies to counteract, evade, or subvert host bactericidal mechanisms in order to establish a secure replicative niche necessary for their survival. In this review, we present recent findings on selected Brucella effectors to illustrate how this pathogen modulates host cell signaling pathways to gain control of the vacuole, promote the formation of a safe intracellular replication niche, alter host cell metabolism to its advantage, and exploit various cellular pathways to ensure egress from the infected cell.
Collapse
Affiliation(s)
- María I Marchesini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan M Spera
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina; Comisión Nacional de Energía Atómica, Grupo Pecuario, Centro Atómico Ezeiza, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zheng M, Lin R, Zhu J, Dong Q, Chen J, Jiang P, Zhang H, Liu J, Chen Z. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther 2024; 19:145-153. [PMID: 36809969 DOI: 10.2174/1574888x18666230222124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ruiqi Lin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| |
Collapse
|
4
|
Lin R, Li A, Li Y, Shen R, Du F, Zheng M, Zhu J, Chen J, Jiang P, Zhang H, Liu J, Chen X, Chen Z. The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53. Microorganisms 2023; 11:2322. [PMID: 37764165 PMCID: PMC10534853 DOI: 10.3390/microorganisms11092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The Brucella type IV secretion system (T4SS) can promote the intracellular survival and reproduction of Brucella. T4SS secretes effector proteins to act on cellular signaling pathways to inhibit the host's innate immune response and cause a chronic, persistent Brucella infection. Brucella can survive in host cells for a long time by inhibiting macrophage apoptosis and avoiding immune recognition. The effector protein, BspF, secreted by T4SS, can regulate host secretory transport and accelerate the intracellular replication of Brucella. BspF has an acetyltransferase domain of the GNAT (GCN5-related N-acetyltransferases) family, and in our previous crotonylation proteomics data, we have found that BspF has crotonyl transferase activity and crotonylation regulation of host cell protein in the proteomics data. Here, we found that BspF attenuates the crotonylation modification of the interacting protein p53, which reduces the p53 expression through the GNAT domain. BspF can inhibit the transcription and protein expression of downstream apoptotic genes, thereby inhibiting host cell apoptosis. Additionally, the Brucella ΔbspF mutant stain promotes apoptosis and reduces the survival rate of Brucella in the cells. In conclusion, we identified that the T4SS effector protein BspF can regulate host cell apoptosis to assist Brucella in its long-term survival by attenuating crotonylation modification of p53 and decreasing p53 expression. Our findings reveal a unique mechanism of elucidating how Brucella regulates host cell apoptosis and promotes its proliferation through the secretion of effector proteins.
Collapse
Affiliation(s)
- Ruiqi Lin
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Ang Li
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Yuzhuo Li
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Ruitong Shen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Fangyuan Du
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Min Zheng
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Xiaoyue Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Verbeke J, Fayt Y, Martin L, Yilmaz O, Sedzicki J, Reboul A, Jadot M, Renard P, Dehio C, Renard H, Letesson J, De Bolle X, Arnould T. Host cell egress of Brucella abortus requires BNIP3L-mediated mitophagy. EMBO J 2023; 42:e112817. [PMID: 37232029 PMCID: PMC10350838 DOI: 10.15252/embj.2022112817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Youri Fayt
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Lisa Martin
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Oya Yilmaz
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Angéline Reboul
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Michel Jadot
- Research Unit in Molecular Physiology (URPhyM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Patricia Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Henri‐François Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Jean‐Jacques Letesson
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Thierry Arnould
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| |
Collapse
|
6
|
Verbeke J, De Bolle X, Arnould T. To eat or not to eat mitochondria? How do host cells cope with mitophagy upon bacterial infection? PLoS Pathog 2023; 19:e1011471. [PMID: 37410705 DOI: 10.1371/journal.ppat.1011471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Mitochondria fulfil a plethora of cellular functions ranging from energy production to regulation of inflammation and cell death control. The fundamental role of mitochondria makes them a target of choice for invading pathogens, with either an intracellular or extracellular lifestyle. Indeed, the modulation of mitochondrial functions by several bacterial pathogens has been shown to be beneficial for bacterial survival inside their host. However, so far, relatively little is known about the importance of mitochondrial recycling and degradation pathways through mitophagy in the outcome (success or failure) of bacterial infection. On the one hand, mitophagy could be considered as a defensive response triggered by the host upon infection to maintain mitochondrial homeostasis. However, on the other hand, the pathogen itself may initiate the host mitophagy to escape from mitochondrial-mediated inflammation or antibacterial oxidative stress. In this review, we will discuss the diversity of various mechanisms of mitophagy in a general context, as well as what is currently known about the different bacterial pathogens that have developed strategies to manipulate the host mitophagy.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Kambarev S, Borghesan E, Miller CN, Myeni S, Celli J. The Brucella abortus Type IV Effector BspA Inhibits MARCH6-Dependent ERAD To Promote Intracellular Growth. Infect Immun 2023; 91:e0013023. [PMID: 37129527 PMCID: PMC10187129 DOI: 10.1128/iai.00130-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Brucella abortus, the intracellular causative agent of brucellosis, relies on type IV secretion system (T4SS) effector-mediated modulation of host cell functions to establish a replicative niche, the Brucella-containing vacuole (BCV). Brucella exploits the host's endocytic, secretory, and autophagic pathways to modulate the nature and function of its vacuole from an endocytic BCV (eBCV) to an endoplasmic reticulum (ER)-derived replicative BCV (rBCV) to an autophagic egress BCV (aBCV). A role for the host ER-associated degradation pathway (ERAD) in the B. abortus intracellular cycle was recently uncovered, as it is enhanced by the T4SS effector BspL to control the timing of aBCV-mediated egress. Here, we show that the T4SS effector BspA also interferes with ERAD, yet to promote B. abortus intracellular proliferation. BspA was required for B. abortus replication in bone marrow-derived macrophages and interacts with membrane-associated RING-CH-type finger 6 (MARCH6), a host E3 ubiquitin ligase involved in ERAD. Pharmacological inhibition of ERAD and small interfering RNA (siRNA) depletion of MARCH6 did not affect the replication of wild-type B. abortus but rescued the replication defect of a bspA deletion mutant, while depletion of the ERAD component UbxD8 affected replication of B. abortus and rescued the replication defect of the bspA mutant. BspA affected the degradation of ERAD substrates and destabilized the MARCH6 E3 ligase complex. Taken together, these findings indicate that BspA inhibits the host ERAD pathway via targeting of MARCH6 to promote B. abortus intracellular growth. Our data reveal that targeting ERAD components by type IV effectors emerges as a multifaceted theme in Brucella pathogenesis.
Collapse
Affiliation(s)
- Stanimir Kambarev
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Cheryl N. Miller
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
8
|
Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat Commun 2023; 14:102. [PMID: 36609656 PMCID: PMC9823007 DOI: 10.1038/s41467-022-35763-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection. By sequestering SENP3, the effectors promote cytoplasmic accumulation of nucleolar AAA-ATPase NVL and ribosomal protein L5 (RPL5) in effector-enriched structures in the vicinity of replicating bacteria. The shuttling of ribosomal biogenesis-associated nucleolar proteins is inhibited by SENP3 and requires the autophagy-initiation protein Beclin1 and the SUMO-E3 ligase PIAS3. Our results highlight a nucleomodulatory function of two Brucella effectors and reveal that SENP3 is a crucial regulator of the subcellular localisation of nucleolar proteins during Brucella infection, promoting intracellular replication of the pathogen.
Collapse
|
9
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
10
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021; 23:e8. [PMID: 34841746 PMCID: PMC8799945 DOI: 10.4142/jvs.21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. OBJECTIVES To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. METHODS Constructed Brucella abortus BspJ gene deletion strain (B. abortus ΔBspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. RESULTS BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. CONCLUSIONS BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
11
|
Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J 2021; 40:e107664. [PMID: 34423453 PMCID: PMC8488576 DOI: 10.15252/embj.2021107664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.
Collapse
Affiliation(s)
- Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Erin P Smith
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kelsey Binder
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.,Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
12
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|