1
|
Tobias PA, Downs J, Epaina P, Singh G, Park RF, Edwards RJ, Brugman E, Zulkifli A, Muhammad J, Purwantara A, Guest DI. Parental assigned chromosomes for cultivated cacao provides insights into genetic architecture underlying resistance to vascular streak dieback. THE PLANT GENOME 2024; 17:e20524. [PMID: 39406693 PMCID: PMC11628906 DOI: 10.1002/tpg2.20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/20/2024] [Indexed: 12/11/2024]
Abstract
Diseases of Theobroma cacao L. (Malvaceae) disrupt cocoa bean supply and economically impact growers. Vascular streak dieback (VSD), caused by Ceratobasidium theobromae, is a new encounter disease of cacao currently contained to southeast Asia and Melanesia. Resistance to VSD has been tested with large progeny trials in Sulawesi, Indonesia, and in Papua New Guinea with the identification of informative quantitative trait loci (QTLs). Using a VSD susceptible progeny tree (clone 26), derived from a resistant and susceptible parental cross, we assembled the genome to chromosome-level and discriminated alleles inherited from either resistant or susceptible parents. The parentally phased genomes were annotated for all predicted genes and then specifically for resistance genes of the nucleotide-binding site leucine-rich repeat class (NLR). On investigation, we determined the presence of NLR clusters and other potential disease response gene candidates in proximity to informative QTLs. We identified structural variants within NLRs inherited from parentals. We present the first diploid, fully scaffolded, and parentally phased genome resource for T. cacao L. and provide insights into the genetics underlying resistance and susceptibility to VSD.
Collapse
Affiliation(s)
- Peri A. Tobias
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Jacob Downs
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Peter Epaina
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
- Cocoa Board of Papua New GuineaKokopoPapua New Guinea
| | - Gurpreet Singh
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Richard J. Edwards
- Minderoo OceanOmics Centre at UWA, Oceans InstituteThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Eirene Brugman
- Cocoa Research Center Faculty of AgricultureUniversitas HasanuddinMakassarIndonesia
| | | | - Junaid Muhammad
- Cocoa Research Center Faculty of AgricultureUniversitas HasanuddinMakassarIndonesia
| | | | - David I. Guest
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
2
|
Madhuprakash J, Toghani A, Contreras MP, Posbeyikian A, Richardson J, Kourelis J, Bozkurt TO, Webster MW, Kamoun S. A disease resistance protein triggers oligomerization of its NLR helper into a hexameric resistosome to mediate innate immunity. SCIENCE ADVANCES 2024; 10:eadr2594. [PMID: 39504373 PMCID: PMC11540030 DOI: 10.1126/sciadv.adr2594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
NRCs are essential helper NLR (nucleotide-binding domain and leucine-rich repeat) proteins that execute immune responses triggered by sensor NLRs. The resting state of NbNRC2 was recently shown to be a homodimer, but the sensor-activated state remains unclear. Using cryo-EM, we determined the structure of sensor-activated NbNRC2, which forms a hexameric inflammasome-like resistosome. Mutagenesis of the oligomerization interface abolished immune signaling, confirming the functional significance of the NbNRC2 resistosome. Comparative structural analyses between the resting state homodimer and sensor-activated homohexamer revealed substantial rearrangements, providing insights into NLR activation mechanisms. Furthermore, structural comparisons between NbNRC2 hexamer and previously reported CC-NLR pentameric assemblies revealed features allowing an additional protomer integration. Using the NbNRC2 hexamer structure, we assessed the recently released AlphaFold 3 for predicting activated CC-NLR oligomers, revealing high-confidence modeling of NbNRC2 and other CC-NLR amino-terminal α1 helices, a region proven difficult to resolve structurally. Overall, our work sheds light on NLR activation mechanisms and expands understanding of NLR structural diversity.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andres Posbeyikian
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jake Richardson
- Bioimaging Facility, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Michael W. Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
3
|
Selvaraj M, Toghani A, Pai H, Sugihara Y, Kourelis J, Yuen ELH, Ibrahim T, Zhao H, Xie R, Maqbool A, De la Concepcion JC, Banfield MJ, Derevnina L, Petre B, Lawson DM, Bozkurt TO, Wu CH, Kamoun S, Contreras MP. Activation of plant immunity through conversion of a helper NLR homodimer into a resistosome. PLoS Biol 2024; 22:e3002868. [PMID: 39423240 PMCID: PMC11524475 DOI: 10.1371/journal.pbio.3002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | | | - He Zhao
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | | | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P. Contreras
- The Sainsbury Laboratory, University of East Anglia; Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Liu F, Yang Z, Wang C, You Z, Martin R, Qiao W, Huang J, Jacob P, Dangl JL, Carette JE, Luan S, Nogales E, Staskawicz BJ. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 2024; 187:4877-4889.e15. [PMID: 39094568 PMCID: PMC11380581 DOI: 10.1016/j.cell.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zhang You
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Goh FJ, Huang CY, Derevnina L, Wu CH. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages. THE PLANT CELL 2024; 36:3399-3418. [PMID: 38922300 PMCID: PMC11371147 DOI: 10.1093/plcell/koae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.
Collapse
Affiliation(s)
- Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402202, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
7
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Huang CY, Huang YS, Sugihara Y, Wang HY, Huang LT, Lopez-Agudelo JC, Chen YF, Lin KY, Chiang BJ, Toghani A, Kourelis J, Wang CH, Derevnina L, Wu CH. Subfunctionalization of NRC3 altered the genetic structure of the Nicotiana NRC network. PLoS Genet 2024; 20:e1011402. [PMID: 39264953 PMCID: PMC11421798 DOI: 10.1371/journal.pgen.1011402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/24/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.
Collapse
Affiliation(s)
- Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Seng Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Iwate Biotechnology Research Center, Iwate, Japan
| | - Hung-Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lo-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Feng Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Bing-Jen Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Lida Derevnina
- Crop Science Center, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Ma S, An C, Lawson AW, Cao Y, Sun Y, Tan EYJ, Pan J, Jirschitzka J, Kümmel F, Mukhi N, Han Z, Feng S, Wu B, Schulze-Lefert P, Chai J. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. Nature 2024; 632:869-876. [PMID: 38866053 PMCID: PMC11338831 DOI: 10.1038/s41586-024-07668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins play a pivotal role in plant immunity by recognizing pathogen effectors1,2. Maintaining a balanced immune response is crucial, as excessive NLR expression can lead to unintended autoimmunity3,4. Unlike most NLRs, the plant NLR required for cell death 2 (NRC2) belongs to a small NLR group characterized by constitutively high expression without self-activation5. The mechanisms underlying NRC2 autoinhibition and activation are not yet understood. Here we show that Solanum lycopersicum (tomato) NRC2 (SlNRC2) forms dimers and tetramers and higher-order oligomers at elevated concentrations. Cryo-electron microscopy shows an inactive conformation of SlNRC2 in these oligomers. Dimerization and oligomerization not only stabilize the inactive state but also sequester SlNRC2 from assembling into an active form. Mutations at the dimeric or interdimeric interfaces enhance pathogen-induced cell death and immunity in Nicotiana benthamiana. The cryo-electron microscopy structures unexpectedly show inositol hexakisphosphate (IP6) or pentakisphosphate (IP5) bound to the inner surface of the C-terminal leucine-rich repeat domain of SlNRC2, as confirmed by mass spectrometry. Mutations at the inositol phosphate-binding site impair inositol phosphate binding of SlNRC2 and pathogen-induced SlNRC2-mediated cell death in N. benthamiana. Our study indicates a negative regulatory mechanism of NLR activation and suggests inositol phosphates as cofactors of NRCs.
Collapse
Affiliation(s)
- Shoucai Ma
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Xianghu Laboratory, Hangzhou, China.
| | - Chunpeng An
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W Lawson
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yu Cao
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yue Sun
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Eddie Yong Jun Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jinheng Pan
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jan Jirschitzka
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Florian Kümmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nitika Mukhi
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Shan Feng
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Contreras MP, Pai H, Thompson R, Marchal C, Claeys J, Adachi H, Kamoun S. The nucleotide-binding domain of NRC-dependent disease resistance proteins is sufficient to activate downstream helper NLR oligomerization and immune signaling. THE NEW PHYTOLOGIST 2024; 243:345-361. [PMID: 38757730 DOI: 10.1111/nph.19818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor-helper signaling are not known. Here, we used Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana to show that the nucleotide-binding (NB) domain within the NB-ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi-amr1, Rpi-amr3 (oomycete resistance) and Sw-5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N-terminal domains and reveal a signaling activity for the NB domain of NRC-dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors.
Collapse
Affiliation(s)
- Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rebecca Thompson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jules Claeys
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
12
|
Gravot A, Liégard B, Quadrana L, Veillet F, Aigu Y, Bargain T, Bénéjam J, Lariagon C, Lemoine J, Colot V, Manzanares-Dauleux MJ, Jubault M. Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. PLANT COMMUNICATIONS 2024; 5:100824. [PMID: 38268192 PMCID: PMC11121752 DOI: 10.1016/j.xplc.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.
Collapse
Affiliation(s)
- Antoine Gravot
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Benjamin Liégard
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | - Florian Veillet
- IGEPP INRAE, Institut Agro, Université de Rennes, 29260 Ploudaniel, France
| | - Yoann Aigu
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Tristan Bargain
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Juliette Bénéjam
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | | | - Jocelyne Lemoine
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | | | - Mélanie Jubault
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France.
| |
Collapse
|
13
|
Dodds PN, Chen J, Outram MA. Pathogen perception and signaling in plant immunity. THE PLANT CELL 2024; 36:1465-1481. [PMID: 38262477 PMCID: PMC11062475 DOI: 10.1093/plcell/koae020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.
Collapse
Affiliation(s)
- Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Jian Chen
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Megan A Outram
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
16
|
Sun Y, Liu F, Zeng M, Zhang X, Cui Y, Chen Z, Wang L, Xu Y, Wu J, Guo S, Dong X, Dong S, Wang Y, Wang Y. The ETI-dependent receptor-like kinase 1 positively regulates effector-triggered immunity by stabilizing NLR-required for cell death 4 in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2024; 242:576-591. [PMID: 38362937 DOI: 10.1111/nph.19596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Cui
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengya Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Wang W, Cheng HY, Zhou JM. New insight into Ca 2+ -permeable channel in plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:623-631. [PMID: 38289015 DOI: 10.1111/jipb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Calcium ions (Ca2+ ) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+ -permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+ -permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+ -permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
18
|
Zeng Y, Zheng Z, Hessler G, Zou K, Leng J, Bautor J, Stuttmann J, Xue L, Parker JE, Cui H. Arabidopsis PHYTOALEXIN DEFICIENT 4 promotes the maturation and nuclear accumulation of immune-related cysteine protease RD19. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1530-1546. [PMID: 37976211 DOI: 10.1093/jxb/erad454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.
Collapse
Affiliation(s)
- Yanhong Zeng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zichao Zheng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Giuliana Hessler
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Ke Zou
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junchen Leng
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Johannes Stuttmann
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115 Saint-Paul lez Durance, France
| | - Li Xue
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| | - Haitao Cui
- State Key Laboratory Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
19
|
Yang Y, Furzer OJ, Fensterle EP, Lin S, Zheng Z, Kim NH, Wan L, Dangl JL. Paired plant immune CHS3-CSA1 receptor alleles form distinct hetero-oligomeric complexes. Science 2024; 383:eadk3468. [PMID: 38359131 PMCID: PMC11298796 DOI: 10.1126/science.adk3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) analyzed to date oligomerize and form resistosomes upon activation to initiate immune responses. Some NLRs are encoded in tightly linked co-regulated head-to-head genes whose products function together as pairs. We uncover the oligomerization requirements for different Arabidopsis paired CHS3-CSA1 alleles. These pairs form resting-state heterodimers that oligomerize into complexes distinct from NLRs analyzed previously. Oligomerization requires both conserved and allele-specific features of the respective CHS3 and CSA1 Toll-like interleukin-1 receptor (TIR) domains. The receptor kinases BAK1 and BIRs inhibit CHS3-CSA1 pair oligomerization to maintain the CHS3-CSA1 heterodimer in an inactive state. Our study reveals that paired NLRs hetero-oligomerize and likely form a distinctive "dimer of heterodimers" and that structural heterogeneity is expected even among alleles of closely related paired NLRs.
Collapse
Affiliation(s)
- Yu Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oliver J. Furzer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eleanor P. Fensterle
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shu Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyu Zheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nak Hyun Kim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
21
|
Cloutier S, Edwards T, Zheng C, Booker HM, Islam T, Nabetani K, Kutcher HR, Molina O, You FM. Fine-mapping of a major locus for Fusarium wilt resistance in flax (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:27. [PMID: 38245903 PMCID: PMC10800302 DOI: 10.1007/s00122-023-04528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Fine-mapping of a locus on chromosome 1 of flax identified an S-lectin receptor-like kinase (SRLK) as the most likely candidate for a major Fusarium wilt resistance gene. Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. lini, is a devastating disease in flax. Genetic resistance can counteract this disease and limit its spread. To map major genes for Fusarium wilt resistance, a recombinant inbred line population of more than 700 individuals derived from a cross between resistant cultivar 'Bison' and susceptible cultivar 'Novelty' was phenotyped in Fusarium wilt nurseries at two sites for two and three years, respectively. The population was genotyped with 4487 single nucleotide polymorphism (SNP) markers. Twenty-four QTLs were identified with IciMapping, 18 quantitative trait nucleotides with 3VmrMLM and 108 linkage disequilibrium blocks with RTM-GWAS. All models identified a major QTL on chromosome 1 that explained 20-48% of the genetic variance for Fusarium wilt resistance. The locus was estimated to span ~ 867 Kb but included a ~ 400 Kb unresolved region. Whole-genome sequencing of 'CDC Bethune', 'Bison' and 'Novelty' produced ~ 450 Kb continuous sequences of the locus. Annotation revealed 110 genes, of which six were considered candidate genes. Fine-mapping with 12 SNPs and 15 Kompetitive allele-specific PCR (KASP) markers narrowed down the interval to ~ 69 Kb, which comprised the candidate genes Lus10025882 and Lus10025891. The latter, a G-type S-lectin receptor-like kinase (SRLK) is the most likely resistance gene because it is the only polymorphic one. In addition, Fusarium wilt resistance genes previously isolated in tomato and Arabidopsis belonged to the SRLK class. The robust KASP markers can be used in marker-assisted breeding to select for this major Fusarium wilt resistance locus.
Collapse
Affiliation(s)
- S Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - T Edwards
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - C Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - H M Booker
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- Department of Plant Agriculture, Ontario Agricultural College, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - T Islam
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - K Nabetani
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - H R Kutcher
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - O Molina
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - F M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
22
|
Liu F, Yang Z, Wang C, Martin R, Qiao W, Carette JE, Luan S, Nogales E, Staskawicz B. The activated plant NRC4 immune receptor forms a hexameric resistosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.571367. [PMID: 38187616 PMCID: PMC10769213 DOI: 10.1101/2023.12.18.571367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Innate immune responses against microbial pathogens in both plants and animals are regulated by intracellular receptors known as Nucleotide-binding Leucine-rich Repeats (NLR) proteins. In plants, these NLRs play a crucial role in recognizing pathogen effectors, thereby initiating the activation of immune defense mechanisms. Notably, certain NLRs serve as "helper" NLR immune receptors (hNLR), working in tandem with "sensor" NLR immune receptors (sNLR) counterparts to orchestrate downstream signaling events to express disease resistance. In this study, we reconstituted and determined the cryo-EM structure of the hNLR required for cell death 4 (NRC4) resistosome. The auto-active NRC4 formed a previously unanticipated hexameric configuration, triggering immune responses associated with Ca 2+ influx into the cytosol. Furthermore, we uncovered a dodecameric state of NRC4, where the coil-coil (CC) domain is embedded within the complex, suggesting an inactive state, and expanding our understanding of the regulation of plant immune responses. One Sentence Summary The hexameric NRC4 resistosome mediates cell death associated with cytosolic Ca 2+ influx.
Collapse
|
23
|
Zhang N, Gan J, Carneal L, González-Tobón J, Filiatrault M, Martin GB. Helper NLRs Nrc2 and Nrc3 act codependently with Prf/Pto and activate MAPK signaling to induce immunity in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:7-22. [PMID: 37844152 DOI: 10.1111/tpj.16502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Plant intracellular immune receptors, primarily nucleotide-binding, leucine-rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR-triggered immunity (NTI). Recently, 'sensor' NLRs have been reported to function with 'helper' NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto-mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild-type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf-/Pto-mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto-mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild-type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR-mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Joyce Gan
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| | - Lauren Carneal
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Melanie Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
24
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
26
|
Chia K, Carella P. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses. THE NEW PHYTOLOGIST 2023; 240:496-501. [PMID: 37525357 PMCID: PMC10952240 DOI: 10.1111/nph.19170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are important intracellular immune receptors that activate robust plant immune responses upon detecting pathogens. Canonical NLRs consist of a conserved tripartite architecture that includes a central regulatory nucleotide-binding domain, C-terminal leucine-rich repeats, and variable N-terminal domains that directly participate in immune execution. In flowering plants, the vast majority of NLR N-terminal domains belong to the coiled-coil, Resistance to Powdery Mildew 8, or Toll/interleukin-1 receptor subfamilies, with recent structural and biochemical studies providing detailed mechanistic insights into their functions. In this insight review, we focus on the immune-related biochemistries of known plant NLR N-terminal domains and discuss the evolutionary diversity of atypical NLR domains in nonflowering plants. We further contrast these observations against the known diversity of NLR-related receptors from microbes to metazoans across the tree of life.
Collapse
Affiliation(s)
- Khong‐Sam Chia
- Cell and Developmental BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| | - Philip Carella
- Cell and Developmental BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| |
Collapse
|
27
|
Piau M, Schmitt-Keichinger C. The Hypersensitive Response to Plant Viruses. Viruses 2023; 15:2000. [PMID: 37896777 PMCID: PMC10612061 DOI: 10.3390/v15102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Plant proteins with domains rich in leucine repeats play important roles in detecting pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been involved in response to viruses. In the present review we report on the progress that has been achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a special focus on our current understanding of the hypersensitive response.
Collapse
|
28
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
29
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
30
|
Wang Z, Liu X, Yu J, Yin S, Cai W, Kim NH, El Kasmi F, Dangl JL, Wan L. Plasma membrane association and resistosome formation of plant helper immune receptors. Proc Natl Acad Sci U S A 2023; 120:e2222036120. [PMID: 37523563 PMCID: PMC10410763 DOI: 10.1073/pnas.2222036120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023] Open
Abstract
Intracellular plant immune receptors, termed NLRs (Nucleotide-binding Leucine-rich repeat Receptors), confer effector-triggered immunity. Sensor NLRs are responsible for pathogen effector recognition. Helper NLRs function downstream of sensor NLRs to transduce signaling and induce cell death and immunity. Activation of sensor NLRs that contain TIR (Toll/interleukin-1receptor) domains generates small molecules that induce an association between a downstream heterodimer signalosome of EDS1 (EnhancedDisease Susceptibility 1)/SAG101 (Senescence-AssociatedGene 101) and the helper NLR of NRG1 (NRequired Gene 1). Autoactive NRG1s oligomerize and form calcium signaling channels largely localized at the plasma membrane (PM). The molecular mechanisms of helper NLR PM association and effector-induced NRG1 oligomerization are not well characterized. We demonstrate that helper NLRs require positively charged residues in their N-terminal domains for phospholipid binding and PM association before and after activation, despite oligomerization and conformational changes that accompany activation. We demonstrate that effector activation of a TIR-containing sensor NLR induces NRG1 oligomerization at the PM and that the cytoplasmic pool of EDS1/SAG101 is critical for cell death function. EDS1/SAG101 cannot be detected in the oligomerized NRG1 resistosome, suggesting that additional unknown triggers might be required to induce the dissociation of EDS1/SAG101 from the previously described NRG1/EDS1/SAG101 heterotrimer before subsequent NRG1 oligomerization. Alternatively, the conformational changes resulting from NRG1 oligomerization abrogate the interface for EDS1/SAG101 association. Our data provide observations regarding dynamic PM association during helper NLR activation and underpin an updated model for effector-induced NRG1 resistosome formation.
Collapse
Affiliation(s)
- Zaiqing Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Xiaoxiao Liu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jie Yu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Shuining Yin
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Wenjuan Cai
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Nak Hyun Kim
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Farid El Kasmi
- Centre for Plant Molecular Biology (ZMBP), University of Tubingen, 72076Tubingen, Germany
| | - Jeffery L. Dangl
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
31
|
Chai J, Song W, Parker JE. New Biochemical Principles for NLR Immunity in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:468-475. [PMID: 37697447 DOI: 10.1094/mpmi-05-23-0073-hh] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His 'gene-for-gene' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biochemistry, University of Cologne, Cologne 50674, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wen Song
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| |
Collapse
|
32
|
Liu Y, Zhang YM, Tang Y, Chen JQ, Shao ZQ. The evolution of plant NLR immune receptors and downstream signal components. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102363. [PMID: 37094492 DOI: 10.1016/j.pbi.2023.102363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Along with the emergence of green plants on this planet one billion years ago, the nucleotide binding site leucine-rich repeat (NLR) gene family originated and diverged into at least three subclasses. Two of them, with either characterized N-terminal toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, serve as major types of immune receptor of effector-triggered immunity (ETI) in plants, whereas the one having a N-terminal Resistance to powdery mildew8 (RPW8) domain, functions as signal transfer component to them. In this review, we briefly summarized the history of identification of diverse NLR subclasses across Viridiplantae lineages during the establishment of NLR category, and highlighted recent advances on the evolution of NLR genes and several key downstream signal components under the background of ecological adaption.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Yao Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Contreras MP, Pai H, Selvaraj M, Toghani A, Lawson DM, Tumtas Y, Duggan C, Yuen ELH, Stevenson CEM, Harant A, Maqbool A, Wu CH, Bozkurt TO, Kamoun S, Derevnina L. Resurrection of plant disease resistance proteins via helper NLR bioengineering. SCIENCE ADVANCES 2023; 9:eadg3861. [PMID: 37134163 PMCID: PMC10156107 DOI: 10.1126/sciadv.adg3861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.
Collapse
Affiliation(s)
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Yasin Tumtas
- Department of Life Sciences, Imperial College, London, UK
| | - Cian Duggan
- Department of Life Sciences, Imperial College, London, UK
| | | | | | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Abbas Maqbool
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
34
|
Su J, Gassmann W. Cytoplasmic regulation of chloroplast ROS accumulation during effector-triggered immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1127833. [PMID: 36794218 PMCID: PMC9922995 DOI: 10.3389/fpls.2023.1127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggests that chloroplasts are an important battleground during various microbe-host interactions. Plants have evolved layered strategies to reprogram chloroplasts to promote de novo biosynthesis of defense-related phytohormones and the accumulation of reactive oxygen species (ROS). In this minireview, we will discuss how the host controls chloroplast ROS accumulation during effector-triggered immunity (ETI) at the level of selective mRNA decay, translational regulation, and autophagy-dependent formation of Rubisco-containing bodies (RCBs). We hypothesize that regulation at the level of cytoplasmic mRNA decay impairs the repair cycle of photosystem II (PSII) and thus facilitates ROS generation at PSII. Meanwhile, removing Rubisco from chloroplasts potentially reduces both O2 and NADPH consumption. As a consequence, an over-reduced stroma would further exacerbate PSII excitation pressure and enhance ROS production at photosystem I.
Collapse
|