1
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Feng F, Du F, Li Q, Zhang L, Yu X, Liu C. Understanding the ternary interaction of crop plants, fungal pathogens, and rhizobacteria in response to global warming. Microbiol Res 2025; 296:128113. [PMID: 40037109 DOI: 10.1016/j.micres.2025.128113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Climate change is altering the equilibrium of the Earth's biosphere, imposing unpredictable survival dynamics on terrestrial organisms. This includes the intricate interactions between fungal pathogens and crop plants, which are pivotal for global food security. Rising temperatures are expected to exacerbate the prevalence of crop-pathogenic fungi worldwide, yet research on how crops respond to this imminent threat remains limited. Here, we identified predominant potential pathogens and antagonistic bacteria in vegetable fields in Shandong Province, China, revealing the near-ubiquitous presence of Fusarium oxysporum and Bacillus species in sampled soils of cucumber, tomato, chili, and ginger. Through simulated warming experiments within a temperature range of 20-40 °C and an experimental period of 3 days, we investigated the ternary interaction among vegetables and isolated F. oxysporum strain 05, and Bacillus sp. strain 31. Elevated temperatures enhanced F. oxysporum biomass and virulence, yet also stimulated vegetables to allocate more nutrients via root exudates. This enriched rhizospheric antagonistic Bacillus populations, it also boosted the expression of antifungal lipopeptide biosynthetic genes (bamb and ItuA) and auxin production in Bacillus sp. strain 31. This enrichment promoted plant growth and maintained a relatively stable level of pathogenic fungi. Our study unveiled a nuanced and complex interplay among crop plants, fungal pathogens, and rhizobacteria, that could inform future agricultural practices, and advance our understanding of crop survival strategies to bolster crop resilience and safeguard global food security under ongoing climate change.
Collapse
Affiliation(s)
- Fayun Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210014, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fei Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210014, China
| | - Qiuling Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210014, China
| | - Leigang Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangyang Yu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210014, China.
| |
Collapse
|
3
|
Yusuf AG, Al-Yahya FA, Saleh AA, Abdel-Ghany AM. Optimizing greenhouse microclimate for plant pathology: challenges and cooling solutions for pathogen control in arid regions. FRONTIERS IN PLANT SCIENCE 2025; 16:1492760. [PMID: 39980477 PMCID: PMC11839725 DOI: 10.3389/fpls.2025.1492760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025]
Abstract
Crop production using greenhouse technology has become increasingly essential for intensifying agricultural output, particularly in regions with challenging climatic conditions. More so, greenhouses do not only support continuous crop supply but also provide a controlled environment crucial for studying plant-pathogen interaction. Likewise, pests and diseases are a constant threat to crop production, which requires innovative control methods. Providing a suitable and sustainable control method requires a detailed probe into the relationship between plants and biotic disturbance under controlled settings. Therefore this review explores the relationships between plants and pathogens, highlighting the impact of extreme greenhouse microclimates on plant pathology assays. Given the extreme weather conditions in the Arabian peninsula, the efficiency of greenhouses, especially during summer, is compromised without adequate cooling systems. This review discusses the current strategies employed to optimize greenhouse conditions in hot arid regions, aiming to enhance plant health by mitigating pathogen activity while minimizing energy, and water consumption. The review also provides an overview of how microclimatic parameters within greenhouses influence plant-pathogen dynamics, ensuring conditions that are conducive to managing both biotic and abiotic diseases. Additionally, the review aims to evaluate various cooling techniques available and most widely accepted in hot arid regions. Moreover, the performance indicators, principles, and effectiveness of each technique are discussed. Promising advances in the manipulations and combination of these techniques have proven to maintain an appropriate greenhouse microclimate with minimal resource use.
Collapse
Affiliation(s)
- Abdulmujib G. Yusuf
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Al-Yahya
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amgad A. Saleh
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2025; 68:1-13. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Hussain S, Suda H, Nguyen CH, Yan D, Toyota M, Yoshioka K, Nambara E. Calcium signaling triggers early high humidity responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2024; 121:e2416270121. [PMID: 39661062 DOI: 10.1073/pnas.2416270121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Plants need to adapt to fluctuating atmospheric humidity and respond to both high and low humidity. Despite our substantial understanding of plant responses to low humidity, molecular mechanisms underlying the high humidity (HH) response are much less well understood. In this study, we investigated early responses to HH in Arabidopsis. Expression of CYP707A3, encoding an abscisic acid (ABA) 8'-hydroxylase, is induced by HH within 10 min, which leads to a decrease in foliar ABA level. We identified that the combined action of CAMTA3 and CAMTA2 transcription factors regulate this response. This regulation requires a calmodulin (CaM)-binding domain of CAMTA3. Transcriptomes of HH-regulated genes are enriched in those related to calcium signaling, including cyclic nucleotide-gated ion channels (CNGCs). Moreover, HH induces CNGC2- and CNGC4-mediated increases in cytosolic Ca2+ concentrations in leaves within a few minutes. We also found that CNGC2, CNGC4, and CAMTAs participate in HH-induced hyponastic movement of petioles. Taken together, our results indicate that CNGC2/CNGC4-Ca2+-CaM-CAMTA3/CAMTA2 acts as a primary regulatory module to trigger downstream HH responses.
Collapse
Affiliation(s)
- Saad Hussain
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Hiraku Suda
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Christine H Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Dawei Yan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- The Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- The Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S3B2, Canada
| |
Collapse
|
6
|
Thieron H, Krassini L, Kwon S, Fricke S, Nasfi S, Oberkofler L, Ruf A, Kehr J, Kogel K, Weiberg A, Feldbrügge M, Robatzek S, Panstruga R. Practical advice for extracellular vesicle isolation in plant-microbe interactions: Concerns, considerations, and conclusions. J Extracell Vesicles 2024; 13:e70022. [PMID: 39665314 PMCID: PMC11635479 DOI: 10.1002/jev2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as novel key players in plant-microbe interactions. While it is immensely useful to draw on the established "minimal information for studies of extracellular vesicles" (MISEV) guidelines and precedents in mammalian systems, working with plants and their associated microbes poses specific challenges. To navigate researchers through these obstacles, we offer detailed step-by-step suggestions for those embarking on EV research in the context of plant-microbe interactions. The advice is based on recent publications and our collective experience from the diverse plant and microbe systems studied in a dedicated research consortium. We provide considerations for experimental design, optimization, quality control, and recommendations on how to increase yield, purity, and reproducibility of EV isolation. With this perspective article, we aim not only to assist researchers in our field but also to promote discussions on plant and microbe EVs in the broader EV community.
Collapse
Affiliation(s)
- Hannah Thieron
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Laura Krassini
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Sebastian Fricke
- Institute of Plant Science and Microbiology, Department of BiologyUniversität HamburgHamburgGermany
| | - Sabrine Nasfi
- Institute of Phytopathology, Research Centre for BioSystemsLand Use and Nutrition, Justus‐Liebig‐University GiessenGiessenGermany
| | - Lorenz Oberkofler
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Alessa Ruf
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, Department of BiologyUniversität HamburgHamburgGermany
| | - Karl‐Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystemsLand Use and Nutrition, Justus‐Liebig‐University GiessenGiessenGermany
| | - Arne Weiberg
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Silke Robatzek
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Ralph Panstruga
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| |
Collapse
|
7
|
Yang J, Jia S, Li T, Zhang J, Zhang Y, Hao J, Zhao J. Delayed Sowing Reduced Verticillium Wilt by Altering Soil Temperature and Humidity to Enhance Beneficial Rhizosphere Bacteria of Sunflower. Microorganisms 2024; 12:2416. [PMID: 39770619 PMCID: PMC11676687 DOI: 10.3390/microorganisms12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. Soil was collected from multiple locations with different sowing dates to understand the underlying biological mechanisms driving this phenomenon. The soil bacterial community was characterized through 16S rRNA gene amplicon sequencing performed on the Illumina MiSeq platform, followed by comprehensive bioinformatics analysis. Microsclerotia numbers in soil were detected using both NP-10 selective medium and quantitative polymerase chain reaction (qPCR). By delaying the sowing date, the number of microsclerotia in soil and the biomass of V. dahliae colonized inside sunflower roots were reduced during the early developmental stages (V2-V6) of sunflowers. Amplicon sequencing revealed an increased abundance of bacterial genera, such as Pseudomonas, Azoarcus, and Bacillus in soil samples collected from delayed sowing plots. Five bacterial strains isolated from the delayed sowing plot exhibited strong antagonistic effects against V. dahliae. The result of the pot experiments indicated that supplying two different synthetic communities (SynComs) in the pot did increase the control efficiencies on SVW by 19.08% and 37.82% separately. Additionally, soil temperature and humidity across different sowing dates were also monitored, and a significant correlation between disease severity and environmental factors was observed. In conclusion, delayed sowing appears to decrease microsclerotia levels by recruiting beneficial rhizosphere bacteria, thereby reducing the severity of SVW.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Shuo Jia
- Hinngan League Institute of Agricultural and Husbandry Sciences, Ulanhot 134000, China
| | - Tie Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Yuanyuan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of CAAS, Hohhot 010010, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| |
Collapse
|
8
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
9
|
Kou Y, Shi H, Qiu J, Tao Z, Wang W. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends Microbiol 2024; 32:1007-1020. [PMID: 38580607 DOI: 10.1016/j.tim.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Rice blast is a highly destructive crop disease that requires the interplay of three essential factors: the virulent blast fungus, the susceptible rice plant, and favorable environmental conditions. Although previous studies have focused mainly on the pathogen and rice, recent research has shed light on the molecular mechanisms by which the blast fungus and environmental conditions regulate host resistance and contribute to blast disease outbreaks. This review summarizes significant achievements in understanding the sophisticated modulation of blast resistance by Magnaporthe oryzae effectors and the dual regulatory mechanisms by which environmental conditions influence rice resistance and virulence of the blast fungus. Furthermore, it emphasizes potential strategies for developing blast-resistant rice varieties to effectively control blast disease.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Roussin-Léveillée C, Rossi CAM, Castroverde CDM, Moffett P. The plant disease triangle facing climate change: a molecular perspective. TRENDS IN PLANT SCIENCE 2024; 29:895-914. [PMID: 38580544 DOI: 10.1016/j.tplants.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.
Collapse
Affiliation(s)
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
11
|
Song W, Shao H, Zheng A, Zhao L, Xu Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3475. [PMID: 37836215 PMCID: PMC10574961 DOI: 10.3390/plants12193475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
A multitude of biotic and abiotic stress factors do harm to plants by bringing about diseases and inhibiting normal growth and development. As a pivotal signaling molecule, salicylic acid (SA) plays crucial roles in plant tolerance responses to both biotic and abiotic stresses, thereby maintaining plant normal growth and improving yields under stress. In view of this, this paper mainly discusses the role of SA in both biotic and abiotic stresses of plants. SA regulates the expression of genes involved in defense signaling pathways, thus enhancing plant immunity. In addition, SA mitigates the negative effects of abiotic stresses, and acts as a signaling molecule to induce the expression of stress-responsive genes and the synthesis of stress-related proteins. In addition, SA also improves certain yield-related photosynthetic indexes, thereby enhancing crop yield under stress. On the other hand, SA acts with other signaling molecules, such as jasmonic acid (JA), auxin, ethylene (ETH), and so on, in regulating plant growth and improving tolerance under stress. This paper reviews recent advances in SA's roles in plant stress tolerance, so as to provide theoretical references for further studies concerning the decryption of molecular mechanisms for SA's roles and the improvement of crop management under stress.
Collapse
Affiliation(s)
- Weiyi Song
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224002, China
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), Nanjing 210014, China
| | - Aizhen Zheng
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Longfei Zhao
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Yajun Xu
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| |
Collapse
|