1
|
Aguilar-Rodríguez J, Jakobson CM, Jarosz DF. The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective. J Mol Biol 2024; 436:168846. [PMID: 39481633 DOI: 10.1016/j.jmb.2024.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a "hub of hubs" that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Guarra F, Sciva C, Bonollo G, Pasala C, Chiosis G, Moroni E, Colombo G. Cracking the chaperone code through the computational microscope. Cell Stress Chaperones 2024; 29:626-640. [PMID: 39142378 PMCID: PMC11399801 DOI: 10.1016/j.cstres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.
Collapse
Affiliation(s)
| | | | | | - Chiranjeevi Pasala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC) - Italian National Research Council (CNR), Milano, Italy.
| | | |
Collapse
|
5
|
Castelli M, Bhattacharya K, Abboud E, Serapian SA, Picard D, Colombo G. Phosphorylation of the Hsp90 Co-Chaperone Hop Changes its Conformational Dynamics and Biological Function. J Mol Biol 2023; 435:167931. [PMID: 36572238 DOI: 10.1016/j.jmb.2022.167931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The molecular chaperones Hsp90 and Hsp70 and their regulatory co-chaperone Hop play a key role at the crossroads of the folding pathways of numerous client proteins by forming fine-tuned multiprotein complexes. Alterations of the biomolecules involved may functionally impact the chaperone machinery: here, we integrate simulations and experiments to unveil how Hop conformational fitness and interactions can be controlled by the perturbation of just one residue. Specifically, we unveil how mechanisms mediated by Hop residue Y354 control Hop open and closed states, which affect binding of Hsp70/Hsp90. Phosphorylation or mutation of Hop-Y354 are shown to favor structural ensembles that are indeed not optimal for stable interactions with Hsp90 and Hsp70. This disfavors cellular accumulation of the stringent Hsp90 clients glucocorticoid receptor and the viral tyrosine kinase v-Src, with detrimental effects on v-Src activity. Our results show how the post-translational modification of a specific residue in Hop provides a regulation mechanism for the larger chaperone complex of which it is part. In this framework, the effects of one single alteration are amplified at the cellular level through the perturbation of protein-interaction networks.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy. https://twitter.com/mat_castelli
| | - Kaushik Bhattacharya
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland. https://twitter.com/kaushik34371359
| | - Ernest Abboud
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 1211 Genève 4, Switzerland.
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Hsp70/Hsp90 Organising Protein (Hop): Coordinating Much More than Chaperones. Subcell Biochem 2023; 101:81-125. [PMID: 36520304 DOI: 10.1007/978-3-031-14740-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
7
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
8
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
9
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
10
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
11
|
Lackie RE, Marques-Lopes J, Ostapchenko VG, Good S, Choy WY, van Oosten-Hawle P, Pasternak SH, Prado VF, Prado MAM. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2020; 8:143. [PMID: 32825842 PMCID: PMC7441634 DOI: 10.1186/s40478-020-01013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023] Open
Abstract
Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer's Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3-42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada
| | - Jose Marques-Lopes
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
| | - Valeriy G Ostapchenko
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
| | - Sarah Good
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, Medical Sciences Building, 1151 Richmond St. N, London, N6A 5B7, Canada
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen H Pasternak
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
- St. Joseph's Health Care London-Parkwood Institute, St. Joseph's Hospital, 268 Grosvenor St Room A1-015, London, N6A 4V2, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, 1151 Richmond St, London, N6A 3K7, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada.
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Ontario, Canada.
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada.
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Ontario, Canada.
| |
Collapse
|
12
|
Zheng C, Atlas E, Lee HMT, Jao SLJ, Nguyen KCQ, Hall DH, Chalfie M. Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in Caenorhabditis elegans. Development 2020; 147:dev189886. [PMID: 32467239 PMCID: PMC7328132 DOI: 10.1242/dev.189886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
Abstract
Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.
Collapse
Affiliation(s)
- Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily Atlas
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
13
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
14
|
Chakraborty A, Edkins AL. Hop depletion reduces HSF1 levels and activity and coincides with reduced stress resilience. Biochem Biophys Res Commun 2020; 527:440-446. [PMID: 32334836 DOI: 10.1016/j.bbrc.2020.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023]
Abstract
Heat-shock factor 1 (HSF1) regulates the transcriptional response to stress and controls expression of molecular chaperones required for cell survival. Here we report that HSF1 is regulated by the abundance of the Hsp70-Hsp90 organizing protein (Hop/STIP1). HSF1 levels were significantly reduced in Hop-depleted HEK293T cells. HSF1 transcriptional activity at the Hsp70 promoter, and binding of a biotinylated HSE oligonucleotide under both basal and heat-shock conditions were significantly reduced. Hop-depleted HEK293T cells were more sensitive to the HSF1 inhibitor KRIBB11 and showed reduced short-term proliferation, and reduced long-term survival under basal and heat-shock conditions. HSF1 nuclear localization was reduced in response to heat-shock and the nuclear staining pattern in Hop-depleted cells was punctate. Taken together, these data suggest that Hop regulates HSF1 function under both basal and stress conditions through a mechanism involving changes in levels, activity and subcellular localization, and coincides with reduced cellular fitness.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
15
|
Lackie RE, Razzaq AR, Farhan SMK, Qiu LR, Moshitzky G, Beraldo FH, Lopes MH, Maciejewski A, Gros R, Fan J, Choy WY, Greenberg DS, Martins VR, Duennwald ML, Lerch JP, Soreq H, Prado VF, Prado MAM. Modulation of hippocampal neuronal resilience during aging by the Hsp70/Hsp90 co-chaperone STI1. J Neurochem 2019; 153:727-758. [PMID: 31562773 DOI: 10.1111/jnc.14882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. Cover Image for this issue: doi: 10.1111/jnc.14749.
Collapse
Affiliation(s)
- Rachel E Lackie
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Abdul R Razzaq
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, and The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Lily R Qiu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gilli Moshitzky
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Flavio H Beraldo
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Marilene H Lopes
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrzej Maciejewski
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jue Fan
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - David S Greenberg
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vilma R Martins
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hermona Soreq
- Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vania F Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Silva NSM, Bertolino-Reis DE, Dores-Silva PR, Anneta FB, Seraphim TV, Barbosa LRS, Borges JC. Structural studies of the Hsp70/Hsp90 organizing protein of Plasmodium falciparum and its modulation of Hsp70 and Hsp90 ATPase activities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140282. [PMID: 31525467 DOI: 10.1016/j.bbapap.2019.140282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70-1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Fátima B Anneta
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Thiago V Seraphim
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Griffith AA, Holmes W. Fine Tuning: Effects of Post-Translational Modification on Hsp70 Chaperones. Int J Mol Sci 2019; 20:ijms20174207. [PMID: 31466231 PMCID: PMC6747426 DOI: 10.3390/ijms20174207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
The discovery of heat shock proteins shaped our view of protein folding in the cell. Since their initial discovery, chaperone proteins were identified in all domains of life, demonstrating their vital and conserved functional roles in protein homeostasis. Chaperone proteins maintain proper protein folding in the cell by utilizing a variety of distinct, characteristic mechanisms to prevent aberrant intermolecular interactions, prevent protein aggregation, and lower entropic costs to allow for protein refolding. Continued study has found that chaperones may exhibit alternative functions, including maintaining protein folding during endoplasmic reticulum (ER) import and chaperone-mediated degradation, among others. Alternative chaperone functions are frequently controlled by post-translational modification, in which a given chaperone can switch between functions through covalent modification. This review will focus on the Hsp70 class chaperones and their Hsp40 co-chaperones, specifically highlighting the importance of post-translational control of chaperones. These modifications may serve as a target for therapeutic intervention in the treatment of diseases of protein misfolding and aggregation.
Collapse
Affiliation(s)
| | - William Holmes
- Rhode Island College, Biology Department, Providence, RI 02908, USA.
| |
Collapse
|
18
|
Nickel C, Horneff R, Heermann R, Neumann B, Jung K, Soll J, Schwenkert S. Phosphorylation of the outer membrane mitochondrial protein OM64 influences protein import into mitochondria. Mitochondrion 2019; 44:93-102. [DOI: 10.1016/j.mito.2018.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
19
|
Johnston CL, Marzano NR, van Oijen AM, Ecroyd H. Using Single-Molecule Approaches to Understand the Molecular Mechanisms of Heat-Shock Protein Chaperone Function. J Mol Biol 2018; 430:4525-4546. [PMID: 29787765 DOI: 10.1016/j.jmb.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/01/2023]
Abstract
The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.
Collapse
Affiliation(s)
- Caitlin L Johnston
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas R Marzano
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
20
|
Bhattacharya K, Bernasconi L, Picard D. Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Sci Rep 2018; 8:2801. [PMID: 29434293 PMCID: PMC5809404 DOI: 10.1038/s41598-018-21210-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Complex patterns of protein-protein interactions (PPInts) are involved in almost all cellular processes. This has stimulated the development of a wide range of methods to characterize PPInts in detail. Methods with fluorescence resonance energy transfer can be technically challenging and suffer from several limitations, which could be overcome by switching to luminescence resonance energy transfer (LRET) with lanthanide ions such as Tb3+. With LRET, energy transfer between PPInt partners works over a larger distance and with less topological constraints; moreover, the long-lived luminescence of lanthanides allows one to bypass the short-lived background fluorescence. We have developed a novel LRET method to investigate PPInts between partners expressed as fusion proteins with genetically encoded donor and acceptor moieties. Upon UV excitation of a tryptophan within a lanthanide binding peptide, the Tb3+ luminescence is harnessed to excite either a green or a red fluorescent protein. We demonstrate the usefulness of the LRET assay by applying it to analyze the interactions of the molecular chaperones HSP70 and HSP90 with their common co-chaperone HOP/Sti1. We recapitulate the previously described interaction specificities between the HSP70/HSP90 C-termini and tetratricopeptide repeat domains of HOP/Sti1 and demonstrate the impact of single point mutants on domain-domain interactions.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Département de Biologie Cellulaire, Université de Genève, 30 Quai Ernest-Ansermet, Sciences III, 1211 Genève 4, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, 30 Quai Ernest-Ansermet, Sciences III, 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 30 Quai Ernest-Ansermet, Sciences III, 1211 Genève 4, Switzerland.
| |
Collapse
|
21
|
Adão R, Zanphorlin LM, Lima TB, Sriranganadane D, Dahlström KM, Pinheiro GMS, Gozzo FC, Barbosa LRS, Ramos CHI. Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90. J Proteomics 2018; 191:191-201. [PMID: 29425735 DOI: 10.1016/j.jprot.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.
Collapse
Affiliation(s)
- Regina Adão
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Tatiani B Lima
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Dev Sriranganadane
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Käthe M Dahlström
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
22
|
Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun 2018; 9:265. [PMID: 29343704 PMCID: PMC5772613 DOI: 10.1038/s41467-017-02711-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
During the Hsp90-mediated chaperoning of protein kinases, the core components of the machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation states that regulate progression of the chaperone cycle. We show that Cdc37 phosphorylation at Y298 results in partial unfolding of the C-terminal domain and the population of folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only protein kinase clients. In summary, we find that by providing client class specificity, Hsp90 cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the post-translational modification landscape of Hsp90 in a client class-specific manner. The Hsp90 chaperone cycle is influenced by multiple phosphorylation events but their regulatory functions are poorly understood. Here, the authors show that phosphorylation and unfolding of cochaperone Cdc37 tailors the Hsp90 chaperone cycle by recruiting kinases that promote distinct phosphorylation patterns.
Collapse
|
23
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
24
|
Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochem J 2017; 474:1853-1866. [PMID: 28408431 DOI: 10.1042/bcj20161055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/27/2022]
Abstract
Stress-inducible phosphoprotein 1 (STIP1) is a cellular co-chaperone, which regulates heat-shock protein 70 (Hsp70) and Hsp90 activity during client protein folding. Members of the S100 family of dimeric calcium-binding proteins have been found to inhibit Hsp association with STIP1 through binding of STIP1 tetratricopeptide repeat (TPR) domains, possibly regulating the chaperone cycle. Here, we investigated the molecular basis of S100A1 binding to STIP1. We show that three S100A1 dimers associate with one molecule of STIP1 in a calcium-dependent manner. Isothermal titration calorimetry revealed that individual STIP1 TPR domains, TPR1, TPR2A and TPR2B, bind a single S100A1 dimer with significantly different affinities and that the TPR2B domain possesses the highest affinity for S100A1. S100A1 bound each TPR domain through a common binding interface composed of α-helices III and IV of each S100A1 subunit, which is only accessible following a large conformational change in S100A1 upon calcium binding. The TPR2B-binding site for S100A1 was predominately mapped to the C-terminal α-helix of TPR2B, where it is inserted into the hydrophobic cleft of an S100A1 dimer, suggesting a novel binding mechanism. Our data present the structural basis behind STIP1 and S100A1 complex formation, and provide novel insights into TPR module-containing proteins and S100 family member complexes.
Collapse
|
25
|
Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front Neurosci 2017; 11:254. [PMID: 28559789 PMCID: PMC5433227 DOI: 10.3389/fnins.2017.00254] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in mechanisms underlying protein misfolding in neurodegenerative diseases, with particular focus on AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada
| | - Andrzej Maciejewski
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Valeriy G Ostapchenko
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Jose Marques-Lopes
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondon, ON, Canada
| | - Vania F Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| | - Marco A M Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
26
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
27
|
Seo JH, Park JH, Lee EJ, Vo TTL, Choi H, Kim JY, Jang JK, Wee HJ, Lee HS, Jang SH, Park ZY, Jeong J, Lee KJ, Seok SH, Park JY, Lee BJ, Lee MN, Oh GT, Kim KW. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nat Commun 2016; 7:12882. [PMID: 27708256 PMCID: PMC5059642 DOI: 10.1038/ncomms12882] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress. The chaperone Hsp70 has a dual role, promoting both protein refolding and protein degradation. Seo and Park et al. show that Hsp70 acetylation enhances protein refolding after stress, and that subsequent deacetylation progressively promotes ubiquitin ligase binding and protein degradation.
Collapse
Affiliation(s)
- Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jun Yong Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jae Kyung Jang
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science &Technology, Gwangju 61005, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science &Technology, Gwangju 61005, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Seung-Hyeon Seok
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jin Young Park
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Bong Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Mi-Ni Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
28
|
Batista FA, Seraphim TV, Santos CA, Gonzaga MR, Barbosa LR, Ramos CH, Borges JC. Low sequence identity but high structural and functional conservation: The case of Hsp70/Hsp90 organizing protein (Hop/Sti1) of Leishmania braziliensis. Arch Biochem Biophys 2016; 600:12-22. [DOI: 10.1016/j.abb.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/16/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
|
29
|
A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Mol Cell Biol 2016; 36:1310-21. [PMID: 26884463 DOI: 10.1128/mcb.01099-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Hsp90 is the ATP-consuming core component of a very abundant molecular chaperone machine that handles a substantial portion of the cytosolic proteome. Rather than one machine, it is in fact an ensemble of molecular machines, since most mammalian cells express two cytosolic isoforms of Hsp90 and a subset of up to 40 to 50 cochaperones and regulate their interactions and functions by a variety of posttranslational modifications. We demonstrate that the Hsp90 ensemble is fundamentally remodeled during muscle differentiation and that this remodeling is not just a consequence of muscle differentiation but possibly one of the drivers to accompany and to match the vast proteomic changes associated with this process. As myoblasts differentiate into myotubes, Hsp90α disappears and only Hsp90β remains, which is the only isoform capable of interacting with the novel muscle-specific Hsp90 cochaperone Aarsd1L. Artificially maintaining Hsp90α or knocking down Aarsd1L expression interferes with the differentiation of C2C12 myotubes. During muscle differentiation, Aarsd1L replaces the more ubiquitous cochaperone p23 and in doing so dampens the activity of the glucocorticoid receptor, one of the Hsp90 clients relevant to muscle functions. This cochaperone switch protects muscle cells against the inhibitory effects of glucocorticoids and may contribute to preventing muscle wasting induced by excess glucocorticoids.
Collapse
|