1
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
2
|
Di-Iacovo N, Ferracchiato S, Pieroni S, Scopetti D, Castelli M, Piobbico D, Pierucci L, Gargaro M, Chiasserini D, Servillo G, Della-Fazia MA. HOPS/TMUB1 Enhances Apoptosis in TP53 Mutation-Independent Setting in Human Cancers. Int J Mol Sci 2024; 25:4600. [PMID: 38731819 PMCID: PMC11083489 DOI: 10.3390/ijms25094600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
TP53 mutations are prevalent in various cancers, yet the complexity of apoptotic pathway deregulation suggests the involvement of additional factors. HOPS/TMUB1 is known to extend the half-life of p53 under normal and stress conditions, implying a regulatory function. This study investigates, for the first time, the potential modulatory role of the ubiquitin-like-protein HOPS/TMUB1 in p53-mutants. A comprehensive analysis of apoptosis in the most frequent p53-mutants, R175, R248, and R273, in SKBR3, MIA PaCa2, and H1975 cells indicates that the overexpression of HOPS induces apoptosis at least equivalent to that caused by DNA damage. Immunoprecipitation assays confirm HOPS binding to p53-mutant forms. The interaction of HOPS/TMUB1 with p53-mutants strengthens its effect on the apoptotic cascade, showing a context-dependent gain or loss of function. Gene expression analysis of the MYC and TP63 genes shows that H1975 exhibit a gain-of-function profile, while SKBR3 promote apoptosis in a TP63-dependent manner. The TCGA data further corroborate HOPS/TMUB1's positive correlation with apoptotic genes BAX, BBC3, and NOXA1, underscoring its relevance in patient samples. Notably, singular TP53 mutations inadequately explain pathway dysregulation, emphasizing the need to explore additional contributing factors. These findings illuminate the intricate interplay among TP53 mutations, HOPS/TMUB1, and apoptotic pathways, providing valuable insights for targeted cancer interventions.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Simona Ferracchiato
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Stefania Pieroni
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Damiano Scopetti
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Marilena Castelli
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Danilo Piobbico
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Luca Pierucci
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Marco Gargaro
- Section of Biochemical and Health Sciences, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Giuseppe Servillo
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| |
Collapse
|
3
|
Grant B, Sundaram Buitrago PA, Mercado BC, Yajima M. Characterization of p53/p63/p73 and Myc expressions during embryogenesis of the sea urchin. Dev Dyn 2024; 253:333-350. [PMID: 37698352 DOI: 10.1002/dvdy.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.
Collapse
Affiliation(s)
- Blaine Grant
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Beatriz C Mercado
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Liu Y, Cai C, Wu K, Hu L. Transmembrane and Ubiquitin-Like Domain-Containing 1 Promotes Glioma Growth and Indicates Unfavorable Prognosis. Int J Genomics 2023; 2023:3318171. [PMID: 38148953 PMCID: PMC10751162 DOI: 10.1155/2023/3318171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023] Open
Abstract
Background Ubiquitin-related proteins have garnered increasing attention for their roles in tumorigenesis. Transmembrane and ubiquitin-like domain-containing 1 (TMUB1) is a recently discovered protein in the ubiquitin-like domain family, yet its involvement in glioma remains poorly understood. This study is aimed at investigating the functional significance and clinical relevance of TMUB1 in glioma. Methods We conducted a comprehensive analysis using two cohorts: a retrospective glioma cohort from our hospital and The Cancer Genome Atlas (TCGA) cohort. The mRNA levels of TMUB1 were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Clinical associations of TMUB1 in these cohorts were evaluated using correlation tests, chi-square tests, and survival analyses. Additionally, we performed TMUB1 knockdown in U87 and LN-229 human glioma cell lines, and cellular growth was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Our results revealed that TMUB1 expression was elevated in glioma tissues compared to normal brain tissues. Notably, lower TMUB1 expression correlated with favorable characteristics such as lower World Health Organization (WHO) grade and 1p/19q codeletion. Moreover, patients with higher TMUB1 levels in glioma tissues exhibited worse prognosis in both TCGA cohort and our retrospective cohort, underscoring its prognostic significance in gliomas. Cellular experiments demonstrated that TMUB1 silencing suppressed the growth of glioma cells. Conclusions TMUB1 emerges as a novel and clinically relevant prognostic biomarker for gliomas. Targeting TMUB1 holds promise as a potential strategy for glioma treatment. This study contributes valuable insights into the multifaceted role of TMUB1 in glioma pathogenesis and its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Yinggang Liu
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| | - Changcheng Cai
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| | - Ke Wu
- Department of Neurosurgery, Xichang People's Hospital, Xichang 615000, Sichuan, China
| | - Libo Hu
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| |
Collapse
|
5
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
6
|
Lu Y, Wang K, Peng Y, Zhang J, Ju Q, Xu Q, Ouyang M, He Z. TMUB1 expression is associated with the prognosis of colon cancer and immune cell infiltration. PeerJ 2023; 11:e16334. [PMID: 38025742 PMCID: PMC10658890 DOI: 10.7717/peerj.16334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background TMUB1 is a transmembrane protein involved in biological signaling and plays an important role in the stability and transcription of P53. However, its role in tumor remains unknown. Methods Using R language, the expression level of 33 cancer spectrum TMUB1 was analyzed by the public database TCGA, GEO and HPA, the differential expressed gene (DEG) screening and protein interaction (PPI) network was constructed, and the differential genes of TMUB1 in colon cancer were identified. The relevant signaling pathways were identified by gene functional annotation and enrichment analysis. The ssGSEA algorithm in GSVA were used for immune infiltration analysis. The Kaplan-Meier analysis, univariate and multivariate Cox regression analysis, nomogram and calibration map analysis were constructed to evaluate the correlation between TMUB1 expression and clinical prognosis. The expression levels of TMUB1 in intestinal cancer cell lines as well as in 10 intestinal cancer tissues were verified by qPCR experiments. Results Through the bioinformatics analysis of multiple databases and preliminary experimental studies, we found that the expression of TMUB1 was significantly increased in colon cancer tumors, and was correlated with the clinical N stage, pathological grade, lymphatic metastasis and BMI of colon cancer. TMUB1 may be involved in the regulation of the malignant progression of colon cancer. Meanwhile, patients with high expression of TMUB1 mRNA had worse OS and DSS, and TMUB1 expression was an independent prognostic factor for OS and DSS. It was further found that highly expressed TMUB1 tissues showed low levels of immune infiltration and stromal infiltration. Conclusion We reported the expression level of TMUB1 in colon cancer and analyzed its potential prognostic value in colon cancer through the bioinformatics analysis and preliminary experimental studies. The high expression of TMUB1 is a negative prognostic factor for colon cancer patients. TMUB1 may be a potential target for colon cancer.
Collapse
Affiliation(s)
- Yan Lu
- Guangdong Medical University, Dongguan, Guangdong Province, China
- GCP Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanhong Peng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinuo Ju
- Guangdong Country Garden School, Foshan, Guangdong Province, China
| | - Qihuan Xu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwei He
- Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
7
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Zhang X, Hu Y, Zhang Z, Zhang X, Liang L, Cui X, Wu Y, Hu F, Wu X. Inhibition of TMUB1 blocks apoptosis and NF-κB pathway-mediated inflammation in recurrent spontaneous abortion. Immun Inflamm Dis 2023; 11:e879. [PMID: 37249279 PMCID: PMC10214570 DOI: 10.1002/iid3.879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/20/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Approximately 50% of cases with recurrent spontaneous abortion (RSA) have unexplained etiology. Aberrant expression of transmembrane and ubiquitin-like domain containing 1 (TMUB1) is closely related to a series of diseases, including RSA. However, the function and underlying mechanism of TMUB1 in the occurrence of RSA has not been described. METHODS TMUB1 expression was detected in the placental villous tissues of 30 women with normal miscarriages and 12 women with RSA. The pregnant mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce abortion. Human chorionic trophoblast cells were treated with LPS. Pathological analysis of placental tissues was performed by hematoxylin and eosin staining. RESULTS TMUB1 was highly expressed in the placental villous tissues of RSA patients compared to the patients who underwent induced abortions. After LPS administration, the mice exhibited high embryo absorption and pathological alterations, as well as presented an increase in inflammation and apoptosis (the etiology of RSA induction) in placental tissues. Moreover, the upregulated expression of TMUB1 was also found in placental tissues of LPS-induced mice, and further investigation showed that TMUB1 deficiency blocked embryo loss as well as inhibited apoptotic rate and inflammation after LPS activation. Furthermore, we found that the loss of TMUB1 suppressed the phosphorylation of IkappaB kinase (IKK) α/β and attenuated cytoplasmic-nuclear translocation of nuclear factor-κB (NF-κB) p65 in LPS-induced cells. CONCLUSION Our results indicate that TMUB1 may involve in the modulation of apoptosis and NF-κB pathway-mediated inflammation in RSA. Therefore, TMUB1 may develop as a potential biomarker for RSA treatment.
Collapse
Affiliation(s)
- Xiuping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanjing Hu
- Department of Gynecologic OncologyTianjin Central Hospital of Gynecology ObstetricsTianjinChina
| | - Zhiping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueluo Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Lixia Liang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xiangrong Cui
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanxia Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Fen Hu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueqing Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| |
Collapse
|
9
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
10
|
Shi C, Wang Y, Wu M, Chen Y, Liu F, Shen Z, Wang Y, Xie S, Shen Y, Sang L, Zhang Z, Gao Z, Yang L, Qu L, Yang Z, He X, Guo Y, Pan C, Che J, Ju H, Liu J, Cai Z, Yan Q, Yu L, Wang L, Dong X, Xu P, Shao J, Liu Y, Li X, Wang W, Zhou R, Zhou T, Lin A. Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nat Commun 2022; 13:6951. [PMID: 36376293 PMCID: PMC9663433 DOI: 10.1038/s41467-022-34346-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.
Collapse
Affiliation(s)
- Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Minjie Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zheyuan Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yiran Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luojia Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chenghao Pan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huaiqiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luyang Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA, 92697, USA.
| | - Ruhong Zhou
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Shanghai Institute for Advanced Study, Zhejiang University, 201203, Shanghai, China.
- Department of Chemistry, Colombia University, New York City, NY, 10027, USA.
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
11
|
Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, Theisen DJ, Kim S, Castelli M, Xu CA, zu Hörste GM, Servillo G, Della Fazia MA, Mencarelli G, Ricciuti D, Padiglioni E, Giacchè N, Colliva C, Pellicciari R, Calvitti M, Zelante T, Fuchs D, Orabona C, Boon L, Bessede A, Colonna M, Puccetti P, Murphy TL, Murphy KM, Fallarino F. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 2022; 55:1032-1050.e14. [PMID: 35704993 PMCID: PMC9220322 DOI: 10.1016/j.immuni.2022.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlos G. Briseño
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chenling A. Xu
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | | | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Corresponding author
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Zhang B, Ma Y, Niu H, Liu Z. Overexpression of VPS16 correlates with tumor progression and chemoresistance in colorectal cancer. Biochem Biophys Res Commun 2022; 607:81-88. [DOI: 10.1016/j.bbrc.2022.03.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
13
|
Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ 2022; 29:722-736. [PMID: 34642466 PMCID: PMC8989948 DOI: 10.1038/s41418-021-00886-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
p53 is a classic tumor suppressor that functions in maintaining genome stability by inducing either cell arrest for damage repair or cell apoptosis to eliminate damaged cells in response to different types of stress. Posttranslational modifications (PTMs) of p53 are thought to be the most effective way for modulating of p53 activation. Here, we show that SIRT5 interacts with p53 and suppresses its transcriptional activity. Using mass spectrometric analysis, we identify a previously unknown PTM of p53, namely, succinylation of p53 at Lysine 120 (K120). SIRT5 mediates desuccinylation of p53 at K120, resulting in the suppression of p53 activation. Moreover, using double knockout mice (p53-/-Sirt5-/-), we validate that the suppression of p53 target gene expression and cell apoptosis upon DNA damage is dependent on cellular p53. Our study identifies a novel PTM of p53 that regulates its activation as well as reveals a new target of SIRT5 acting as a desuccinylase.
Collapse
|
14
|
Zhang P, Ma K, Ke X, Liu L, Li Y, Liu Y, Wang Y. Development and Validation of a Five-RNA-Based Signature and Identification of Candidate Drugs for Neuroblastoma. Front Genet 2021; 12:685646. [PMID: 34745201 PMCID: PMC8564070 DOI: 10.3389/fgene.2021.685646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NBL) originating from the sympathetic nervous system is the most prevalent solid tumor in infancy. Although there is sufficient variability in prognosis among different age pyramids, age-related gene expression profiles and biomarkers remain poorly explored. The present study aimed to construct a signature based on differentially expressed genes (DEGs) between two age groups in NBL. Univariate Cox regression, multivariate Cox regression, and LASSO analyses were used to identify the optimal prognostic factors. The prediction ability of the model was assessed using the receiver operating characteristic (ROC) curve and C-index. Functional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology databases. A total of 1,160 DEGs were identified between the two groups, and 204 DEGs impacted the survival of NBL. Functional enrichment analysis revealed that the DEGs were involved in retinol metabolism, cholesterol metabolism, and glycolysis/gluconeogenesis pathways. Five RNAs, namely F8A3, PDF, ANKRD24, FAXDC2, and TMEM160 were recruited into the signature. They were correlated with COG risk classification, INSS stage, and histology. MYCN amplification was linked to FAXDC2, TMEM160, PDF, and F8A3. The expression levels of ANKRD24, PDF, and TMEM160 were lower in the hyperdiploid groups. Only FAXDC2 levels were different in the different MKI grades. The ROC curve showed that the five-RNA–based signatures effectively predicted the OS of NBL (3-years AUC = 0.791, 5-years AUC = 0.816) in the TARGET cohort. The predictive capability was also validated by the GSE49711 cohort (3-years AUC = 0.851, 5-years AUC = 0.848). The C-index in the TARGET and GSE49711 cohorts was 0.749 and 0.809, respectively. The potential mechanisms of the five RNAs were also explored via gene set enrichment analysis, and candidate drugs targeting the five genes, including dabrafenib, vemurafenib, and bafetinib, were screened. In conclusion, we constructed a five-RNA–based signature to predict the survival of NBL and screened candidate agents against NBL.
Collapse
Affiliation(s)
- PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - KeXin Ma
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - XiaoFei Ke
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liu Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YaJuan Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YouJun Wang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Zhang M, Cui Y, Cheng Y, Wang Q, Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res 2021; 99:3274-3283. [PMID: 34716615 DOI: 10.1002/jnr.24958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Xenon is an inert gas with stable chemical properties which is used as an anesthetic. Recent in vitro and in vivo findings indicate that xenon also elicits an excellent neuroprotective effect in subanesthetic concentrations. The mechanisms underlying this primarily involve the attenuation of excitotoxicity and the inhibition of N-methyl-d-aspartic acid (NMDA) receptors and NMDA receptor-related effects, such as antioxidative effects, reduced activation of microglia, and Ca2+ -dependent mechanisms, as well as the interaction with certain ion channels and glial cells. Based on this strong neuroprotective role, a large number of experimental and clinical studies have confirmed the significant therapeutic effect of xenon in the treatment of neurological diseases. This review summarizes the reported neuroprotective mechanisms of xenon and discusses its possible therapeutic application in the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Wang Z, Xu J, Wang Y, Xiang L, He X. Total saponins from Tupistra chinensis baker inhibits growth of human gastric cancer cells in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114323. [PMID: 34116191 DOI: 10.1016/j.jep.2021.114323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tupistra chinensis Baker (syn. Rohdea chinensis), an antitumor folk herb mainly distributed in China, its rhizome has been historically used to treat gastric cancer. Studies showed that the steroidal saponins were the main bioactive components in the rhizome of T. chinensis. Our previous studies have confirmed that the steroidal saponins have a variety of anti-tumor activities. However, the underlying anti-tumor mechanism of the total steroidal saponins of T. chinensis (TCS) remains to be revealed. AIM OF THE STUDY In the present study, we studied the potential anti-proliferative activity and anti-tumor mechanism of TCS on gastric cancer in vitro and in vivo. METHODS In vitro, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to detect the proliferation ability of TCS on SGC-7901 cells and AGS cells. Flow cytometry were performed to analyze cell apoptosis, cell cycle, mitochondrial membrane potential and reactive oxygen species expression level. Western blotting was performed to validate the expression of proteins in related pathways. In vivo, a xenograft model was established by injecting SGC-7901 cells into nude mice. RESULTS In vitro, TCS inhibited the proliferation of gastric cancer cells. TCS effectively induced apoptosis by PI3K/Akt/mTOR signaling pathway in SGC-7901 cells, and promoted apoptosis via p53-mediated pathway in AGS cells. TCS also exhibited inhibitory activity in blocking the migration of gastric cancer cells. In vivo, TCS significantly inhibited the growth of xenograft tumor. CONCLUSION These results indicated that TCS exhibited significant anti-gastric cancer effects in vitro and in vivo.
Collapse
Affiliation(s)
- Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Limin Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Contribution of Apaf-1 to the pathogenesis of cancer and neurodegenerative diseases. Biochimie 2021; 190:91-110. [PMID: 34298080 DOI: 10.1016/j.biochi.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Deregulation of apoptosis is associated with various pathologies, such as neurodegenerative disorders at one end of the spectrum and cancer at the other end. Generally speaking, differentiated cells like cardiomyocytes, skeletal myocytes and neurons exhibit low levels of Apaf-1 (Apoptotic protease activating factor 1) protein suggesting that down-regulation of Apaf-1 is an important event contributing to the resistance of these cells to apoptosis. Nonetheless, upregulation of Apaf-1 has not emerged as a common phenomenon in pathologies associated with enhanced neuronal cell death, i.e., neurodegenerative diseases. In cancer, on the other hand, Apaf-1 downregulation is a common phenomenon, which occurs through various mechanisms including mRNA hyper-methylation, gene methylation, Apaf-1 localization in lipid rafts, inhibition by microRNAs, phosphorylation, and interaction with specific inhibitors. Due to the diversity of these mechanisms and involvement of other factors, defining the exact contribution of Apaf-1 to the development of cancer in general and neurodegenerative disorders, in particular, is complicated. The current review is an attempt to provide a comprehensive image of Apaf-1's contribution to the pathologies observed in cancer and neurodegenerative diseases with the emphasis on the therapeutic aspects of Apaf-1 as an important target in these pathologies.
Collapse
|
18
|
Ferracchiato S, Di-Iacovo N, Scopetti D, Piobbico D, Castelli M, Pieroni S, Gargaro M, Manni G, Brancorsini S, Della-Fazia MA, Servillo G. Hops/Tmub1 Heterozygous Mouse Shows Haploinsufficiency Effect in Influencing p53-Mediated Apoptosis. Int J Mol Sci 2021; 22:ijms22137186. [PMID: 34281239 PMCID: PMC8269437 DOI: 10.3390/ijms22137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.
Collapse
|
19
|
Functional expression and localisation of HOPS/TMUB1 in mouse lens. Biosci Rep 2021; 41:227785. [PMID: 33543240 PMCID: PMC7881158 DOI: 10.1042/bsr20203998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Transparency represents the functional phenotype of eye lens. A number of defined steps including quiescence, proliferation, migration and cell differentiation culminates in cell elongation and organelle degradation, allowing the light to reach the retina. HOPS (Hepatocyte Odd Protein Shuttling)/TMUB1 (Trans Membrane Ubiquitin-like containing protein 1) is a nucleo-cytoplasmic shuttling protein, highly expressed both in vivo and in vitro proliferating systems, bearing a ubiquitin-like domain. The present study shows HOPS expression during the phases of lens cell proliferation and fiber differentiation, and its localisation in lens compartments. In lens, HOPS localises mainly in the nucleus of central epithelial cells. During mitosis, HOPS/TMUB1 shuttles to the cytoplasm and returns to the nucleus at the end of mitosis. The differentiating cells share distinct HOPS/TMUB1 localisation in transitional zone depending on the differentiation phases. HOPS/TMUB1 is observed in lens cortex and nucleus. Here, it is attached to fibers, having a structural function with crystallin proteins, probably acting in the ubiquitin–proteasome system.
Collapse
|
20
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
21
|
Della-Fazia MA, Castelli M, Piobbico D, Pieroni S, Servillo G. HOPS and p53: thick as thieves in life and death. Cell Cycle 2020; 19:2996-3003. [PMID: 33112208 DOI: 10.1080/15384101.2020.1838772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The oncosuppressor protein p53 plays a major role in transcriptionally controlling the expression of a number of genes, which in turn regulates many functions in response to DNA damage, oncogene triggering, oxidative, and additional cell stresses. A developing area of interest in p53 is the studies related to its cytoplasmic function(s). Many investigations revealed the significant role of p53 in the cytoplasm, acting in a transcriptional-independent manner in important processes related to cell homeostasis such as; apoptosis, autophagy, metabolism control, drug, and oxidative stress response. The studies on cytoplasmic p53 have shown intricate mechanisms by which posttranslational modifications allow p53 to perform its cytoplasmic functions. A number of ubiquitins, deubiquitins, and small ubiquitin-like proteins, have a pivotal role in controlling cytoplasmic stability and localization. Recently, HOPS/TMUB1 a novel small ubiquitin-like protein has been described as a vital molecule stabilizing p53 half-life, directing it to the mitochondria and favoring p53-mediated apoptosis. Furthermore, HOPS/TMUB1 competing with importin-α lessens p53 nuclear localization, thereby increasing cytoplasmic concentration. HOPS/TMUB1 as p53 modifiers could be attractive candidates to elucidate apoptosis or other important transcriptional-independent functions which are key in cancer research in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia , Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia , Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia , Perugia, Italy
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia , Perugia, Italy
| |
Collapse
|
22
|
Bellet MM, Pieroni S, Castelli M, Piobbico D, Fallarino F, Romani L, Della-Fazia MA, Servillo G. HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death Dis 2020; 11:865. [PMID: 33060567 PMCID: PMC7567074 DOI: 10.1038/s41419-020-03086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
HOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops−/− cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
23
|
Della-Fazia MA, Castelli M, Piobbico D, Pieroni S, Servillo G. The Ins and Outs of HOPS/TMUB1 in biology and pathology. FEBS J 2020; 288:2773-2783. [PMID: 32860479 DOI: 10.1111/febs.15539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Liver regeneration represents an outstanding tool to study not only proliferation, but also other important processes such as inflammation, regenerative response or stem cell biology. Several novel genes have been identified as being involved in the proliferation of residual hepatocytes. One of them, HOPS/TMUB1, is proving to be a significant player in the control of proliferation, both contributing to genomic stability and as a partner of essential molecules. HOPS is an ubiquitin-like protein, shuttling from nucleus to cytoplasm, and it is engaged in a number of biological and physiopathological functions. HOPS overexpression in tumour cell lines strongly reduces proliferation, arresting cell cycle in G0 /G1 . HOPS is involved in centrosome assembly and maintenance, and its knockdown causes genomic instability. Moreover, a direct interaction of HOPS with nucleophosmin (NPM) and p19Arf has been established, resulting in proper control of p19Arf stability and localization. These data indicate that HOPS acts as a functional bridge in the interaction between NPM and p19Arf , providing new mechanistic insight into how NPM and p19Arf will oppose cell proliferation. HOPS exerts a control in p53 stability, directing p53 mitochondrial apoptosis and cytoplasmic localization. HOPS plays a direct role as novel post-translational modifier of p53, much like SUMO or NEDD. HOPS is overexpressed in a high number of human tumours in patients affected by large intestinal, CNS, liver and oesophageal tumours. This review highlights HOPS involvement in distinct cellular functions, establishing its role as a key player in cell biology and pathology in a broader context.
Collapse
Affiliation(s)
| | | | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, Italy
| | | |
Collapse
|