1
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Hu X, Huang X, Yang Y, Sun Y, Zhao Y, Zhang Z, Qiu D, Wu Y, Wu G, Lei L. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res 2024; 52:5529-5548. [PMID: 38512058 PMCID: PMC11162783 DOI: 10.1093/nar/gkae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
The process of induced pluripotent stem cells (iPSCs) reprogramming involves several crucial events, including the mesenchymal-epithelial transition (MET), activation of pluripotent genes, metabolic reprogramming, and epigenetic rewiring. Although these events intricately interact and influence each other, the specific element that regulates the reprogramming network remains unclear. Dux, a factor known to promote totipotency during the transition from embryonic stem cells (ESC) to 2C-like ESC (2CLC), has not been extensively studied in the context of iPSC reprogramming. In this study, we demonstrate that the modification of H3K18la induced by Dux overexpression controls the metabolism-H3K18la-MET network, enhancing the efficiency of iPSC reprogramming through a metabolic switch and the recruitment of p300 via its C-terminal domain. Furthermore, our proteomic analysis of H3K18la immunoprecipitation experiment uncovers the specific recruitment of Brg1 during reprogramming, with both H3K18la and Brg1 being enriched on the promoters of genes associated with pluripotency and epithelial junction. In summary, our study has demonstrated the significant role of Dux-induced H3K18la in the early reprogramming process, highlighting its function as a potent trigger. Additionally, our research has revealed, for the first time, the binding of Brg1 to H3K18la, indicating its role as a reader of histone lactylation.
Collapse
Affiliation(s)
- Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Xingwei Huang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005 Guangdong Province, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yue Yang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yanhua Zhao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Guangming Wu
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005 Guangdong Province, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
3
|
Sakamoto M, Ito A, Wakayama S, Sasaki H, Wakayama T, Ishiuchi T. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep 2024; 43:114118. [PMID: 38619966 DOI: 10.1016/j.celrep.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Aoi Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
4
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
- Shu Fang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Guangbo Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Burong Qu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jian Chunyu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Wenqiang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
5
|
Wu B, Wang Y, Wei X, Zhang J, Wu J, Cao G, Zhang Y, Liu J, Li X, Bao S. NELFA and BCL2 induce the 2C-like state in mouse embryonic stem cells in a chemically defined medium. Cell Prolif 2024; 57:e13534. [PMID: 37592709 PMCID: PMC10849787 DOI: 10.1111/cpr.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
A minority of mouse embryonic stem cells (ESCs) display totipotent features resembling 2-cell stage embryos and are known as 2-cell-like (2C-like) cells. However, how ESCs transit into this 2C-like state remains largely unknown. Here, we report that the overexpression of negative elongation factor A (Nelfa), a maternally provided factor, enhances the conversion of ESCs into 2C-like cells in chemically defined conditions, while the deletion of endogenous Nelfa does not block this transition. We also demonstrate that Nelfa overexpression significantly enhances somatic cell reprogramming efficiency. Interestingly, we found that the co-overexpression of Nelfa and Bcl2 robustly activates the 2C-like state in ESCs and endows the cells with dual cell fate potential. We further demonstrate that Bcl2 overexpression upregulates endogenous Nelfa expression and can induce the 2C-like state in ESCs even in the absence of Nelfa. Our findings highlight the importance of BCL2 in the regulation of the 2C-like state and provide insights into the mechanism underlying the roles of Nelfa and Bcl2 in the establishment and regulation of the totipotent state in mouse ESCs.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xinhua Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jiahui Wu
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
| | - Guifang Cao
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
6
|
Ishiuchi T, Sakamoto M. Molecular mechanisms underlying totipotency. Life Sci Alliance 2023; 6:e202302225. [PMID: 37666667 PMCID: PMC10480501 DOI: 10.26508/lsa.202302225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Numerous efforts to understand pluripotency in mammals, using pluripotent stem cells in culture, have enabled the generation of artificially induced pluripotent stem cells, which serve as a valuable source for regenerative medicine and the creation of disease models. In contrast to these tremendous successes in the pluripotency field in the past few decades, our understanding of totipotency, which is highlighted by its broader plasticity than pluripotency, is still limited. This is largely attributable to the scarcity of available materials and the lack of in vitro models. However, recent technological advances have unveiled molecular features that characterize totipotent cells. Single-cell or low-input sequencing technologies allow the dissection of pre- and post-fertilization developmental processes at the molecular level with high resolution. In this review, we describe some of the key findings in understanding totipotency and discuss how totipotency is acquired at the beginning of life.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- https://ror.org/059x21724 Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mizuki Sakamoto
- https://ror.org/059x21724 Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
7
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
8
|
Xu R, Zhu Q, Zhao Y, Chen M, Yang L, Shen S, Yang G, Shi Z, Zhang X, Shi Q, Kou X, Zhao Y, Wang H, Jiang C, Li C, Gao S, Liu X. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos. Nat Commun 2023; 14:4807. [PMID: 37558707 PMCID: PMC10412629 DOI: 10.1038/s41467-023-40496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.
Collapse
Affiliation(s)
- Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuyan Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Mo Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, 400013, Chongqing, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhifei Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Xiaolei Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Qi Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
9
|
Jin Y, Lu Y, Lin L, Liu C, Ma X, Chen X, Zhou Z, Hu Z, Pu J, Chen G, Deng Q, Jiang L, Li Y, Zhao Y, Wang H, Fu J, Li W, Zhu S. Harnessing endogenous transcription factors directly by small molecules for chemically induced pluripotency inception. Proc Natl Acad Sci U S A 2023; 120:e2215155120. [PMID: 37192170 PMCID: PMC10214147 DOI: 10.1073/pnas.2215155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 05/18/2023] Open
Abstract
Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming. Mechanistically, CD3254-RXRα axis can directly activate all the 11 RNA exosome component genes (Exosc1-10 and Dis3) at transcriptional level. Unexpectedly, rather than degrading mRNAs as its substrates, RNA exosome mainly modulates the degradation of transposable element (TE)-associated RNAs, particularly MMVL30, which is identified as a new barrier for cell-fate determination. In turn, MMVL30-mediated inflammation (IFN-γ and TNF-α pathways) is reduced, contributing to the promotion of successful reprogramming. Collectively, our study provides conceptual advances for translating environmental cues into pluripotency inception, particularly, identifies that CD3254-RXRα-RNA exosome axis can promote chemical reprogramming, and suggests modulation of TE-mediated inflammation via CD3254-inducible RNA exosome as important opportunities for controlling cell fates and regenerative medicine.
Collapse
Affiliation(s)
- Yan Jin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yunkun Lu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Lianyu Lin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojie Ma
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Xi Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Ziyu Zhou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Zhensheng Hu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Jiaqi Pu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Guo Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Qian Deng
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Liling Jiang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yuhan Li
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yulong Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, Zhejiang University, Hangzhou310008, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Saiyong Zhu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
10
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
11
|
Simultaneous Inhibition of Histone Deacetylases and RNA Synthesis Enables Totipotency Reprogramming in Pig SCNT Embryos. Int J Mol Sci 2022; 23:ijms232214142. [PMID: 36430635 PMCID: PMC9697165 DOI: 10.3390/ijms232214142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Combining somatic cell nuclear transfer (SCNT) with genome editing technologies has emerged as a powerful platform for the creation of unique swine lineages for agricultural and biomedical applications. However, successful application of this research platform is still hampered by the low efficiency of these technologies, particularly in attaining complete cell reprogramming for the production of cloned pigs. Treating SCNT embryos with histone deacetylase inhibitors (HDACis), such as Scriptaid, has been routinely used to facilitate chromatin reprogramming after nuclear transfer. While increasing histone acetylation leads to a more relaxed chromatin configuration that facilitates the access of reprogramming factors and DNA repair machinery, it may also promote the expression of genes that are unnecessary or detrimental for normal embryo development. In this study, we evaluated the impact of inhibiting both histone deacetylases and RNA synthesis on pre- and post-implantation development of pig SCNT embryos. Our findings revealed that transcription can be inhibited for up to 40 h of development in porcine embryos, produced either by activation, fertilization or SCNT, without detrimentally affecting their capacity to form a blastocyst and their average number of cells at this developmental stage. Importantly, inhibiting RNA synthesis during HDACi treatment resulted in SCNT blastocysts with a greater number of cells and more abundant transcripts for genes related to embryo genome activation on days 2, 3 and 4 of development, compared to SCNT embryos that were treated with HDACi only. In addition, concomitant inhibition of histone deacetylases and RNA synthesis promoted the full reprograming of somatic cells, as evidenced by the normal fetal and full-term development of SCNT embryos. This combined treatment may improve the efficiency of the genome-editing + SCNT platform in swine, which should be further tested by transferring more SCNT embryos and evaluating the health and growth performance of the cloned pigs.
Collapse
|
12
|
Fu B, Ma H, Liu D. 2-Cell-like Cells: An Avenue for Improving SCNT Efficiency. Biomolecules 2022; 12:1611. [PMID: 36358959 PMCID: PMC9687756 DOI: 10.3390/biom12111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 03/25/2024] Open
Abstract
After fertilization, the zygote genome undergoes dramatic structural reorganization to ensure the establishment of totipotency, and then the totipotent potential of the zygote or 2-cell-stage embryo progressively declines. However, cellular potency is not always a one-way street. Specifically, a small number of embryonic stem cells (ESCs) occasionally overcome epigenetic barriers and transiently convert to a totipotent status. Despite the significant potential of the somatic cell nuclear transfer (SCNT) technique, the establishment of totipotency is often deficient in cloned embryos. Because of this phenomenon, the question arises as to whether strategies attempting to induce 2-cell-like cells (2CLCs) can provide practical applications, such as reprogramming of somatic cell nuclei. Inspired by strategies that convert ESCs into 2CLCs, we hypothesized that there will be a similar pathway by which cloned embryos can establish totipotent status after SCNT. In this review, we provide a snapshot of the practical strategies utilized to induce 2CLCs during investigations of the development of cloned embryos. The 2CLCs have similar transcriptome and chromatin features to that of 2-cell-stage embryos, and we propose that 2CLCs, already a valuable in vitro model for dissecting totipotency, will provide new opportunities to improve SCNT efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
13
|
Dynamic cytosolic foci of DPPA4 in human pluripotent stem cells. Tissue Cell 2022; 78:101893. [DOI: 10.1016/j.tice.2022.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022]
|
14
|
Luo C, Wang Z, Wang J, Yun F, Lu F, Fu J, Liu Q, Shi D. Individual variation in buffalo somatic cell cloning efficiency is related to glycolytic metabolism. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2076-2092. [PMID: 35366153 DOI: 10.1007/s11427-021-2039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Mammalian individuals differ in their somatic cell cloning efficiency, but the mechanisms leading to this variation is poorly understood. Here we found that high cloning efficiency buffalo fetal fibroblasts (BFFs) displayed robust energy metabolism, looser chromatin structure, high H3K9 acetylation and low heterochromatin protein 1α (HP1α) expression. High cloning efficiency BFFs had more H3K9ac regions near to the upstream of glycolysis genes by ChIP-seq, and involved more openness loci related to glycolysis genes through ATAC-seq. The expression of these glycolysis genes was also found to be higher in high cloning efficiency BFFs by qRT-PCR. Two key enzymes of glycolysis, PDKs and LDH, were confirmed to be associated with histone acetylation and chromatin openness of BFFs. Treatment of low cloning efficiency BFFs with PS48 (activator of PDK1) resulted in an increase in the intracellular lactate production and H3K9 acetylation, decrease in histone deacetylase activity and HP1α expression, less condensed chromatin structure and more cloning embryos developing to blastocysts. These results indicate that the cloning efficiency of buffalo somatic cells is associated with their glycolytic metabolism and chromatin structure, and can be improved by increasing glycolytic metabolism.
Collapse
Affiliation(s)
- Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Feng Yun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jiayuan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
15
|
Li Y, Sun Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front Genet 2022; 13:932867. [PMID: 36110221 PMCID: PMC9468881 DOI: 10.3389/fgene.2022.932867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cloned mammals can be achieved through somatic cell nuclear transfer (SCNT), which involves reprogramming of differentiated somatic cells into a totipotent state. However, low cloning efficiency hampers its application severely. Cloned embryos have the same DNA as donor somatic cells. Therefore, incomplete epigenetic reprogramming accounts for low development of cloned embryos. In this review, we describe recent epigenetic barriers in SCNT embryos and strategies to correct these epigenetic defects and avoid the occurrence of abnormalities in cloned animals.
Collapse
Affiliation(s)
- Yamei Li
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- *Correspondence: Qiang Sun,
| |
Collapse
|
16
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
17
|
Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq. Stem Cell Reports 2022; 17:1730-1742. [PMID: 35750045 PMCID: PMC9287678 DOI: 10.1016/j.stemcr.2022.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Collapse
|
18
|
Ren W, Gao L, Mou Y, Deng W, Hua J, Yang F. DUX: One Transcription Factor Controls 2-Cell-like Fate. Int J Mol Sci 2022; 23:ijms23042067. [PMID: 35216182 PMCID: PMC8877164 DOI: 10.3390/ijms23042067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The double homeobox (Dux) gene, encoding a double homeobox transcription factor, is one of the key drivers of totipotency in mice. Recent studies showed Dux was temporally expressed at the 2-cell stage and acted as a transcriptional activator during zygotic genome activation (ZGA) in embryos. A similar activation occurs in mouse embryonic stem cells, giving rise to 2-cell-like cells (2CLCs). Though the molecular mechanism underlying this expanded 2CLC potency caused by Dux activation has been partially revealed, the regulation mechanisms controlling Dux expression remain elusive. Here, we discuss the latest advancements in the multiple levels of regulation of Dux expression, as well as Dux function in 2CLCs transition, aiming to provide a theoretical framework for understanding the mechanisms that regulate totipotency.
Collapse
Affiliation(s)
- Wei Ren
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
- College of Innovation and Experiment, Northwest A & F University, Xianyang 712100, China
| | - Leilei Gao
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Yaling Mou
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Correspondence: (W.D.); (F.Y.)
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
| | - Fan Yang
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China; (W.R.); (L.G.); (Y.M.); (J.H.)
- Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Xianyang 712100, China
- Correspondence: (W.D.); (F.Y.)
| |
Collapse
|
19
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
20
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
21
|
Klein RH, Knoepfler PS. DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports 2021; 16:2844-2851. [PMID: 34767751 PMCID: PMC8693620 DOI: 10.1016/j.stemcr.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Many gene networks are shared between pluripotent stem cells and cancer; a concept exemplified by several DPPA factors such as DPPA2 and DPPA4, which are highly and selectively expressed in stem cells but also found to be reactivated in cancer. Despite their striking expression pattern, for many years the function of DPPA2 and DPPA4 remained a mystery; knockout of Dppa2 and Dppa4 did not affect pluripotency, but caused lung and skeletal defects late in development, long after Dppa2 and Dppa4 expression had been turned off. A number of recent papers have further clarified and defined the roles of these important factors, identifying roles in priming the chromatin and maintaining developmental competency through regulating both H3K4me3 and H3K27me3 at bivalent chromatin domains, and acting to remodel chromatin and facilitate reprogramming of somatic cells to induced pluripotency. These findings highlight an important regulatory role for DPPA2 and DPPA4 at the transitional boundary between pluripotency and differentiation and may have relevance to the functions of DPPA2 and 4 in the context of cancer cells as well.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
23
|
Huang X, Hu X, Jiang Q, Cao Q, Wu Y, Lei L. Functional study of distinct domains of dux in improving mouse SCNT embryonic development. Biol Reprod 2021; 105:1089-1103. [PMID: 34296246 DOI: 10.1093/biolre/ioab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
2-cell-like (2C-like) embryonic stem cells (ESCs) are a small group of ESCs that spontaneously express zygotic genomic activation (ZGA) genes and repeats, such as Zscan4 and MERVL, and are specifically expressed in 2-cell-stage mouse embryos. Although numerous types of treatment and agents elevate the transition of ESCs to 2C-like ESCs, Dux serves as a critical factor in this transition by increasing the expression of Zscan4 and MERVL directly. However, the loss of Dux did not impair the birth of mice, suggesting that Dux may not be the primary transitioning factor in fertilized embryos. It has been reported that for 2-cell embryos derived from somatic cell nuclear transfer (SCNT) and whose expression of ZGA genes and repeats was aberrant, Dux improved the reprogramming efficiency by correcting aberrant H3K9ac modification via its C-terminal domain. We confirmed that overexpression of full-length Dux mRNA in SCNT embryos improved the efficiency of preimplantation development (62.16% vs. 41.26% with respect to controls) and also increased the expression of Zscan4 and MERVL. Furthermore, we found that the N-terminal double homeodomains of Dux were indispensable for Dux localization and function. The intermediate region was essential for MERVL and Zscan4 activation, and the C-terminal domain was important for elevating level of H3K27ac. Mutant Dux mRNA containing N-terminal double homeodomains with the intermediate region or the C-terminal domain also improved the preimplantation development of SCNT embryos. This is the first report focusing on distinguishing functional domains of Dux in embryos derived from SCNT.
Collapse
Affiliation(s)
- Xingwei Huang
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Qi Jiang
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Qianzi Cao
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang, China. 150081
| |
Collapse
|
24
|
Fu H, Zhang W, Li N, Yang J, Ye X, Tian C, Lu X, Liu L. Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biol 2021; 22:201. [PMID: 34243810 PMCID: PMC8268579 DOI: 10.1186/s13059-021-02417-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Naïve and primed pluripotent stem cells (PSCs) represent two different pluripotent states. Primed PSCs following in vitro culture exhibit lower developmental potency as evidenced by failure in germline chimera assays, unlike mouse naïve PSCs. However, the molecular mechanisms underlying the lower developmental competency of primed PSCs remain elusive. RESULTS We examine the regulation of telomere maintenance, retrotransposon activity, and genomic stability of primed PSCs and compare them with naïve PSCs. Surprisingly, primed PSCs only minimally maintain telomeres and show fragile telomeres, associated with declined DNA recombination and repair activity, in contrast to naïve PSCs that robustly elongate telomeres. Also, we identify LINE1 family integrant L1Md_T as naïve-specific retrotransposon and ERVK family integrant IAPEz to define primed PSCs, and their transcription is differentially regulated by heterochromatic histones and Dnmt3b. Notably, genomic instability of primed PSCs is increased, in association with aberrant retrotransposon activity. CONCLUSIONS Our data suggest that fragile telomere, retrotransposon-associated genomic instability, and declined DNA recombination repair, together with reduced function of cell cycle and mitochondria, increased apoptosis, and differentiation properties may link to compromised developmental potency of primed PSCs, noticeably distinguishable from naïve PSCs.
Collapse
Affiliation(s)
- Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.
- The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Fu B, Ma H, Liu D. Functions and Regulation of Endogenous Retrovirus Elements during Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency. Biomolecules 2021; 11:829. [PMID: 34199637 PMCID: PMC8229993 DOI: 10.3390/biom11060829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
26
|
Wang W, Ren S, Lu Y, Chen X, Qu J, Ma X, Deng Q, Hu Z, Jin Y, Zhou Z, Ge W, Zhu Y, Yang N, Li Q, Pu J, Chen G, Ye C, Wang H, Zhao X, Liu Z, Zhu S. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H 2 S production. EMBO J 2021; 40:e106771. [PMID: 33909912 DOI: 10.15252/embj.2020106771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.
Collapse
Affiliation(s)
- Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juanjuan Qu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenyan Ge
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Nannan Yang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China.,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
28
|
Yang G, Zhang L, Liu W, Qiao Z, Shen S, Zhu Q, Gao R, Wang M, Wang M, Li C, Liu M, Sun J, Wang L, Liu W, Cui X, Zhao K, Zang R, Chen M, Liang Z, Wang L, Kou X, Zhao Y, Wang H, Wang Y, Gao S, Chen J, Jiang C. Dux-Mediated Corrections of Aberrant H3K9ac during 2-Cell Genome Activation Optimize Efficiency of Somatic Cell Nuclear Transfer. Cell Stem Cell 2020; 28:150-163.e5. [PMID: 33049217 DOI: 10.1016/j.stem.2020.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Differentiated somatic cells can be reprogrammed to totipotent embryos through somatic cell nuclear transfer (SCNT) with low efficiency. The histone deacetylase inhibitor trichostatin A (TSA) has been found to improve SCNT efficiency, but the underlying mechanism remains undetermined. Here, we examined genome-wide H3K9ac during SCNT embryo development and found that aberrant H3K9ac regions resulted in reduced 2-cell genome activation. TSA treatment largely corrects aberrant acetylation in SCNT embryos with an efficiency that is dictated by the native epigenetic environment. We further identified that the overexpression of Dux greatly improves SCNT efficiency by correcting the aberrant H3K9ac signal at its target sites, ensuring appropriate 2-cell genome activation. Intriguingly, the improvement in development mediated by TSA and Kdm4b is impeded by Dux knockout in SCNT embryos. Together, our study reveals that reprogramming of H3K9ac is important for optimal SCNT efficiency and identifies Dux as a crucial transcription factor in this process.
Collapse
Affiliation(s)
- Guang Yang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Linfeng Zhang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhibin Qiao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Rui Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mengting Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chong Li
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Meng Liu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Jin Sun
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Liping Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Wenju Liu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Xinyu Cui
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mo Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zehang Liang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Lu Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China.
| |
Collapse
|
29
|
Yang L, Liu X, Song L, Di A, Su G, Bai C, Wei Z, Li G. Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep 2020; 21:e50054. [PMID: 32715614 DOI: 10.15252/embr.202050054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cloned animals generated by somatic cell nuclear transfer (SCNT) have been reported for many years; however, SCNT is extremely inefficient, and zygotic genome activation (ZGA) is required for SCNT-mediated somatic cell reprogramming. To identify candidate factors that facilitate ZGA in SCNT-mediated reprogramming, we performed siRNA-repressor and mRNA-inducer screenings, which reveal Dux, Dppa2, and Dppa4 as key factors enhancing ZGA in SCNT. We show that direct injection of ZGA inducers has no significant effect on SCNT blastocyst formation; however, following the establishment of an inducible Dux transgenic mouse model, we demonstrate that transient overexpression of Dux not only improves SCNT efficiency but also increases that of chemically induced pluripotent stem cell reprogramming. Moreover, transcriptome profiling reveals that Dux-treated SCNT embryos are similar to fertilized embryos. Furthermore, transient overexpression of Dux combined with inactivation of DNA methyltransferases (Dnmts) further promotes the full embryonic development of SCNT-derived animals. These findings enhance our understanding of ZGA-regulator function in somatic reprogramming.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|