1
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. SCIENCE ADVANCES 2024; 10:eadp6039. [PMID: 39028813 PMCID: PMC11259177 DOI: 10.1126/sciadv.adp6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.
Collapse
Affiliation(s)
- Natalí B. Rasetto
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Ariel A. Berardino
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Tomás Vega Waichman
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Maximiliano S. Beckel
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Daniela J. Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juliana Brown
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M. Georgina Davies-Sala
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Chiara Gerhardinger
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ariel Chernomoretz
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
- University of Buenos Aires, School of Science, Phys Dept and INFINA (CONICET-UBA), Buenos Aires, Argentina
| | - Alejandro F. Schinder
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| |
Collapse
|
4
|
Fanelli G, Franke B, Fabbri C, Werme J, Erdogan I, De Witte W, Poelmans G, Ruisch IH, Reus LM, van Gils V, Jansen WJ, Vos SJ, Alam KA, Martinez A, Haavik J, Wimberley T, Dalsgaard S, Fóthi Á, Barta C, Fernandez-Aranda F, Jimenez-Murcia S, Berkel S, Matura S, Salas-Salvadó J, Arenella M, Serretti A, Mota NR, Bralten J. Local patterns of genetic sharing challenge the boundaries between neuropsychiatric and insulin resistance-related conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303921. [PMID: 38496672 PMCID: PMC10942494 DOI: 10.1101/2024.03.07.24303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Josefin Werme
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Izel Erdogan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I. Hyun Ruisch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lianne Maria Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, United States
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | | | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Norway
| | - Theresa Wimberley
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- iPSYCH - The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Aarhus, Denmark
| | - Søren Dalsgaard
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Child and Adolescent Psychiatry Glostrup, Mental Health Services of the Capital Region, Hellerup, Denmark
| | - Ábel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Fernando Fernandez-Aranda
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Jimenez-Murcia
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychological Services, University of Barcelona, Spain
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Biochemistry and biotechnology Department, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental, Unitat de Nutrició Humana, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Martina Arenella
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Nina Roth Mota
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janita Bralten
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Josh Huang Z. Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582863. [PMID: 38645016 PMCID: PMC11027211 DOI: 10.1101/2024.03.01.582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.
Collapse
|
6
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
7
|
Lin Y, Zhang L, Gao M, Tang Z, Cheng X, Li H, Qin J, Tian M, Jin G, Zhang X, Li W. miR-6076 targets BCL6 in SH-SY5Y cells to regulate amyloid-β-induced neuronal damage. J Cell Mol Med 2023; 27:4145-4154. [PMID: 37849385 PMCID: PMC10746944 DOI: 10.1111/jcmm.17999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
Amyloid-β1-42 (Aβ1-42 ) is strongly associated with Alzheimer's disease (AD). The aim of this study is to elucidate whether and how miR-6076 participates in the modulation of amyloid-β (Aβ)-induced neuronal damage. To construct the neuronal damage model, SH-SY5Y cells were treated with Aβ1-42 . By qRT-PCR, we found that miR-6076 is significantly upregulated in Aβ1-42 -treated SH-SY5Y cells. After miR-6076 inhibition, p-Tau and apoptosis levels were downregulated, and cell viability was increased. Through online bioinformatics analysis, we found that B-cell lymphoma 6 (BCL6) was a directly target of miR-6076 via dual-luciferase reporter assay. BCL6 overexpression mediated the decrease in elevated p-Tau levels and increased viability in SH-SY5Y cells following Aβ1-42 treatment. Our results suggest that down-regulation of miR-6076 could attenuate Aβ1-42 -induced neuronal damage by targeting BCL6, which provided a possible target to pursue for prevention and treatment of Aβ-induced neuronal damage in AD.
Collapse
Affiliation(s)
- Yujian Lin
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Lei Zhang
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Mengyue Gao
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Zixin Tang
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Haoming Li
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Jianbing Qin
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Meiling Tian
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Guohua Jin
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Xinhua Zhang
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| | - Wen Li
- Department of Human Anatomy, Institute of NeurobiologyNantong UniversityNantongJiangsuPR China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuPR China
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of EducationNantongJiangsuPR China
| |
Collapse
|
8
|
Cao H, Baranova A, Song Y, Chen JH, Zhang F. Causal associations and genetic overlap between COVID-19 and intelligence. QJM 2023; 116:766-773. [PMID: 37286376 PMCID: PMC10559337 DOI: 10.1093/qjmed/hcad122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVE COVID-19 might cause neuroinflammation in the brain, which could decrease neurocognitive function. We aimed to evaluate the causal associations and genetic overlap between COVID-19 and intelligence. METHODS We performed Mendelian randomization (MR) analyses to assess potential associations between three COVID-19 outcomes and intelligence (N = 269 867). The COVID phenotypes included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (N = 2 501 486), hospitalized COVID-19 (N = 1 965 329) and critical COVID-19 (N = 743 167). Genome-wide risk genes were compared between the genome-wide association study (GWAS) datasets on hospitalized COVID-19 and intelligence. In addition, functional pathways were constructed to explore molecular connections between COVID-19 and intelligence. RESULTS The MR analyses indicated that genetic liabilities to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence interval [CI]: 0.939-0.993) and critical COVID-19 (OR: 0.989, 95% CI: 0.979-0.999) confer causal effects on intelligence. There was suggestive evidence supporting the causal effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI: 0.972-1.003). Hospitalized COVID-19 and intelligence share 10 risk genes within 2 genomic loci, including MAPT and WNT3. Enrichment analysis showed that these genes are functionally connected within distinct subnetworks of 30 phenotypes linked to cognitive decline. The functional pathway revealed that COVID-19-driven pathological changes within the brain and multiple peripheral systems may lead to cognitive impairment. CONCLUSIONS Our study suggests that COVID-19 may exert a detrimental effect on intelligence. The tau protein and Wnt signaling may mediate the influence of COVID-19 on intelligence.
Collapse
Affiliation(s)
- Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029,China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
9
|
Wiegreffe C, Ehricke S, Schmid L, Andratschke J, Britsch S. Using i-GONAD for Cell-Type-Specific and Systematic Analysis of Developmental Transcription Factors In Vivo. BIOLOGY 2023; 12:1236. [PMID: 37759634 PMCID: PMC10526018 DOI: 10.3390/biology12091236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Transcription factors (TFs) regulate gene expression via direct DNA binding together with cofactors and in chromatin remodeling complexes. Their function is thus regulated in a spatiotemporal and cell-type-specific manner. To analyze the functions of TFs in a cell-type-specific context, genome-wide DNA binding, as well as the identification of interacting proteins, is required. We used i-GONAD (improved genome editing via oviductal nucleic acids delivery) in mice to genetically modify TFs by adding fluorescent reporter and affinity tags that can be exploited for the imaging and enrichment of target cells as well as chromatin immunoprecipitation and pull-down assays. As proof-of-principle, we showed the functional genetic modification of the closely related developmental TFs, Bcl11a and Bcl11b, in defined cell types of newborn mice. i-GONAD is a highly efficient procedure for modifying TF-encoding genes via the integration of small insertions, such as reporter and affinity tags. The novel Bcl11a and Bcl11b mouse lines, described in this study, will be used to improve our understanding of the Bcl11 family's function in neurodevelopment and associated disease.
Collapse
Affiliation(s)
- Christoph Wiegreffe
- Medical Faculty, Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|