1
|
Liu Y, Liao Y, Lai S, Wu X, Liang L, Zhang Y, Wei R, Chen Y. Targeting CLK2 and serine/arginine-rich splicing factors inhibits multiple myeloma through downregulating RAE1 by nonsense-mediated mRNA decay mechanism. Cancer Sci 2024. [PMID: 39526400 DOI: 10.1111/cas.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Multiple myeloma (MM) is closely related to abnormal RNA splicing in its pathogenesis. CDC2-like kinase-2 (CLK2) regulates RNA splicing by phosphorylating serine/arginine-rich splicing factors (SRSFs), but the role of CLK2 in MM remains undefined. This study was to explore the role and mechanism of CLK2 in MM. Analyzing GEO datasets of MM patients found that high CLK2 expression predicted poor prognosis. Overexpression of CLK2 promoted the cell proliferation and cell cycle progression of MM cell ARP1 and H929. Knockdown or inhibition of CLK2 suppressed cell proliferation and induced cell apoptosis and cell cycle arrest in ARP1 and H929 cells in vitro. An MM xenograft tumor experiment showed that CLK2 overexpression promoted tumor growth, while CLK2 inhibition suppressed tumor growth in vivo. Mechanistic studies revealed that interfering CLK2 inhibited SRSF phosphorylation, and induced exon 9 skipping of RAE1, resulting in nonsense-mediated mRNA decay (NMD) of RAE1. In addition, RAE1 knockdown inhibited cell proliferation in ARP1 and H929 cells. Moreover, RAE1 overexpression promoted cell proliferation and cell cycle progression of ARP1 and H929 cells, and partially reversed the antitumor effect of CLK2 knockdown. Targeting CLK2 shows antitumor effects on MM partially through inhibiting SRSF phosphorylation and inducing NMD of RAE1. Therefore, targeting the CLK2/SRSFs/RAE1 axis could be a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaping Liao
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuping Lai
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Wu
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Laoqi Liang
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yihao Zhang
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongfang Wei
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Chen
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Zhang Y, Chen Y, Wang B, Cai Y, Zhang M, Guo X, Wu A, Wang W, Liu N, Wang X, Gong Y, Pan J, Jin Y. A novel selenium nanocomposite modified by AANL inhibits tumor growth by upregulating CLK2 in lung cancer. Bioorg Chem 2024; 148:107459. [PMID: 38761707 DOI: 10.1016/j.bioorg.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.
Collapse
Affiliation(s)
- Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Bo Wang
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Institute of Synthetic Biology, Shenzhen 518055, China
| | - Ying Cai
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Menghang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xin Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Aobo Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
3
|
Hou Y, Wang S, Zhang Y, Huang X, Zhang X, He F, Tian C, Sun A. Proteomics Identifies LUC7L3 as a Prognostic Biomarker for Hepatocellular Carcinoma. Curr Issues Mol Biol 2024; 46:4004-4020. [PMID: 38785515 PMCID: PMC11120364 DOI: 10.3390/cimb46050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing has been shown to participate in tumor progression, including hepatocellular carcinoma. The poor prognosis of patients with HCC calls for molecular classification and biomarker identification to facilitate precision medicine. We performed ssGSEA analysis to quantify the pathway activity of RNA splicing in three HCC cohorts. Kaplan-Meier and Cox methods were used for survival analysis. GO and GSEA were performed to analyze pathway enrichment. We confirmed that RNA splicing is significantly correlated with prognosis, and identified an alternative splicing-associated protein LUC7L3 as a potential HCC prognostic biomarker. Further bioinformatics analysis revealed that high LUC7L3 expression indicated a more progressive HCC subtype and worse clinical features. Cell proliferation-related pathways were enriched in HCC patients with high LUC7L3 expression. Consistently, we proved that LUC7L3 knockdown could significantly inhibit cell proliferation and suppress the activation of associated signaling pathways in vitro. In this research, the relevance between RNA splicing and HCC patient prognosis was outlined. Our newly identified biomarker LUC7L3 could provide stratification for patient survival and recurrence risk, facilitating early medical intervention before recurrence or disease progression.
Collapse
Affiliation(s)
- Yushan Hou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Siqi Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yiming Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaofen Huang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiuyuan Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Chunyan Tian
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Aihua Sun
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- College of Life Sciences, Hebei University, Baoding 071002, China
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
4
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
5
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. eLife 2023; 12:RP88508. [PMID: 38126343 PMCID: PMC10735217 DOI: 10.7554/elife.88508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may, therefore, display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP-driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP-dependent cellular growth.
Collapse
Affiliation(s)
- Maya L Bulos
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Edyta M Grzelak
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Emily Chen
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | - Mitchell Hull
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
6
|
Li TJ, Jin KZ, Zhou HY, Liao ZY, Zhang HR, Shi SM, Lin MX, Chai SJ, Fei QL, Ye LY, Yu XJ, Wu WD. Deubiquitinating PABPC1 by USP10 upregulates CLK2 translation to promote tumor progression in pancreatic ductal adenocarcinoma. Cancer Lett 2023; 576:216411. [PMID: 37757903 DOI: 10.1016/j.canlet.2023.216411] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.
Collapse
Affiliation(s)
- Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hong-Yu Zhou
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong,Hong Kong, China
| | - Zhen-Yu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Sai-Meng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Meng-Xiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shou-Jie Chai
- Department of Oncology, Ningbo First Hospital, Ningbo, China
| | - Qing-Lin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Mucka P, Lindemann P, Bosco B, Willenbrock M, Radetzki S, Neuenschwander M, Brischetto C, Peter von Kries J, Nazaré M, Scheidereit C. CLK2 and CLK4 are regulators of DNA damage-induced NF-κB targeted by novel small molecule inhibitors. Cell Chem Biol 2023; 30:1303-1312.e3. [PMID: 37506701 DOI: 10.1016/j.chembiol.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.
Collapse
Affiliation(s)
- Patrick Mucka
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Lindemann
- Laboratory of Medicinal Chemistry, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Bartolomeo Bosco
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Willenbrock
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Cristina Brischetto
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marc Nazaré
- Laboratory of Medicinal Chemistry, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| | - Claus Scheidereit
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
8
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537449. [PMID: 37131806 PMCID: PMC10153145 DOI: 10.1101/2023.04.19.537449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may therefore display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP dependent cellular growth.
Collapse
Affiliation(s)
- Maya L. Bulos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Edyta M. Grzelak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | - Mitchell Hull
- Calibr, A Division of Scripps Research, La Jolla, CA, 92037, USA
| | | | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Lin J, Lin G, Chen B, Yuan J, Zhuang Y. CLK2 Expression Is Associated with the Progression of Colorectal Cancer and Is a Prognostic Biomarker. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7250127. [PMID: 35860803 PMCID: PMC9289758 DOI: 10.1155/2022/7250127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND CLK2 is a splicing regulator and expressed ubiquitously in various malignancies. The study is aimed at exploring the potential roles of CLK2 in the development of colorectal cancer (CRC). METHODS Real-time PCR and analyses of The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) database were utilized to evaluate the CLK2 gene transcription level and protein level of colorectal cancer (CRC) tissue. The chi-squared and logistic regression tests were used to evaluate the relationship between CLK2 and clinicopathologic features. Kaplan-Meier survival curve and Cox regression analysis were performed to explore the prognostic significance of CLK2. The association between CLK2 expression and immune landscapes was explored by CIBERSORT and ESTIMATE. Furthermore, GSEA (Gene Set Enrichment Analysis) and alternative splicing (AS) analyses were performed to investigate the relationship between CLK2 expression and downstream signaling pathway. RESULTS The CLK2 expression was upregulated in CRC in both transcript and protein level. The elevated expression of CLK2 was correlated with local invasion and poor prognosis. Furthermore, CLK2 induced tumor cell adhesion and thereby promotes local invasion of CRC. The CLK2 expression significantly inhibited plasma cells and eosinophil infiltration and showed no relationship with immune and stromal scores of CRC samples. CLK2 might involve in Notch signaling pathway by regulating the AS of CTBP1. CONCLUSIONS CLK2 might be a potential prognostic biomarker and therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Jiarui Lin
- Department of Gastrointestinal surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guixing Lin
- Department of Gastrointestinal surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Binbin Chen
- Department of Gastrointestinal surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jinpeng Yuan
- Department of Gastrointestinal surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yezhong Zhuang
- Department of Gastrointestinal surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Exploring the roles of the Cdc2-like kinases in cancers. Bioorg Med Chem 2022; 70:116914. [PMID: 35872347 DOI: 10.1016/j.bmc.2022.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The Cdc2-like kinases (CLKs 1-4) are involved in regulating the alternative splicing of a variety of genes. Their activity contributes to important cellular processes such as proliferation, differentiation, apoptosis, migration, and cell cycle regulation. Abnormal expression of CLKs can lead to cancers; therefore, pharmacological inhibition of CLKs may be a useful therapeutic strategy. This review summarises what is known about the roles of each of the CLKs in cancerous cells, as well as the effects of relevant small molecule CLK inhibitors.
Collapse
|
11
|
Orben F, Lankes K, Schneeweis C, Hassan Z, Jakubowsky H, Krauß L, Boniolo F, Schneider C, Schäfer A, Murr J, Schlag C, Kong B, Öllinger R, Wang C, Beyer G, Mahajan UM, Xue Y, Mayerle J, Schmid RM, Kuster B, Rad R, Braun CJ, Wirth M, Reichert M, Saur D, Schneider G. Epigenetic drug screening defines a PRMT5 inhibitor-sensitive pancreatic cancer subtype. JCI Insight 2022; 7:e151353. [PMID: 35439169 PMCID: PMC9220834 DOI: 10.1172/jci.insight.151353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.
Collapse
Affiliation(s)
- Felix Orben
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | | | - Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | - Hannah Jakubowsky
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Lukas Krauß
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Fabio Boniolo
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Carolin Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Arlett Schäfer
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | | | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
- Department of General Surgery, University of Ulm, Ulm, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and
| | - Chengdong Wang
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, TUM, Freising, Germany
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Georg Beyer
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Ujjwal M. Mahajan
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Yonggan Xue
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland M. Schmid
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, TUM, Freising, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM, Freising, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian J. Braun
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Center for Protein Assemblies (CPA), TUM, Garching, Germany
- Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| |
Collapse
|
12
|
Zhang VX, Sze KMF, Chan LK, Ho DWH, Tsui YM, Chiu YT, Lee E, Husain A, Huang H, Tian L, Wong CCL, Ng IOL. Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. Cell Biosci 2021; 11:217. [PMID: 34924003 PMCID: PMC8684635 DOI: 10.1186/s13578-021-00731-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background Controversy over the benefits of antioxidants supplements in cancers persists for long. Using hepatocellular carcinoma (HCC) as a model, we investigated the effects of exogenous antioxidants N-acetylcysteine (NAC) and glutathione (GSH) on tumor formation and growth. Methods Multiple mouse models, including diethylnitrosamine (DEN)-induced and Trp53KO/C-MycOE-induced HCC models, mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection were used. In vitro assays including ROS assay, colony formation, sphere formation, proliferation, migration and invasion, apoptosis, cell cycle assays were conducted. Western blot was performed for protein expression and RNA-sequencing to identify potential gene targets. Results In these multiple different mouse and cell line models, we observed that NAC and GSH promoted HCC tumor formation and growth, accompanied with significant reduction of intracellular reactive oxygen species (ROS) levels. Moreover, NAC and GSH promoted cancer stemness, and abrogated the tumor-suppressive effects of Sorafenib both in vitro and in vivo. Exogenous supplementation of NAC or GSH reduced the expression of NRF2 and GCLC, suggesting the NRF2/GCLC-related antioxidant production pathway might be desensitized. Using transcriptomic analysis to identify potential gene targets, we found that TMBIM1 was significantly upregulated upon NAC and GSH treatment. Both TCGA and in-house RNA-sequence databases showed that TMBIM1 was overexpressed in HCC tumors. Stable knockdown of TMBIM1 increased the intracellular ROS; it also abolished the promoting effects of the antioxidants in HCC cells. On the other hand, BSO and SSA, inhibitors targeting NAC and GSH metabolism respectively, partially abrogated the pro-oncogenic effects induced by NAC and GSH in vitro and in vivo. Conclusions Our data implicate that exogenous antioxidants NAC and GSH, by reducing the intracellular ROS levels and inducing TMBIM expression, promoted HCC formation and tumor growth, and counteracted the therapeutic effect of Sorafenib. Our study provides scientific insight regarding the use of exogenous antioxidant supplements in cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00731-0.
Collapse
|
13
|
Singh S, Quarni W, Goralski M, Wan S, Jin H, Van de Velde LA, Fang J, Wu Q, Abu-Zaid A, Wang T, Singh R, Craft D, Fan Y, Confer T, Johnson M, Akers WJ, Wang R, Murray PJ, Thomas PG, Nijhawan D, Davidoff AM, Yang J. Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models. SCIENCE ADVANCES 2021; 7:eabj5405. [PMID: 34788094 PMCID: PMC8598007 DOI: 10.1126/sciadv.abj5405] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Aberrant alternative pre-mRNA splicing plays a critical role in MYC-driven cancers and therefore may represent a therapeutic vulnerability. Here, we show that neuroblastoma, a MYC-driven cancer characterized by splicing dysregulation and spliceosomal dependency, requires the splicing factor RBM39 for survival. Indisulam, a “molecular glue” that selectively recruits RBM39 to the CRL4-DCAF15 E3 ubiquitin ligase for proteasomal degradation, is highly efficacious against neuroblastoma, leading to significant responses in multiple high-risk disease models, without overt toxicity. Genetic depletion or indisulam-mediated degradation of RBM39 induces significant genome-wide splicing anomalies and cell death. Mechanistically, the dependency on RBM39 and high-level expression of DCAF15 determine the exquisite sensitivity of neuroblastoma to indisulam. Our data indicate that targeting the dysregulated spliceosome by precisely inhibiting RBM39, a vulnerability in neuroblastoma, is a valid therapeutic strategy.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Waise Quarni
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Maria Goralski
- Department of Internal Medicine, Program in Molecular Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. K3.124, Dallas, TX 75390, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lee-Ann Van de Velde
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Ravi Singh
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David Craft
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Thomas Confer
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Melissa Johnson
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Walter J. Akers
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Peter J. Murray
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, Program in Molecular Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. K3.124, Dallas, TX 75390, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|
15
|
Qin Z, Qin L, Feng X, Li Z, Bian J. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. J Med Chem 2021; 64:13191-13211. [PMID: 34519506 DOI: 10.1021/acs.jmedchem.1c00985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cdc2-like kinases (CLKs; CLK1-4) are associated with various neurodegenerative disorders, metabolic regulation, and viral infection and have been recognized as potential drug targets. Human CLK2 has received increasing attention as a regulator that phosphorylates serine- and arginine-rich (SR) proteins and subsequently modulates the alternative splicing of precursor mRNA (pre-mRNA), which is an attractive target for degenerative disease and cancer. Numerous CLK2 inhibitors have been identified, with several molecules currently in clinical development. The first CLK2 inhibitor Lorecivivint (compound 1) has recently entered phase 3 clinical trials. However, highly selective CLK2 inhibitors are rarely reported. This Perspective summarizes the biological roles and therapeutic potential of CLK2 along with progress on the development of CLK2 inhibitors and discusses the achievements and future prospects of CLK2 inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Lian Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| |
Collapse
|
16
|
Bonde A, Eskesen TG, Steinmetz J, Schoof EM, Blicher LHD, Rasmussen LS, Sillesen M. Hemorrhage and saline resuscitation are associated with epigenetic and proteomic reprogramming in the rat lung. Injury 2021; 52:2095-2103. [PMID: 33814129 DOI: 10.1016/j.injury.2021.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 03/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Epigenetic changes have been described in trauma patients in the form of histone acetylation events, but whether DNA-methylation occurs remains unknown. We hypothesized that the combination of hemorrhage and saline resuscitation would alter DNA-methylation and associated proteomic profiles in the rat lung. METHODS Ten rats were subjected to a pressure-controlled hemorrhage and resuscitation model consisting of hemorrhage to a mean arterial pressure (MAP) of 35mmHg for 90 minutes, followed by saline resuscitation to a MAP >70mmHg for 90 minutes (n=5) or sham (only anesthesia and cannulation). Lungs were harvested and subjected to reduced genome wide DNA-methylation analysis through bisulphite sequencing as well as proteomics analysis. Data was analyzed for differentially methylated regions and associated alterations in proteomic networks through a weighted correlation network analysis (WCNA). Pathway analysis was used to establish biological relevance of findings. RESULTS Hemorrhage and saline resuscitation were associated with differential methylation of 353 sites across the genome compared to the sham group. Of these, 30 were localized to gene promoter regions, 31 to exon regions and 87 to intron regions. Network analysis identified an association between hemorrhage/resuscitation and DNA-methylation events located to genes involved in areas of endothelial and immune response signaling. The associated proteomic response was characterized by activations of mRNA processing as well as endothelial Nitric Oxide Synthase (eNOS) metabolism. CONCLUSION We demonstrated an association between DNA-methylation and hemorrhage/saline resuscitation. These results suggest a potential role of DNA-methylation in the host response to injury.
Collapse
Affiliation(s)
- Alexander Bonde
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark; Center for Surgical Translational and Artificial Intelligence Research (CSTAR), Rigshospitalet, University of Copenhagen, Denmark
| | - Trine G Eskesen
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark
| | - Jacob Steinmetz
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark
| | - Erwin M Schoof
- Proteomics Core, Technical University of Denmark, Lyngby, Denmark
| | - Lene H D Blicher
- Proteomics Core, Technical University of Denmark, Lyngby, Denmark
| | - Lars S Rasmussen
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Martin Sillesen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark; Center for Surgical Translational and Artificial Intelligence Research (CSTAR), Rigshospitalet, University of Copenhagen, Denmark.; Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Kim JH, Kim DH, Lim YH, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Childhood Obesity-Related Mechanisms: MicroRNome and Transcriptome Changes in a Nested Case-Control Study. Biomedicines 2021; 9:biomedicines9080878. [PMID: 34440082 PMCID: PMC8389653 DOI: 10.3390/biomedicines9080878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Childhood obesity could contribute to adulthood obesity, leading to adverse health outcomes in adults. However, the mechanisms for how obesity is developed are still unclear. To determine the epigenome-wide and genome-wide expression changes related with childhood obesity, we compared microRNome and transcriptome levels as well as leptin protein levels in whole bloods of 12 obese and 24 normal children aged 6 years. miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p were negatively associated with all obesity indicators. The four miRNAs were also associated with 3948 mRNAs, and separate 475 mRNAs (185 among 3948 mRNAs) were associated with all obesity indicators. The 2533 mRNAs (64.2%) among the 3948 mRNAs and 286 mRNAs (60.2%) among the 475 mRNAs were confirmed as targets of the four miRNAs in public databases through miRWalk 2.0. Leptin protein was associated with miR-6803-3p negatively and all obesity indicators positively. Using DAVID bioinformatics resources 6.8, top three pathways for obesity-related gene set were metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. The top three obesity-related disease classes were metabolic, cardiovascular, and chemdependency. Our results support that childhood obesity could be developed through miRNAs-related epigenetic mechanism and, further, these obesity-related epigenetic changes could control the pathways related with the development of various diseases.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
- Correspondence: (J.H.K.); (Y.-C.H.)
| | - Da Hae Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (C.H.S.); (Y.A.L.)
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (C.H.S.); (Y.A.L.)
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Korea;
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Korea;
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (J.H.K.); (Y.-C.H.)
| |
Collapse
|
18
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
19
|
Yu X, Wang L, Zou L, Li M, Li T, Hou L, Guo Y, Shen D, Sun G, Qu D, Cheng X, Chen L. Growth inhibition by bacterial Cas2Em proteins expressed in mammalian cells. Am J Transl Res 2020; 12:2499-2520. [PMID: 32655787 PMCID: PMC7344093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) proteins are bacterial adaptive immune system for survival. In our previous study, we demonstrate that polyploid giant bacterial cells (PGBC) induced by Cas2 protein is a step required by new spacer acquisition reaction catalyzed by Cas1/Cas2 complex. We also demonstrated that a carboxyl terminal domain on Cas2Em (the protein Cas2 cloned from Elizabethkingia meningoseptica) is sufficient and enough for PGBC. Thus, the potential role of Cas2Em in microbial-host interaction was explored in this study. METHODS The impacts of Cas2Em on growth of both CHO-K1 and Hela cells were investigated. The subcellular localization and potential molecular target of Ca2Em were studied. RESULTS The growth of mammalian cells were inhibited by Cas2Em protein via G1 arresting and apoptosis. In addition, we also demonstrated that Cas2Em was tightly associated with nuclear outer membrane and could be immunoprecipitated with 14-3-3γ through a 30 amino acid domain (homology of CLK2). CONCLUSION Cas2Em significantly suppressed the growth of mammalian cells indicating Cas2 proteins play an important role in mammalian cells.
Collapse
Affiliation(s)
- Xin Yu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
- Roche Innovation Center ShanghaiShanghai 201203, China
| | - Lei Wang
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Lin Zou
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Mengjie Li
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Tiansheng Li
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Linlin Hou
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Yameng Guo
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Danfeng Shen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Guiqin Sun
- College of Medical Technology, Zhejiang Chinese Medical UniversityHangzhou 310053, Zhejiang, China
| | - Di Qu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Xunjia Cheng
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| |
Collapse
|
20
|
Identification of prognostic alternative splicing signatures in hepatitis B or/and C viruses related hepatocellular carcinoma. Genomics 2020; 112:3396-3406. [PMID: 32525024 DOI: 10.1016/j.ygeno.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alternative splicing (AS) takes a crucial part in tumor process. We aim to analyze AS in Hepatitis B virus (HBV) or/and hepatitis C virus (HCV) related hepatocellular carcinoma (HCC). METHODS Cox regression analysis was conducted to screen survival-associated AS events. The receiver operating characteristic curve used to evaluate the predictive accuracy. Splicing network was built to investigate the relationship between splicing factors and AS events. RESULTS Ninety-six survival-associated AS events were obtained by univariate Cox regression. Final prognostic model could significantly distinguish the prognosis. We identified RBFOX2 as the hub gene in splicing network based on differentially expressed splicing factors, and obtained MAP3K13_AT as the key AS event in survival-related splicing network. CONCLUSION Our results highlight the AS signatures in HCC patients with HBV or/and HCV infection. Meanwhile, AS events and splicing factors in different virus-infected HCC subgroups can provide novel perspectives as biomarkers and individualized therapeutic targets.
Collapse
|