4
|
Shalwitz R, Day T, Ruehlmann AK, Julio L, Gordon S, Vandeuren A, Nelson M, Lyman M, Kelly K, Altvater A, Ondeck C, O'Brien S, Hamilton T, Hanson RL, Wayman K, Miller A, Shalwitz I, Batchelor E, McNutt P. Treatment of Sulfur Mustard Corneal Injury by Augmenting the DNA Damage Response (DDR): A Novel Approach. J Pharmacol Exp Ther 2024; 388:526-535. [PMID: 37977813 PMCID: PMC10801765 DOI: 10.1124/jpet.123.001686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.
Collapse
Affiliation(s)
- Robert Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tovah Day
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Anna Kotsakis Ruehlmann
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Lindsay Julio
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Shellaina Gordon
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Adrianna Vandeuren
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Marian Nelson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Megan Lyman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kyle Kelly
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Amber Altvater
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Celinia Ondeck
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Sean O'Brien
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tracey Hamilton
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Ryan L Hanson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kayla Wayman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Alexandrea Miller
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Isaiah Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Eric Batchelor
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Patrick McNutt
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| |
Collapse
|