1
|
Esteban-Medina M, de la Oliva Roque VM, Herráiz-Gil S, Peña-Chilet M, Dopazo J, Loucera C. drexml: A command line tool and Python package for drug repurposing. Comput Struct Biotechnol J 2024; 23:1129-1143. [PMID: 38510973 PMCID: PMC10950807 DOI: 10.1016/j.csbj.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
We introduce drexml, a command line tool and Python package for rational data-driven drug repurposing. The package employs machine learning and mechanistic signal transduction modeling to identify drug targets capable of regulating a particular disease. In addition, it employs explainability tools to contextualize potential drug targets within the functional landscape of the disease. The methodology is validated in Fanconi Anemia and Familial Melanoma, two distinct rare diseases where there is a pressing need for solutions. In the Fanconi Anemia case, the model successfully predicts previously validated repurposed drugs, while in the Familial Melanoma case, it identifies a promising set of drugs for further investigation.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Víctor Manuel de la Oliva Roque
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Sara Herráiz-Gil
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U714, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - María Peña-Chilet
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Platform of Big Data, AI and Biostatistics, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| |
Collapse
|
2
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
3
|
Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, Beyer A. Gene regulatory networks in disease and ageing. Nat Rev Nephrol 2024; 20:616-633. [PMID: 38867109 DOI: 10.1038/s41581-024-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The precise control of gene expression is required for the maintenance of cellular homeostasis and proper cellular function, and the declining control of gene expression with age is considered a major contributor to age-associated changes in cellular physiology and disease. The coordination of gene expression can be represented through models of the molecular interactions that govern gene expression levels, so-called gene regulatory networks. Gene regulatory networks can represent interactions that occur through signal transduction, those that involve regulatory transcription factors, or statistical models of gene-gene relationships based on the premise that certain sets of genes tend to be coexpressed across a range of conditions and cell types. Advances in experimental and computational technologies have enabled the inference of these networks on an unprecedented scale and at unprecedented precision. Here, we delineate different types of gene regulatory networks and their cell-biological interpretation. We describe methods for inferring such networks from large-scale, multi-omics datasets and present applications that have aided our understanding of cellular ageing and disease mechanisms.
Collapse
Affiliation(s)
- Paula Unger Avila
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tsimafei Padvitski
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana Carolina Leote
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - He Chen
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Martin Kann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Dimitrov D, Schäfer PSL, Farr E, Rodriguez-Mier P, Lobentanzer S, Badia-I-Mompel P, Dugourd A, Tanevski J, Ramirez Flores RO, Saez-Rodriguez J. LIANA+ provides an all-in-one framework for cell-cell communication inference. Nat Cell Biol 2024; 26:1613-1622. [PMID: 39223377 PMCID: PMC11392821 DOI: 10.1038/s41556-024-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
The growing availability of single-cell and spatially resolved transcriptomics has led to the development of many approaches to infer cell-cell communication, each capturing only a partial view of the complex landscape of intercellular signalling. Here we present LIANA+, a scalable framework built around a rich knowledge base to decode coordinated inter- and intracellular signalling events from single- and multi-condition datasets in both single-cell and spatially resolved data. By extending and unifying established methodologies, LIANA+ provides a comprehensive set of synergistic components to study cell-cell communication via diverse molecular mediators, including those measured in multi-omics data. LIANA+ is accessible at https://github.com/saezlab/liana-py with extensive vignettes ( https://liana-py.readthedocs.io/ ) and provides an all-in-one solution to intercellular communication inference.
Collapse
Affiliation(s)
- Daniel Dimitrov
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Elias Farr
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pablo Rodriguez-Mier
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Lobentanzer
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Aurelien Dugourd
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Jovan Tanevski
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Ricardo Omar Ramirez Flores
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
| |
Collapse
|
5
|
Van de Graaf MW, Eggertsen TG, Zeigler AC, Tan PM, Saucerman JJ. Benchmarking of protein interaction databases for integration with manually reconstructed signalling network models. J Physiol 2024; 602:4529-4542. [PMID: 37199469 PMCID: PMC11073820 DOI: 10.1113/jp284616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Protein interaction databases are critical resources for network bioinformatics and integrating molecular experimental data. Interaction databases may also enable construction of predictive computational models of biological networks, although their fidelity for this purpose is not clear. Here, we benchmark protein interaction databases X2K, Reactome, Pathway Commons, Omnipath and Signor for their ability to recover manually curated edges from three logic-based network models of cardiac hypertrophy, mechano-signalling and fibrosis. Pathway Commons performed best at recovering interactions from manually reconstructed hypertrophy (137 of 193 interactions, 71%), mechano-signalling (85 of 125 interactions, 68%) and fibroblast networks (98 of 142 interactions, 69%). While protein interaction databases successfully recovered central, well-conserved pathways, they performed worse at recovering tissue-specific and transcriptional regulation. This highlights a knowledge gap where manual curation is critical. Finally, we tested the ability of Signor and Pathway Commons to identify new edges that improve model predictions, revealing important roles of protein kinase C autophosphorylation and Ca2+/calmodulin-dependent protein kinase II phosphorylation of CREB in cardiomyocyte hypertrophy. This study provides a platform for benchmarking protein interaction databases for their utility in network model construction, as well as providing new insights into cardiac hypertrophy signalling. KEY POINTS: Protein interaction databases are used to recover signalling interactions from previously developed network models. The five protein interaction databases benchmarked recovered well-conserved pathways, but did poorly at recovering tissue-specific pathways and transcriptional regulation, indicating the importance of manual curation. We identify new signalling interactions not previously used in the network models, including a role for Ca2+/calmodulin-dependent protein kinase II phosphorylation of CREB in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Matthew W. Van de Graaf
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Children’s National Hospital, Washington, District of Columbia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Angela C. Zeigler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Philip M. Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Venafra V, Sacco F, Perfetto L. SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks. NPJ Syst Biol Appl 2024; 10:95. [PMID: 39179556 PMCID: PMC11343843 DOI: 10.1038/s41540-024-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024] Open
Abstract
Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.
Collapse
Affiliation(s)
- Veronica Venafra
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Livia Perfetto
- Department of Biology and Biotechnologies 'C.Darwin', University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
7
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
8
|
Lobentanzer S, Rodriguez-Mier P, Bauer S, Saez-Rodriguez J. Molecular causality in the advent of foundation models. Mol Syst Biol 2024; 20:848-858. [PMID: 38890548 PMCID: PMC11297329 DOI: 10.1038/s44320-024-00041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 06/20/2024] Open
Abstract
Correlation is not causation: this simple and uncontroversial statement has far-reaching implications. Defining and applying causality in biomedical research has posed significant challenges to the scientific community. In this perspective, we attempt to connect the partly disparate fields of systems biology, causal reasoning, and machine learning to inform future approaches in the field of systems biology and molecular medicine.
Collapse
Affiliation(s)
- Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.
| | - Pablo Rodriguez-Mier
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.
| |
Collapse
|
9
|
Giudice G, Chen H, Koutsandreas T, Petsalaki E. phuEGO: A Network-Based Method to Reconstruct Active Signaling Pathways From Phosphoproteomics Datasets. Mol Cell Proteomics 2024; 23:100771. [PMID: 38642805 PMCID: PMC11134849 DOI: 10.1016/j.mcpro.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
Signaling networks are critical for virtually all cell functions. Our current knowledge of cell signaling has been summarized in signaling pathway databases, which, while useful, are highly biased toward well-studied processes, and do not capture context specific network wiring or pathway cross-talk. Mass spectrometry-based phosphoproteomics data can provide a more unbiased view of active cell signaling processes in a given context, however, it suffers from low signal-to-noise ratio and poor reproducibility across experiments. While progress in methods to extract active signaling signatures from such data has been made, there are still limitations with respect to balancing bias and interpretability. Here we present phuEGO, which combines up-to-three-layer network propagation with ego network decomposition to provide small networks comprising active functional signaling modules. PhuEGO boosts the signal-to-noise ratio from global phosphoproteomics datasets, enriches the resulting networks for functional phosphosites and allows the improved comparison and integration across datasets. We applied phuEGO to five phosphoproteomics data sets from cell lines collected upon infection with SARS CoV2. PhuEGO was better able to identify common active functions across datasets and to point to a subnetwork enriched for known COVID-19 targets. Overall, phuEGO provides a flexible tool to the community for the improved functional interpretation of global phosphoproteomics datasets.
Collapse
Affiliation(s)
- Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Haoqi Chen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Thodoris Koutsandreas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom.
| |
Collapse
|
10
|
Farr E, Dimitrov D, Schmidt C, Turei D, Lobentanzer S, Dugourd A, Saez-Rodriguez J. MetalinksDB: a flexible and contextualizable resource of metabolite-protein interactions. Brief Bioinform 2024; 25:bbae347. [PMID: 39038934 PMCID: PMC11262834 DOI: 10.1093/bib/bbae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or extracellular receptors of neighboring cells. Protein-protein cell-cell communication interactions are routinely predicted from transcriptomic data. However, inferring metabolite-mediated intercellular signaling remains challenging, partially due to the limited size of intercellular prior knowledge resources focused on metabolites. Here, we leverage knowledge-graph infrastructure to integrate generalistic metabolite-protein with curated metabolite-receptor resources to create MetalinksDB. MetalinksDB is an order of magnitude larger than existing metabolite-receptor resources and can be tailored to specific biological contexts, such as diseases, pathways, or tissue/cellular locations. We demonstrate MetalinksDB's utility in identifying deregulated processes in renal cancer using multi-omics bulk data. Furthermore, we infer metabolite-driven intercellular signaling in acute kidney injury using spatial transcriptomics data. MetalinksDB is a comprehensive and customizable database of intercellular metabolite-protein interactions, accessible via a web interface (https://metalinks.omnipathdb.org/) and programmatically as a knowledge graph (https://github.com/biocypher/metalinks). We anticipate that by enabling diverse analyses tailored to specific biological contexts, MetalinksDB will facilitate the discovery of disease-relevant metabolite-mediated intercellular signaling processes.
Collapse
Affiliation(s)
- Elias Farr
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Christina Schmidt
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Denes Turei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
11
|
Chen Y, Mao R, Xu J, Huang Y, Xu J, Cui S, Zhu Z, Ji X, Huang S, Huang Y, Huang HY, Yen SC, Lin YCD, Huang HD. A Causal Regulation Modeling Algorithm for Temporal Events with Application to Escherichia coli's Aerobic to Anaerobic Transition. Int J Mol Sci 2024; 25:5654. [PMID: 38891842 PMCID: PMC11171773 DOI: 10.3390/ijms25115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on Escherichia coli's (E. coli) aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism's metabolic shifts. By applying our algorithm to a comprehensive E. coli regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of E. coli's AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, soxR and oxyR, activate fur, modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators ompR and lrhA, ultimately affecting the cell motility gene flhD, unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.
Collapse
Affiliation(s)
- Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Runbo Mao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Jiatong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Jingyi Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Zihao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Xiang Ji
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Shenghan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yanzhe Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Shih-Chung Yen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yang-Chi-Duang Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| |
Collapse
|
12
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Meimetis N, Lauffenburger DA, Nilsson A. Inference of drug off-target effects on cellular signaling using interactome-based deep learning. iScience 2024; 27:109509. [PMID: 38591003 PMCID: PMC11000001 DOI: 10.1016/j.isci.2024.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Many diseases emerge from dysregulated cellular signaling, and drugs are often designed to target specific signaling proteins. Off-target effects are, however, common and may ultimately result in failed clinical trials. Here we develop a computer model of the cell's transcriptional response to drugs for improved understanding of their mechanisms of action. The model is based on ensembles of artificial neural networks and simultaneously infers drug-target interactions and their downstream effects on intracellular signaling. With this, it predicts transcription factors' activities, while recovering known drug-target interactions and inferring many new ones, which we validate with an independent dataset. As a case study, we analyze the effects of the drug Lestaurtinib on downstream signaling. Alongside its intended target, FLT3, the model predicts an inhibition of CDK2 that enhances the downregulation of the cell cycle-critical transcription factor FOXM1. Our approach can therefore enhance our understanding of drug signaling for therapeutic design.
Collapse
Affiliation(s)
- Nikolaos Meimetis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Cell and Molecular Biology, SciLifeLab, Karolinska Institutet, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE 41296, Sweden
| |
Collapse
|
14
|
Burtscher ML, Gade S, Garrido-Rodriguez M, Rutkowska A, Werner T, Eberl HC, Petretich M, Knopf N, Zirngibl K, Grandi P, Bergamini G, Bantscheff M, Fälth-Savitski M, Saez-Rodriguez J. Network integration of thermal proteome profiling with multi-omics data decodes PARP inhibition. Mol Syst Biol 2024; 20:458-474. [PMID: 38454145 PMCID: PMC10987601 DOI: 10.1038/s44320-024-00025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Complex disease phenotypes often span multiple molecular processes. Functional characterization of these processes can shed light on disease mechanisms and drug effects. Thermal Proteome Profiling (TPP) is a mass-spectrometry (MS) based technique assessing changes in thermal protein stability that can serve as proxies of functional protein changes. These unique insights of TPP can complement those obtained by other omics technologies. Here, we show how TPP can be integrated with phosphoproteomics and transcriptomics in a network-based approach using COSMOS, a multi-omics integration framework, to provide an integrated view of transcription factors, kinases and proteins with altered thermal stability. This allowed us to recover consequences of Poly (ADP-ribose) polymerase (PARP) inhibition in ovarian cancer cells on cell cycle and DNA damage response as well as interferon and hippo signaling. We found that TPP offers a complementary perspective to other omics data modalities, and that its integration allowed us to obtain a more complete molecular overview of PARP inhibition. We anticipate that this strategy can be used to integrate functional proteomics with other omics to study molecular processes.
Collapse
Affiliation(s)
- Mira L Burtscher
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Martin Garrido-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | - Katharina Zirngibl
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
| | | | | | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.
| |
Collapse
|
15
|
Schäfer PSL, Dimitrov D, Villablanca EJ, Saez-Rodriguez J. Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system. Nat Immunol 2024; 25:405-417. [PMID: 38413722 DOI: 10.1038/s41590-024-01768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The immune system comprises diverse specialized cell types that cooperate to defend the host against a wide range of pathogenic threats. Recent advancements in single-cell and spatial multi-omics technologies provide rich information about the molecular state of immune cells. Here, we review how the integration of single-cell and spatial multi-omics data with prior knowledge-gathered from decades of detailed biochemical studies-allows us to obtain functional insights, focusing on gene regulatory processes and cell-cell interactions. We present diverse applications in immunology and critically assess underlying assumptions and limitations. Finally, we offer a perspective on the ongoing technological and algorithmic developments that promise to get us closer to a systemic mechanistic understanding of the immune system.
Collapse
Affiliation(s)
- Philipp Sven Lars Schäfer
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Daniel Dimitrov
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
16
|
Uatay A, Gall L, Irons L, Tewari SG, Zhu XS, Gibbs M, Kimko H. Physiological Indirect Response Model to Omics-Powered Quantitative Systems Pharmacology Model. J Pharm Sci 2024; 113:11-21. [PMID: 37898164 DOI: 10.1016/j.xphs.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Over the past several decades, mathematical modeling has been applied to increasingly wider scopes of questions in drug development. Accordingly, the range of modeling tools has also been evolving, as showcased by contributions of Jusko and colleagues: from basic pharmacokinetics/pharmacodynamics (PK/PD) modeling to today's platform-based approach of quantitative systems pharmacology (QSP) modeling. Aimed at understanding the mechanism of action of investigational drugs, QSP models characterize systemic effects by incorporating information about cellular signaling networks, which is often represented by omics data. In this perspective, we share a few examples illustrating approaches for the integration of omics into mechanistic QSP modeling. We briefly overview how the evolution of PK/PD modeling into QSP has been accompanied by an increase in available data and the complexity of mathematical methods that integrate it. We discuss current gaps and challenges of integrating omics data into QSP models and propose several potential areas where integrated QSP and omics modeling may benefit drug development.
Collapse
Affiliation(s)
- Aydar Uatay
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Cambridge, United Kingdom.
| | - Louis Gall
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Cambridge, United Kingdom
| | - Linda Irons
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Waltham, MA, United States
| | - Shivendra G Tewari
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Gaithersburg, MD, United States
| | - Xu Sue Zhu
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Waltham, MA, United States
| | - Megan Gibbs
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, R&D Biopharmaceuticals, Gaithersburg, MD, United States.
| |
Collapse
|
17
|
Alexandrov T, Saez‐Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol 2023; 19:e10571. [PMID: 37842805 PMCID: PMC10632737 DOI: 10.15252/msb.202110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/17/2023] Open
Abstract
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- BioInnovation InstituteCopenhagenDenmark
| | - Julio Saez‐Rodriguez
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Sinem K Saka
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
18
|
Somers J, Fenner M, Kong G, Thirumalaisamy D, Yashar WM, Thapa K, Kinali M, Nikolova O, Babur Ö, Demir E. A framework for considering prior information in network-based approaches to omics data analysis. Proteomics 2023; 23:e2200402. [PMID: 37986684 DOI: 10.1002/pmic.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023]
Abstract
For decades, molecular biologists have been uncovering the mechanics of biological systems. Efforts to bring their findings together have led to the development of multiple databases and information systems that capture and present pathway information in a computable network format. Concurrently, the advent of modern omics technologies has empowered researchers to systematically profile cellular processes across different modalities. Numerous algorithms, methodologies, and tools have been developed to use prior knowledge networks (PKNs) in the analysis of omics datasets. Interestingly, it has been repeatedly demonstrated that the source of prior knowledge can greatly impact the results of a given analysis. For these methods to be successful it is paramount that their selection of PKNs is amenable to the data type and the computational task they aim to accomplish. Here we present a five-level framework that broadly describes network models in terms of their scope, level of detail, and ability to inform causal predictions. To contextualize this framework, we review a handful of network-based omics analysis methods at each level, while also describing the computational tasks they aim to accomplish.
Collapse
Affiliation(s)
- Julia Somers
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Madeleine Fenner
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Garth Kong
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
- Division of Oncological Sciences, Oregon Health and Science University, Portland, Oregon, USA
| | - Dharani Thirumalaisamy
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - William M Yashar
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
- Division of Oncological Sciences, Oregon Health and Science University, Portland, Oregon, USA
| | - Kisan Thapa
- Computer Science Department, University of Massachusetts Boston, College of Science and Mathematics, Boston, Massachusetts, USA
| | - Meric Kinali
- Computer Science Department, University of Massachusetts Boston, College of Science and Mathematics, Boston, Massachusetts, USA
| | - Olga Nikolova
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
- Division of Oncological Sciences, Oregon Health and Science University, Portland, Oregon, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts Boston, College of Science and Mathematics, Boston, Massachusetts, USA
| | - Emek Demir
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
Badia-I-Mompel P, Wessels L, Müller-Dott S, Trimbour R, Ramirez Flores RO, Argelaguet R, Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet 2023; 24:739-754. [PMID: 37365273 DOI: 10.1038/s41576-023-00618-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.
Collapse
Affiliation(s)
- Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Lorna Wessels
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty, MannHeim Heidelberg University, Mannheim, Germany
| | - Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Rémi Trimbour
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany.
| |
Collapse
|
20
|
Lim MCC, Jantaree P, Naumann M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer 2023:S2405-8033(23)00080-8. [PMID: 37230895 DOI: 10.1016/j.trecan.2023.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori is a human microbial pathogen that colonizes the gastric epithelium and causes type B gastritis with varying degrees of active inflammatory infiltrates. The underlying chronic inflammation induced by H. pylori and other environmental factors may promote the development of neoplasms and adenocarcinoma of the stomach. Dysregulation of various cellular processes in the gastric epithelium and in different cells of the microenvironment is a hallmark of H. pylori infection. We address the conundrum of H. pylori-associated apoptosis and review distinct mechanisms induced in host cells that either promote or suppress apoptosis in gastric epithelial cells, often simultaneously. We highlight key processes in the microenvironment that contribute to apoptosis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Michelle C C Lim
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
21
|
Engler Hart C, Ence D, Healey D, Domingo-Fernández D. On the correspondence between the transcriptomic response of a compound and its effects on its targets. BMC Bioinformatics 2023; 24:207. [PMID: 37208587 DOI: 10.1186/s12859-023-05337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Better understanding the transcriptomic response produced by a compound perturbing its targets can shed light on the underlying biological processes regulated by the compound. However, establishing the relationship between the induced transcriptomic response and the target of a compound is non-trivial, partly because targets are rarely differentially expressed. Therefore, connecting both modalities requires orthogonal information (e.g., pathway or functional information). Here, we present a comprehensive study aimed at exploring this relationship by leveraging thousands of transcriptomic experiments and target data for over 2000 compounds. Firstly, we confirm that compound-target information does not correlate as expected with the transcriptomic signatures induced by a compound. However, we reveal how the concordance between both modalities increases by connecting pathway and target information. Additionally, we investigate whether compounds that target the same proteins induce a similar transcriptomic response and conversely, whether compounds with similar transcriptomic responses share the same target proteins. While our findings suggest that this is generally not the case, we did observe that compounds with similar transcriptomic profiles are more likely to share at least one protein target and common therapeutic applications. Finally, we demonstrate how to exploit the relationship between both modalities for mechanism of action deconvolution by presenting a case scenario involving a few compound pairs with high similarity.
Collapse
|
22
|
Hosseini-Gerami L, Higgins IA, Collier DA, Laing E, Evans D, Broughton H, Bender A. Benchmarking causal reasoning algorithms for gene expression-based compound mechanism of action analysis. BMC Bioinformatics 2023; 24:154. [PMID: 37072707 PMCID: PMC10111792 DOI: 10.1186/s12859-023-05277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Elucidating compound mechanism of action (MoA) is beneficial to drug discovery, but in practice often represents a significant challenge. Causal Reasoning approaches aim to address this situation by inferring dysregulated signalling proteins using transcriptomics data and biological networks; however, a comprehensive benchmarking of such approaches has not yet been reported. Here we benchmarked four causal reasoning algorithms (SigNet, CausalR, CausalR ScanR and CARNIVAL) with four networks (the smaller Omnipath network vs. 3 larger MetaBase™ networks), using LINCS L1000 and CMap microarray data, and assessed to what extent each factor dictated the successful recovery of direct targets and compound-associated signalling pathways in a benchmark dataset comprising 269 compounds. We additionally examined impact on performance in terms of the functions and roles of protein targets and their connectivity bias in the prior knowledge networks. RESULTS According to statistical analysis (negative binomial model), the combination of algorithm and network most significantly dictated the performance of causal reasoning algorithms, with the SigNet recovering the greatest number of direct targets. With respect to the recovery of signalling pathways, CARNIVAL with the Omnipath network was able to recover the most informative pathways containing compound targets, based on the Reactome pathway hierarchy. Additionally, CARNIVAL, SigNet and CausalR ScanR all outperformed baseline gene expression pathway enrichment results. We found no significant difference in performance between L1000 data or microarray data, even when limited to just 978 'landmark' genes. Notably, all causal reasoning algorithms also outperformed pathway recovery based on input DEGs, despite these often being used for pathway enrichment. Causal reasoning methods performance was somewhat correlated with connectivity and biological role of the targets. CONCLUSIONS Overall, we conclude that causal reasoning performs well at recovering signalling proteins related to compound MoA upstream from gene expression changes by leveraging prior knowledge networks, and that the choice of network and algorithm has a profound impact on the performance of causal reasoning algorithms. Based on the analyses presented here this is true for both microarray-based gene expression data as well as those based on the L1000 platform.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Department of Chemistry, Centre for Molecular Informatics, Cambridge, UK
- Ignota Labs, London, UK
| | | | - David A Collier
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London, London, UK
- Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Bracknell, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Bracknell, UK
- DeepMind, London, UK
| | - Howard Broughton
- Centre de Investigación, Eli Lilly and Company, Alcobendas, Spain
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, Cambridge, UK.
| |
Collapse
|
23
|
Howell R, Davies J, Clarke MA, Appios A, Mesquita I, Jayal Y, Ringham-Terry B, Boned Del Rio I, Fisher J, Bennett CL. Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling. SCIENCE ADVANCES 2023; 9:eadd1992. [PMID: 37043573 PMCID: PMC10096595 DOI: 10.1126/sciadv.add1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.
Collapse
Affiliation(s)
| | | | - Matthew A. Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anna Appios
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Inês Mesquita
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Yashoda Jayal
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Ben Ringham-Terry
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Isabel Boned Del Rio
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | |
Collapse
|
24
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|