1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Nong D, Haviland ZK, Zexer N, Pfaff SA, Cosgrove DJ, Tien M, Anderson CT, Hancock WO. Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose. Proc Natl Acad Sci U S A 2024; 121:e2322567121. [PMID: 38648472 PMCID: PMC11067010 DOI: 10.1073/pnas.2322567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Daguan Nong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Zachary K. Haviland
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Nerya Zexer
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Sarah A. Pfaff
- Department of Biology, Pennsylvania State University, University Park, PA16802
- Intercollege Graduate Degree Program in Plant Biology, Department of Biology, The Pennsylvania State University, University Park, PA16802
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Charles T. Anderson
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
| |
Collapse
|
3
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
4
|
Heissler SM, Arora AS, Billington N, Sellers JR, Chinthalapudi K. Cryo-EM structure of the autoinhibited state of myosin-2. SCIENCE ADVANCES 2021; 7:eabk3273. [PMID: 34936462 PMCID: PMC8694606 DOI: 10.1126/sciadv.abk3273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 05/20/2023]
Abstract
We solved the near-atomic resolution structure of smooth muscle myosin-2 in the autoinhibited state (10S) using single-particle cryo–electron microscopy. The 3.4-Å structure reveals the precise molecular architecture of 10S and the structural basis for myosin-2 regulation. We reveal the position of the phosphorylation sites that control myosin autoinhibition and activation by phosphorylation of the regulatory light chain. Further, we present a previously unidentified conformational state in myosin-2 that traps ADP and Pi produced by the hydrolysis of ATP in the active site. This noncanonical state represents a branch of the myosin enzyme cycle and explains the autoinhibition of the enzyme function of 10S along with its reduced affinity for actin. Together, our structure defines the molecular mechanisms that drive 10S formation, stabilization, and relief by phosphorylation of the regulatory light chain.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amandeep S. Arora
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Abstract
Quantum-mechanically driven charge polarization and charge transfer are ubiquitous in biomolecular systems, controlling reaction rates, allosteric interactions, ligand-protein binding, membrane transport, and dynamically driven structural transformations. Molecular dynamics (MD) simulations of these processes require quantum mechanical (QM) information in order to accurately describe their reactive dynamics. However, current techniques-empirical force fields, subsystem approaches, ab initio MD, and machine learning-vary in their ability to achieve a consistent chemical description across multiple atom types, and at scale. Here we present a physics-based, atomistic force field, the ensemble DFT charge-transfer embedded-atom method, in which QM forces are described at a uniform level of theory across all atoms, avoiding the need for explicit solution of the Schrödinger equation or large, precomputed training data sets. Coupling between the electronic and atomistic length scales is effected through an ensemble density functional theory formulation of the embedded-atom method originally developed for elemental materials. Charge transfer is expressed in terms of ensembles of ionic state basis densities of individual atoms, and charge polarization, in terms of atomic excited-state basis densities. This provides a highly compact yet general representation of the force field, encompassing both local and system-wide effects. Charge rearrangement is realized through the evolution of ensemble weights, adjusted at each dynamical time step via chemical potential equalization.
Collapse
Affiliation(s)
- Susan R Atlas
- Department of Chemistry and Chemical Biology, Department of Physics and Astronomy, and Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
6
|
Sato T, Ohnuki J, Takano M. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery. J Chem Phys 2018; 147:215101. [PMID: 29221399 DOI: 10.1063/1.5004809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
7
|
Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N. Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton (Hoboken) 2017; 74:512-527. [PMID: 29087038 DOI: 10.1002/cm.21417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.,Biological and Molecular Dynamics, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - George Mogami
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hideyuki Ohsugi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takahiro Watanabe
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
8
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
9
|
Sato T, Ohnuki J, Takano M. Dielectric Allostery of Protein: Response of Myosin to ATP Binding. J Phys Chem B 2016; 120:13047-13055. [PMID: 28030954 DOI: 10.1021/acs.jpcb.6b10003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein uses allostery to execute biological function. The physical mechanism underlying the allostery has long been studied, with the focus on the mechanical response by ligand binding. Here, we highlight the electrostatic response, presenting an idea of "dielectric allostery". We conducted molecular dynamics simulations of myosin, a motor protein with allostery, and analyzed the response to ATP binding which is a crucial step in force-generating function, forcing myosin to unbind from the actin filament. We found that the net negative charge of ATP causes a large-scale, anisotropic dielectric response in myosin, altering the electrostatic potential in the distant actin-binding region and accordingly retracting a positively charged actin-binding loop. A large-scale rearrangement of electrostatic bond network was found to occur upon ATP binding. Since proteins are dielectric and ligands are charged/polar in general, the dielectric allostery might underlie a wide spectrum of functions by proteins.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
Houdusse A, Sweeney HL. How Myosin Generates Force on Actin Filaments. Trends Biochem Sci 2016; 41:989-997. [PMID: 27717739 DOI: 10.1016/j.tibs.2016.09.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
How myosin interacts with actin to generate force is a subject of considerable controversy. The major debate centers on understanding at what point in force generation the inorganic phosphate is released with respect to the lever arm swing, or powerstroke. Resolving the controversy is essential for understanding how force is produced as well as the mechanisms underlying disease-causing mutations in myosin. Recent structural insights into the powerstroke have come from a high-resolution structure of myosin in a previously unseen state and from an electron cryomicroscopy (cryo-EM) 3D reconstruction of the actin-myosin-MgADP complex. Here, we argue that seemingly contradictory data from time-resolved fluorescence resonance energy transfer (FRET) studies can be reconciled, and we put forward a model for myosin force generation on actin.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France; Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris cedex 05, France.
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, FL 32610-0267, USA.
| |
Collapse
|
11
|
Lu J, Jiang C, Li X, Jiang L, Li Z, Schneider-Poetsch T, Liu J, Yu K, Liu JO, Jiang H, Luo C, Dang Y. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation. Nucleic Acids Res 2015; 43:10157-67. [PMID: 26464436 PMCID: PMC4666354 DOI: 10.1093/nar/gkv1033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/30/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.
Collapse
Affiliation(s)
- Junyan Lu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenxiao Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lizhi Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | - Jianwei Liu
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
A new mechanokinetic model for muscle contraction, where force and movement are triggered by phosphate release. J Muscle Res Cell Motil 2014; 35:295-306. [PMID: 25319769 DOI: 10.1007/s10974-014-9391-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
The atomic structure of myosin-S1 suggests that its working stroke, which generates tension and shortening in muscle, is triggered by the release of inorganic phosphate from the active site. This mechanism is the basis of a new mechanokinetic model for contractility, using the biochemical actomyosin ATPase cycle, strain-dependent kinetics and dimeric myosins on buckling rods. In this model, phosphate-dependent aspects of contractility arise from a rapid reversible release of phosphate from the initial bound state (A.M.ADP.Pi), which triggers the stroke. Added phosphate drives bound myosin towards this initial state, and the transient tension response to a phosphate jump reflects the rate at which it detaches from actin. Predictions for the tensile and energetic properties of striated muscle as a function of phosphate level, including the tension responses to length steps and Pi-jumps, are compared with experimental data from rabbit psoas fibres at 10 °C. The phosphate sensitivity of isometric tension is maximal when the actin affinity of M.ADP.Pi is near unity. Hence variations in actin affinity modulate the phosphate dependence of isometric tension, and may explain why phosphate sensitivity is temperature-dependent or absent in different muscles.
Collapse
|
14
|
Phosphate release coupled to rotary motion of F1-ATPase. Proc Natl Acad Sci U S A 2013; 110:16468-73. [PMID: 24062450 DOI: 10.1073/pnas.1305497110] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the "empty" E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ~1-ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions.
Collapse
|
15
|
Wazawa T, Yasui SI, Morimoto N, Suzuki M. 1,3-Diethylurea-enhanced Mg-ATPase activity of skeletal muscle myosin with a converse effect on the sliding motility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2620-9. [PMID: 23954499 DOI: 10.1016/j.bbapap.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤1M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
Single molecule measurements have shown that a muscle myosin step is driven by biased Brownian movement. Furthermore, they have also demonstrated that in response to strain in the backward direction a detached myosin head preferentially attaches to the forward direction due to an accelerated transition from a weak binding to strong binding state. Because they are consistent with the original Huxley model for muscle contraction, we have built a model that describes macroscopic muscle characteristics based on these single molecule results.
Collapse
Affiliation(s)
- Toshio Yanagida
- Graduate School of Frontier Biosciences, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
17
|
Düttmann M, Togashi Y, Yanagida T, Mikhailov AS. Myosin-V as a mechanical sensor: an elastic network study. Biophys J 2012; 102:542-51. [PMID: 22325277 DOI: 10.1016/j.bpj.2011.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
According to recent experiments, the molecular-motor myosin behaves like a strain sensor, exhibiting different functional responses when loads in opposite directions are applied to its tail. Within an elastic-network model, we explore the sensitivity of the protein to the forces acting on the tail and find, in agreement with experiments, that such forces invoke conformational changes that should affect filament binding and ADP release. Furthermore, conformational responses of myosin to the application of forces to individual residues in its principal functional regions are systematically investigated and a detailed sensitivity map of myosin-V is thus obtained. The results suggest that the strain-sensor behavior is involved in the intrinsic operation of this molecular motor.
Collapse
Affiliation(s)
- Markus Düttmann
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Minimum energy reaction profiles for ATP hydrolysis in myosin. J Mol Graph Model 2011; 31:1-4. [PMID: 21839658 DOI: 10.1016/j.jmgm.2011.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022]
Abstract
The minimum energy reaction profiles corresponding to two possible reaction mechanisms of adenosine triphosphate (ATP) hydrolysis in myosin are computed in this work within the framework of the quantum mechanics-molecular mechanics (QM/MM) method by using the same partitioning of the model system to the QM and MM parts and the same computational protocol. On the first reaction route, one water molecule performs nucleophilic attack at the phosphorus center P(γ) from ATP while the second water molecule in the closed protein cleft serves as a catalytic base assisted by the Glu residue from the myosin salt bridge. According to the present QM/MM calculations consistent with the results of kinetic studies this reaction pathway is characterized by a low activation energy barrier about 10 kcal/mol. The computed activation energy barrier for the second mechanism, which assumes the penta-coordinated oxyphosphorane transition state upon involvement of single water molecule in the reaction, is considerably higher than that for the two-water mechanism.
Collapse
|
19
|
Zheng W. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin. Proteins 2011; 79:2291-305. [PMID: 21590746 DOI: 10.1002/prot.23055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 11/11/2022]
Abstract
To explore the structural basis of processive stepping of myosin V along filamentous actin, we have performed comprehensive modeling of its key conformational states and transitions with an unprecedented residue level of details. We have built structural models for a myosin V monomer complexed with filamentous actin at four biochemical states [adenosine diphosphate (ATP)-, adenosine diphosphate (ADP)-phosphate-, ADP-bound or nucleotide-free]. Then we have modeled a myosin V dimer (consisting of lead and rear head) at various two-head-bound states with nearly straight lever arms rotated by intramolecular strain. Next, we have performed transition pathway modeling to determine the most favorable sequence of transitions (namely, phosphate release at the lead head followed by ADP release at the rear head, while ADP release at the lead head is inhibited), which underlie the kinetic coordination between the two heads. Finally, we have used transition pathway modeling to reveal the order of structural changes during three key biochemical transitions (phosphate release at the lead head, ADP release and ATP binding at the rear head), which shed lights on the strain-dependence of the allosterically coupled motions at various stages of myosin V's work cycle. Our modeling results are in agreement with and offer structural insights to many results of kinetic, single-molecule and structural studies of myosin V.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
McConnell RE, Benesh AE, Mao S, Tabb DL, Tyska MJ. Proteomic analysis of the enterocyte brush border. Am J Physiol Gastrointest Liver Physiol 2011; 300:G914-26. [PMID: 21330445 PMCID: PMC3094140 DOI: 10.1152/ajpgi.00005.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function.
Collapse
Affiliation(s)
| | | | - Suli Mao
- Departments of 1Cell and Developmental Biology and
| | - David L. Tabb
- 2Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
21
|
Pi release from myosin: a simulation analysis of possible pathways. Structure 2010; 18:458-70. [PMID: 20399183 DOI: 10.1016/j.str.2010.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/21/2010] [Indexed: 11/22/2022]
Abstract
The release of phosphate (Pi) is an important element in actomyosin function and has been shown to be accelerated by the binding of myosin to actin. To provide information about the structural elements important for Pi release, possible escape pathways from various isolated myosin II structures have been determined by molecular dynamics simulations designed for studying such slow processes. The residues forming the pathways were identified and their role was evaluated by mutant simulations. Pi release is slow in the pre-powerstroke structure, an important element in preventing the powerstroke prior to actin binding, and is much more rapid for Pi modeled into the post-rigor and rigor-like structures. The previously proposed backdoor route is dominant in the pre-powerstroke and post-rigor states, whereas a different path is most important in the rigor-like state. This finding suggests a mechanism for the actin-activated acceleration of Pi release.
Collapse
|
22
|
Zheng W. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Proteins 2010; 78:638-60. [PMID: 19790263 DOI: 10.1002/prot.22594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To decrypt the mechanistic basis of myosin motor function, it is essential to probe the conformational changes in actomyosin with high spatial and temporal resolutions. In a computational effort to meet this challenge, we have performed a multiscale modeling of the allosteric couplings and transition pathway of actomyosin complex by combining coarse-grained modeling of the entire complex with all-atom molecular dynamics simulations of the active site. Our modeling of allosteric couplings at the pre-powerstroke state has pinpointed key actin-activated couplings to distant myosin parts which are critical to force generation and the sequential release of phosphate and ADP. At the post-powerstroke state, we have identified isoform-dependent couplings which underlie the reciprocal coupling between actin binding and nucleotide binding in fast Myosin II, and load-dependent ADP release in Myosin V. Our modeling of transition pathway during powerstroke has outlined a clear sequence of structural events triggered by actin binding, which lead to subsequent force generation, twisting of central beta-sheet, and the sequential release of phosphate and ADP. Finally we have performed atomistic simulations of active-site dynamics based on an on-path "transition-state" myosin conformation, which has revealed significantly weakened coordination of phosphate by Switch II, and a disrupted key salt bridge between Switch I and II. Meanwhile, the coordination of MgADP by Switch I and P loop is less perturbed. As a result, the phosphate can be released prior to MgADP. This study has shed new lights on the controversy over the structural mechanism of actin-activated phosphate release and force generation in myosin motor.
Collapse
Affiliation(s)
- Wenjun Zheng
- Physics Department, University at Buffalo, Buffalo, New York 14260, USA.
| |
Collapse
|
23
|
Kawakubo T, Okada O, Minami T. Dynamic conformational changes due to the ATP hydrolysis in the motor domain of myosin: 10-ns molecular dynamics simulations. Biophys Chem 2009; 141:75-86. [PMID: 19176270 DOI: 10.1016/j.bpc.2008.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 11/20/2022]
Abstract
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament.
Collapse
|
24
|
Kaliman I, Grigorenko B, Shadrina M, Nemukhin A. Opening the Arg-Glu salt bridge in myosin: computational study. Phys Chem Chem Phys 2009; 11:4804-7. [DOI: 10.1039/b900582j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Fulga F, Nicolau DV, Nicolau DV. Models of protein linear molecular motors for dynamic nanodevices. Integr Biol (Camb) 2008; 1:150-69. [PMID: 20023800 DOI: 10.1039/b814985b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices.
Collapse
Affiliation(s)
- Florin Fulga
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
26
|
Actomyosin interaction: mechanical and energetic properties in different nucleotide binding states. Int J Mol Sci 2008; 9:1927-1943. [PMID: 19325727 PMCID: PMC2635604 DOI: 10.3390/ijms9101927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/17/2022] Open
Abstract
The mechanics of the actomyosin interaction is central in muscle contraction and intracellular trafficking. A better understanding of the events occurring in the actomyosin complex requires the examination of all nucleotide-dependent states and of the energetic features associated with the dynamics of the cross-bridge cycle. The aim of the present study is to estimate the interaction strength between myosin in nucleotide-free, ATP, ADP·Pi and ADP states and actin monomer. The molecular models of the complexes were constructed based on cryo-electron microscopy maps and the interaction properties were estimated by means of a molecular dynamics approach, which simulate the unbinding of the complex applying a virtual spring to the core of myosin protein. Our results suggest that during an ATP hydrolysis cycle the affinity of myosin for actin is modulated by the presence and nature of the nucleotide in the active site of the myosin motor domain. When performing unbinding simulations with a pulling rate of 0.001 nm/ps, the maximum pulling force applied to the myosin during the experiment is about 1nN. Under these conditions the interaction force between myosin and actin monomer decreases from 0.83 nN in the nucleotide-free state to 0.27 nN in the ATP state, and increases to 0.60 nN after ATP hydrolysis and Pi release from the complex (ADP state).
Collapse
|
27
|
Harris MJ, Woo HJ. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:1-12. [PMID: 18568345 DOI: 10.1007/s00249-008-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
Collapse
Affiliation(s)
- Michael J Harris
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
28
|
Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle. Proc Natl Acad Sci U S A 2008; 105:8631-6. [PMID: 18552179 DOI: 10.1073/pnas.0710793105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin is an actin-based motor protein that generates force by cycling between actin-attached (strong binding: ADP or rigor) and actin-detached (weak binding: ATP or ADP.P(i)) states during its ATPase cycle. However, it remains unclear what specific conformational changes in the actin binding site take place on binding to actin, and how these structural changes lead to product release and the production of force and motion. We studied the dynamics of the actin binding region of myosin V by using fluorescence resonance energy transfer (FRET) to monitor conformational changes in the upper-50-kDa domain of the actin binding cleft in the weak and strong actin binding states. Steady-state and lifetime data monitoring the FRET signal suggest that the cleft is in a more open conformation in the weak actin binding states. Transient kinetic experiments suggest that a rapid conformational change occurs, which is consistent with cleft closure before actin-activated phosphate release. Our results have identified a pre-force-generation actomyosin ADP.P(i) state, and suggest force generation may occur from a state not yet seen by crystallography in which the actin binding cleft and the nucleotide binding pocket are closed. Computational modeling uncovers dramatic changes in the rigidity of the upper-50-kDa domain in different nucleotide states, which suggests that the intrinsic flexibility of this domain allows myosin motors to accomplish simultaneous tight nucleotide binding (closed nucleotide binding pocket) and high-affinity actin binding (closed actin binding cleft).
Collapse
|
29
|
Silman I, Sussman JL. Acetylcholinesterase: how is structure related to function? Chem Biol Interact 2008; 175:3-10. [PMID: 18586019 DOI: 10.1016/j.cbi.2008.05.035] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
In accordance with its biological role, termination of neurotransmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine, acetylcholinesterase is one of nature's most efficient enzymes. Solution of its three-dimensional structure revealed that its active site is located at the bottom of a deep and narrow gorge. Such an architecture was unanticipated in view of its high turnover number. The present review examines how the highly specialized structure of acetylcholinesterase, with its sequestered active site, contributes to its catalytic efficacy, and discusses how the traffic of substrate and products to and from the active site is controlled.
Collapse
Affiliation(s)
- Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
30
|
Abstract
Molecular modeling techniques have truly come of age in recent decades, and here we cover several of the most commonly used techniques, namely molecular dynamics, Brownian dynamics, and molecular docking. In each case, we explain the physical basis and limitations of the various techniques and then illustrate their application to various problems related to the cytoskeleton. This set of studies covers a relatively wide range of examples and is comprehensive enough to clearly see how these techniques could be applied to other systems. Finally, we cover several related methodologies that expand on these basic techniques to allow for more detailed and specific simulation and analysis.
Collapse
Affiliation(s)
- Xiange Zheng
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
31
|
Burghardt TP, Hu JY, Ajtai K. Myosin dynamics on the millisecond time scale. Biophys Chem 2007; 131:15-28. [PMID: 17913331 PMCID: PMC2505346 DOI: 10.1016/j.bpc.2007.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022]
Abstract
Myosin is a motor protein associating with actin and ATP. It translates along actin filaments against a force by transduction of free energy liberated with ATP hydrolysis. Various myosin crystal structures define time points during ATPase showing the protein undergoes large conformation change during transduction over a cycle with approximately 10 ms periodicity. The protein conformation trajectory between two intermediates in the cycle is surmised by non-equilibrium Monte Carlo simulation utilizing free-energy minimization. The trajectory shows myosin transduction of free energy to mechanical work giving evidence for: (i) a causal relationship between product release and work production in the native isoform that is correctly disrupted in a chemically modified protein, (ii) the molecular basis of ATP-sensitive tryptophan fluorescence enhancement and acrylamide quenching, (iii) an actin-binding site peptide containing the free-energy barrier to ATPase product release defining the rate limiting step and, (iv) a scenario for actin-activation of myosin ATPase.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
32
|
Ganoth A, Nachliel E, Friedman R, Gutman M. Myosin V movement: lessons from molecular dynamics studies of IQ peptides in the lever arm. Biochemistry 2007; 46:14524-36. [PMID: 18020453 DOI: 10.1021/bi701342y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myosin V moves along actin filaments by an arm-over-arm motion, known as the lever mechanism. Each of its arms is composed of six consecutive IQ peptides that bind light chain proteins, such as calmodulin or calmodulin-like proteins. We have employed a multistage approach in order to investigate the mechanochemical structural basis of the movement of myosin V from the budding yeast Saccharomyces cerevisiae. For that purpose, we previously carried out molecular dynamics simulations of the Mlc1p-IQ2 and the Mlc1p-IQ4 protein-peptide complexes, and the present study deals with the structures of the IQ peptides when stripped from the Mlc1p protein. We have found that the crystalline structure of the IQ2 peptide retains a stable rodlike configuration in solution, whereas that of the IQ4 peptide grossly deviates from its X-ray conformation exhibiting an intrinsic tendency to curve and bend. The refolding process of the IQ4 peptide is initially driven by electrostatic interactions followed by nonpolar stabilization. Its bending appears to be affected by the ionic strength, when ionic strength higher than approximately 300 mM suppresses it from flexing. Considering that a poly-IQ sequence is the lever arm of myosin V, we suggest that the arm may harbor a joint, localized within the IQ4 sequence, enabling the elasticity of the neck of myosin V. Given that a poly-IQ sequence is present at the entire class of myosin V and the possibility that the yeast's myosin V molecule can exist either as a nonprocessive monomer or as a processive dimer depending on conditions (Krementsova, E. B., Hodges, A. R., Lu, H., and Trybus, K. M. (2006) J. Biol. Chem. 281, 6079-6086), our observations may account for a general structural feature for the myosins' arm embedded flexibility.
Collapse
Affiliation(s)
- Assaf Ganoth
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
33
|
Human deafness mutation E385D disrupts the mechanochemical coupling and subcellular targeting of myosin-1a. Biophys J 2007; 94:L5-7. [PMID: 17981900 DOI: 10.1529/biophysj.107.122689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Missense mutations in the membrane-binding actin-based motor protein, myosin-1a (Myo1a), have recently been linked to sensorineural deafness in humans. One of these mutations, E385D, impacts a residue in the switch II region of the motor domain that is present in virtually all members of the myosin superfamily. We sought to examine the impact of E385D on the function of Myo1a, both in terms of mechanochemical activity and ability to target to actin-rich microvilli in polarized epithelial cells. While E385D-Myo1a demonstrated actin-activated ATPase activity, the V(MAX) was reduced threefold relative to wild-type. Despite maintaining an active mechanochemical cycle, E385D-Myo1a was unable to move actin in the sliding filament assay. Intriguingly, when an enhanced-green-fluorescent-protein-tagged form of E385D-Myo1a was stably expressed in polarized epithelial cells, this mutation abolished the microvillar targeting normally demonstrated by wild-type Myo1a. Notably, these data are the first to suggest that mechanical activity is essential for proper localization of Myo1a in microvilli. These studies also provide a unique example of how even the most mild substitution of invariant switch II residues can effectively uncouple enzymatic and mechanical activity of the myosin motor domain.
Collapse
|
34
|
Tang S, Liao JC, Dunn AR, Altman RB, Spudich JA, Schmidt JP. Predicting allosteric communication in myosin via a pathway of conserved residues. J Mol Biol 2007; 373:1361-73. [PMID: 17900617 PMCID: PMC2128046 DOI: 10.1016/j.jmb.2007.08.059] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 11/27/2022]
Abstract
We present a computational method that predicts a pathway of residues that mediate protein allosteric communication. The pathway is predicted using only a combination of distance constraints between contiguous residues and evolutionary data. We applied this analysis to find pathways of conserved residues connecting the myosin ATP binding site to the lever arm. These pathway residues may mediate the allosteric communication that couples ATP hydrolysis to the lever arm recovery stroke. Having examined pre-stroke conformations of Dictyostelium, scallop, and chicken myosin II as well as Dictyostelium myosin I, we observed a conserved pathway traversing switch II and the relay helix, which is consistent with the understood need for allosteric communication in this conformation. We also examined post-rigor and rigor conformations across several myosin species. Although initial residues of these paths are more heterogeneous, all but one of these paths traverse a consistent set of relay helix residues to reach the beginning of the lever arm. We discuss our results in the context of structural elements and reported mutational experiments, which substantiate the significance of the pre-stroke pathways. Our method provides a simple, computationally efficient means of predicting a set of residues that mediate allosteric communication. We provide a refined, downloadable application and source code (on https://simtk.org) to share this tool with the wider community (https://simtk.org/home/allopathfinder).
Collapse
Affiliation(s)
- Susan Tang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jung-Chi Liao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R. Dunn
- Department of Biochemistry, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Russ B. Altman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Jeanette P. Schmidt
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- *Corresponding author ()
| |
Collapse
|
35
|
Tiago T, Martel P, Gutiérrez-Merino C, Aureliano M. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:474-80. [PMID: 17382607 DOI: 10.1016/j.bbapap.2007.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/15/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
Decavanadate, a vanadate oligomer, is known to interact with myosin and to inhibit the ATPase activity, but the putative binding sites and the mechanism of inhibition are still to be clarified. We have previously proposed that the decavanadate (V(10)O(28)(6-)) inhibition of the actin-stimulated myosin ATPase activity is non-competitive towards both actin and ATP. A likely explanation for these results is that V(10) binds to the so-called back-door at the end of the Pi-tube opposite to the nucleotide-binding site. In order to further investigate this possibility, we have carried out molecular docking simulations of the V(10) oligomer on three different structures of the myosin motor domain of Dictyostelium discoideum, representing distinct states of the ATPase cycle. The results indicate a clear preference of V(10) to bind at the back-door, but only on the "open" structures where there is access to the phosphate binding-loop. It is suggested that V(10) acts as a "back-door stop" blocking the closure of the 50-kDa cleft necessary to carry out ATP-gamma-phosphate hydrolysis. This provides a simple explanation to the non-competitive behavior of V(10) and spurs the use of the oligomer as a tool to elucidate myosin back-door conformational changes in the process of muscle contraction.
Collapse
Affiliation(s)
- Teresa Tiago
- Departamento de Química e Bioquímica, FCT, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
36
|
Kikkawa M, Hirokawa N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J 2006; 25:4187-94. [PMID: 16946706 PMCID: PMC1570440 DOI: 10.1038/sj.emboj.7601299] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 08/01/2006] [Indexed: 11/08/2022] Open
Abstract
Kinesin is an ATP-driven microtubule (MT)-based motor fundamental to organelle transport. Although a number of kinesin crystal structures have been solved, the structural evidence for coupling between the bound nucleotide and the conformation of kinesin is elusive. In addition, the structural basis of the MT-induced ATPase activity of kinesin is not clear because of the absence of the MT in the structure. Here, we report cryo-electron microscopy structures of the monomeric kinesin KIF1A-MT complex in two nucleotide states at about 10 A resolution, sufficient to reveal the secondary structure. These high-resolution maps visualized clear structural changes that suggest a mechanical pathway from the nucleotide to the neck linker via the motor core rotation. In addition, new nucleotide binding pocket conformations are observed that are different from X-ray crystallographic structures; it is closed in the 5'-adenylyl-imidodiphosphate state, but open in the ADP state. These results suggest a structural model of biased diffusion movement of monomeric kinesin motor.
Collapse
Affiliation(s)
- Masahide Kikkawa
- Department of Cell Biology, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine Hongo, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. Tel.: +81 3 5841 3326; Fax: +81 3 5802 8646; E-mail:
| |
Collapse
|
37
|
Liu Y, Scolari M, Im W, Woo HJ. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study. Proteins 2006; 64:156-66. [PMID: 16645962 DOI: 10.1002/prot.20993] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detailed residue-wise interactions involved in the binding of myosin to actin in the rigor conformation without nucleotides have been examined using molecular dynamics simulations of the chicken skeletal myosin head complexed with two actin monomers, based on the cryo-microscopic model of Holmes et al. (Nature 2003;425:423-427). The overall interaction is largely electrostatic in nature, because of the charged residues in the four loops surrounding the central primary binding site. The 50k/20k loop, disordered in crystal structures and in simulations of free myosin in solution, was found to be in a conformation stabilized with 1 - 2 internal salt bridges. The cardiomyopathy loop forms 2 - 3 interprotein salt bridges with actin monomers upon binding, whereas its Arg405 residue, the mutation site associated with the hypertrophic cardiomyopathy, forms a strong salt bridge with Glu605 in the neighboring helix away from actin in the actin-bound myosin. The myopathy loop of the R405Q mutant maintains a high degree of two-strand beta-sheet character when bound to actin with the corresponding salt bridges broken.
Collapse
Affiliation(s)
- Yuemin Liu
- Department of Chemistry, University of Nevada, Reno 89557, USA
| | | | | | | |
Collapse
|
38
|
Woo HJ. Exploration of the conformational space of myosin recovery stroke via molecular dynamics. Biophys Chem 2006; 125:127-37. [PMID: 16889886 DOI: 10.1016/j.bpc.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/01/2006] [Accepted: 07/01/2006] [Indexed: 11/17/2022]
Abstract
Muscle contractions are driven by cyclic conformational changes of myosin, whose molecular mechanisms of operation are being elucidated by recent advances in crystallographic studies and single molecule experiments. To complement such structural studies and consider the energetics of the conformational changes of myosin head, umbrella sampling molecular dynamics (MD) simulations were performed with the all-atom model of the scallop myosin sub-fragment 1 (S1) with a bound ATP in solution in explicit water using the crystallographic near-rigor and transition state conformations as two references. The constraints on RMSD reaction coordinates used for the umbrella sampling were found to steer the conformational changes efficiently, and relatively close correlations have been observed between the set of characteristic structural changes including the lever arm rotation and the closing of the nucleotide binding pocket. The lever arm angle and key residue interaction distances in the nucleotide binding pocket and the relay helix show gradual changes along the recovery stroke reaction coordinate, consistent with previous crystallographic and computational minimum energy studies. Thermal fluctuations, however, appear to make the switch-2 coordination of ATP more flexible than suggested by crystal structures. The local solvation environment of the fluorescence probe, Trp 507 (scallop numbering), also appears highly mobile in the presence of thermal fluctuations.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
39
|
Kontrolle der Stereoselektivität einer enzymatischen Reaktion “durch die Hintertür”. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Wombacher R, Keiper S, Suhm S, Serganov A, Patel DJ, Jäschke A. Control of stereoselectivity in an enzymatic reaction by backdoor access. Angew Chem Int Ed Engl 2006; 45:2469-72. [PMID: 16528762 PMCID: PMC4693636 DOI: 10.1002/anie.200503280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Sonja Keiper
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Sandra Suhm
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (USA)
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (USA)
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| |
Collapse
|
41
|
Yamanaka K, Okimoto N, Neya S, Hata M, Hoshino T. Behavior of water molecules in ATPase pocket of myosin. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2005.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Sun M, Oakes JL, Ananthanarayanan SK, Hawley KH, Tsien RY, Adams SR, Yengo CM. Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer. J Biol Chem 2005; 281:5711-7. [PMID: 16377637 DOI: 10.1074/jbc.m508103200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The upper 50-kDa region of myosin may be critical for coupling between the nucleotide- and actin-binding regions. We introduced a tetracysteine motif in the upper 50-kDa domain (residues 292-297) of myosin V containing a single IQ domain (MV 1IQ), allowing us to label this site with the fluorescein biarscenical hairpin-binding dye (FlAsH) (MV 1IQ FlAsH). The enzymatic properties of MV 1IQ FlAsH were similar to those of unlabeled MV 1IQ except for a 3-fold reduced ADP-release rate. MV 1IQ FlAsH was also capable of moving actin filaments in the in vitro motility assay. To examine rotation of the upper 50-kDa region, we determined the difference in the degree of energy transfer from N-methylanthraniloyl (mant)-labeled nucleotides to FlAsH in both steady-state and transient kinetic experiments. The energy transfer efficiency was higher with mant-ATP (0.65 +/- 0.02) compared with mant-ADP (0.55 +/- 0.02) in the absence of actin. Stopped-flow measurements suggested that the energy transfer efficiency decreased with phosphate release (0.04 s(-1)) in the absence of actin. In contrast, upon mixing MV 1IQ FlAsH in the ADP.P(i) state with actin, a decrease in the energy transfer signal was observed at a rate of 13 s(-1), similar to the ADP release rate. Our results demonstrate there was no change in the energy transfer signal upon actin-activated phosphate release and suggest that actin binding alters the dynamics of the upper 50-kDa region, which may be critical for the ability of myosin to bind tightly to both ADP and actin.
Collapse
Affiliation(s)
- Mingxuan Sun
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Sweeney HL, Houdusse A. The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci 2005; 359:1829-41. [PMID: 15647159 PMCID: PMC1693472 DOI: 10.1098/rstb.2004.1576] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is 50 years since the sliding of actin and myosin filaments was proposed as the basis of force generation and shortening in striated muscle. Although this is now generally accepted, the detailed molecular mechanism of how myosin uses adenosine triphosphate to generate force during its cyclic interaction with actin is only now being unravelled. New insights have come from the unconventional myosins, especially myosin V. Myosin V is kinetically tuned to allow movement on actin filaments as a single molecule, which has led to new kinetic, mechanical and structural data that have filled in missing pieces of the actomyosin-chemo-mechanical transduction puzzle.
Collapse
Affiliation(s)
- H Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, A700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA.
| | | |
Collapse
|
44
|
Kawakubo T, Okada O, Minami T. Molecular dynamics simulations of evolved collective motions of atoms in the myosin motor domain upon perturbation of the ATPase pocket. Biophys Chem 2005; 115:77-85. [PMID: 15848287 DOI: 10.1016/j.bpc.2004.12.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 12/24/2004] [Accepted: 12/24/2004] [Indexed: 10/25/2022]
Abstract
A crucial point for mechanical force generation in actomyosin systems is how the energy released by ATP hydrolysis in the myosin motor domain gives rise to the movement of the myosin head along the actin filament. We assumed the signal of the ATP hydrolysis to be transmitted as modulated atomic vibrations from the nucleotide-binding site throughout the myosin head, and carried out 1-ns all-atom molecular dynamics simulations for that signal transmission. We distributed the released energy to atoms located around the ATPase pocket as kinetic energies and examined how the effect of disturbance extended throughout the motor domain. The result showed that the disturbance signal extended over the motor domain in 150 ps and induced slowly varying collective motions of atoms at the actin-binding site and the junction with the neck, both of which are relevant to the movement of the myosin head along the actin filament. We also performed a principal component analysis of thermal atomic motions for the motor domain, and the first principal component was consistent with the response to the disturbance given to the ATPase pocket.
Collapse
|