1
|
Kephart SM, Hom N, Lee KK. Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography. Trends Biochem Sci 2024; 49:916-931. [PMID: 39054240 PMCID: PMC11455608 DOI: 10.1016/j.tibs.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA; Biological Structure Physics and Design Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Shendrik P, Golani G, Dharan R, Schwarz US, Sorkin R. Membrane Tension Inhibits Lipid Mixing by Increasing the Hemifusion Stalk Energy. ACS NANO 2023; 17:18942-18951. [PMID: 37669531 PMCID: PMC7615193 DOI: 10.1021/acsnano.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Fusion of biological membranes is fundamental in various physiological events. The fusion process involves several intermediate stages with energy barriers that are tightly dependent on the mechanical and physical properties of the system, one of which is membrane tension. As previously established, the late stages of fusion, including hemifusion diaphragm and pore expansions, are favored by membrane tension. However, a current understanding of how the energy barrier of earlier fusion stages is affected by membrane tension is lacking. Here, we apply a newly developed experimental approach combining micropipette-aspirated giant unilamellar vesicles and optically trapped membrane-coated beads, revealing that membrane tension inhibits lipid mixing. We show that lipid mixing is 6 times slower under a tension of 0.12 mN/m compared with tension-free membranes. Furthermore, using continuum elastic theory, we calculate the dependence of the hemifusion stalk formation energy on membrane tension and intermembrane distance and find the increase in the corresponding energy barrier to be 1.6 kBT in our setting, which can explain the increase in lipid mixing time delay. Finally, we show that tension can be a significant factor in the stalk energy if the pre-fusion intermembrane distance is on the order of several nanometers, while for membranes that are tightly docked, tension has a negligible effect.
Collapse
Affiliation(s)
- Petr Shendrik
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gonen Golani
- Institute
for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Raviv Dharan
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ulrich S. Schwarz
- Institute
for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Raya Sorkin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Golani G, Schwarz US. High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory. Biophys J 2023; 122:1868-1882. [PMID: 37077047 PMCID: PMC10209146 DOI: 10.1016/j.bpj.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kBT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kBT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kBT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kBT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kBT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.
Collapse
Affiliation(s)
- Gonen Golani
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
5
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
6
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
7
|
Liu X, Stenhammar J, Wennerström H, Sparr E. Vesicles Balance Osmotic Stress with Bending Energy That Can Be Released to Form Daughter Vesicles. J Phys Chem Lett 2022; 13:498-507. [PMID: 35005979 PMCID: PMC8785185 DOI: 10.1021/acs.jpclett.1c03369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The bending energy of the lipid membrane is central to biological processes involving vesicles, such as endocytosis and exocytosis. To illustrate the role of bending energy in these processes, we study the response of single-component giant unilamellar vesicles (GUVs) subjected to external osmotic stress by glucose addition. For osmotic pressures exceeding 0.15 atm, an abrupt shape change from spherical to prolate occurs, showing that the osmotic pressure is balanced by the free energy of membrane bending. After equilibration, the external glucose solution was exchanged for pure water, yielding rapid formation of monodisperse daughter vesicles inside the GUVs through an endocytosis-like process. Our theoretical analysis shows that this process requires significant free energies stored in the deformed membrane to be kinetically allowed. The results indicate that bending energies stored in GUVs are much higher than previously implicated, with potential consequences for vesicle fusion/fission and the osmotic regulation in living cells.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | | | | | - Emma Sparr
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
8
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
9
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
10
|
Poojari CS, Scherer KC, Hub JS. Free energies of membrane stalk formation from a lipidomics perspective. Nat Commun 2021; 12:6594. [PMID: 34782611 PMCID: PMC8593120 DOI: 10.1038/s41467-021-26924-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Many biological membranes are asymmetric and exhibit complex lipid composition, comprising hundreds of distinct chemical species. Identifying the biological function and advantage of this complexity is a central goal of membrane biology. Here, we study how membrane complexity controls the energetics of the first steps of membrane fusions, that is, the formation of a stalk. We first present a computationally efficient method for simulating thermodynamically reversible pathways of stalk formation at coarse-grained resolution. The method reveals that the inner leaflet of a typical plasma membrane is far more fusogenic than the outer leaflet, which is likely an adaptation to evolutionary pressure. To rationalize these findings by the distinct lipid compositions, we computed ~200 free energies of stalk formation in membranes with different lipid head groups, tail lengths, tail unsaturations, and sterol content. In summary, the simulations reveal a drastic influence of the lipid composition on stalk formation and a comprehensive fusogenicity map of many biologically relevant lipid classes. Fusion of cellular membranes begins with the formation of a stalk. Here, the authors develop a computationally efficient method for coarse-grained simulations of stalk formation and apply this approach to comprehensively analyse how stalk formation is influenced by the membrane lipid composition.
Collapse
Affiliation(s)
- Chetan S Poojari
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Katharina C Scherer
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
11
|
Makowski M, Felício MR, Fensterseifer ICM, Franco OL, Santos NC, Gonçalves S. EcDBS1R4, an Antimicrobial Peptide Effective against Escherichia coli with In Vitro Fusogenic Ability. Int J Mol Sci 2020; 21:ijms21239104. [PMID: 33265989 PMCID: PMC7730630 DOI: 10.3390/ijms21239104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
Discovering antibiotic molecules able to hold the growing spread of antimicrobial resistance is one of the most urgent endeavors that public health must tackle. The case of Gram-negative bacterial pathogens is of special concern, as they are intrinsically resistant to many antibiotics, due to an outer membrane that constitutes an effective permeability barrier. Antimicrobial peptides (AMPs) have been pointed out as potential alternatives to conventional antibiotics, as their main mechanism of action is membrane disruption, arguably less prone to elicit resistance in pathogens. Here, we investigate the in vitro activity and selectivity of EcDBS1R4, a bioinspired AMP. To this purpose, we have used bacterial cells and model membrane systems mimicking both the inner and the outer membranes of Escherichia coli, and a variety of optical spectroscopic methodologies. EcDBS1R4 is effective against the Gram-negative E. coli, ineffective against the Gram-positive Staphylococcus aureus and noncytotoxic for human cells. EcDBS1R4 does not form stable pores in E. coli, as the peptide does not dissipate its membrane potential, suggesting an unusual mechanism of action. Interestingly, EcDBS1R4 promotes a hemi-fusion of vesicles mimicking the inner membrane of E. coli. This fusogenic ability of EcDBS1R4 requires the presence of phospholipids with a negative curvature and a negative charge. This finding suggests that EcDBS1R4 promotes a large lipid spatial reorganization able to reshape membrane curvature, with interesting biological implications herein discussed.
Collapse
Affiliation(s)
- Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.M.); (M.R.F.)
| | - Mário R. Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.M.); (M.R.F.)
| | - Isabel C. M. Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (I.C.M.F.); (O.L.F.)
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-010, Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (I.C.M.F.); (O.L.F.)
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-010, Brazil
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.M.); (M.R.F.)
- Correspondence: (N.C.S.); (S.G.)
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.M.); (M.R.F.)
- Correspondence: (N.C.S.); (S.G.)
| |
Collapse
|
12
|
Akimov SA, Kondrashov OV, Zimmerberg J, Batishchev OV. Ectodomain Pulling Combines with Fusion Peptide Inserting to Provide Cooperative Fusion for Influenza Virus and HIV. Int J Mol Sci 2020; 21:ijms21155411. [PMID: 32751407 PMCID: PMC7432320 DOI: 10.3390/ijms21155411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Enveloped viruses include the most dangerous human and animal pathogens, in particular coronavirus, influenza virus, and human immunodeficiency virus (HIV). For these viruses, receptor binding and entry are accomplished by a single viral envelope protein (termed the fusion protein), the structural changes of which trigger the remodeling and merger of the viral and target cellular membranes. The number of fusion proteins required for fusion activity is still under debate, and several studies report this value to range from 1 to 9 for type I fusion proteins. Here, we consider the earliest stage of viral fusion based on the continuum theory of membrane elasticity. We demonstrate that membrane deformations induced by the oblique insertion of amphipathic fusion peptides mediate the lateral interaction of these peptides and drive them to form into a symmetric fusion rosette. The pulling force produced by the structural rearrangements of the fusion protein ectodomains gives additional torque, which deforms the membrane and additionally stabilizes the symmetric fusion rosette, thus allowing a reduction in the number of fusion peptides needed for fusion. These findings can resolve the large range of published cooperativity indices for HIV, influenza, and other type I fusion proteins.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
- Correspondence: ; Tel.: +7-495-955-4776
| | - Oleg V. Kondrashov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| |
Collapse
|
13
|
Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV. Continuum Models of Membrane Fusion: Evolution of the Theory. Int J Mol Sci 2020; 21:E3875. [PMID: 32485905 PMCID: PMC7312925 DOI: 10.3390/ijms21113875] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (R.J.M.); (P.I.K.); (T.R.G.); (O.V.B.)
| | | | | | | | | |
Collapse
|
14
|
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. SCIENCE CHINA MATERIALS 2020; 63:686-702. [PMID: 32219007 PMCID: PMC7094945 DOI: 10.1007/s40843-019-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.
Collapse
Affiliation(s)
- Congcong Cui
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
15
|
Kim M, Porras-Gomez M, Leal C. Graphene-based sensing of oxygen transport through pulmonary membranes. Nat Commun 2020; 11:1103. [PMID: 32107376 PMCID: PMC7046670 DOI: 10.1038/s41467-020-14825-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein complexes are the basis of pulmonary surfactants covering the respiratory surface and mediating gas exchange in lungs. Cardiolipin is a mitochondrial lipid overexpressed in mammalian lungs infected by bacterial pneumonia. In addition, increased oxygen supply (hyperoxia) is a pathological factor also critical in bacterial pneumonia. In this paper we fabricate a micrometer-size graphene-based sensor to measure oxygen permeation through pulmonary membranes. Combining oxygen sensing, X-ray scattering, and Atomic Force Microscopy, we show that mammalian pulmonary membranes suffer a structural transformation induced by cardiolipin. We observe that cardiolipin promotes the formation of periodic protein-free inter-membrane contacts with rhombohedral symmetry. Membrane contacts, or stalks, promote a significant increase in oxygen gas permeation which may bear significance for alveoli gas exchange imbalance in pneumonia.
Collapse
Affiliation(s)
- Mijung Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Han Y, Xu Z, Shi AC, Zhang L. Pathways connecting two opposed bilayers with a fusion pore: a molecularly-informed phase field approach. SOFT MATTER 2020; 16:366-374. [PMID: 31799560 DOI: 10.1039/c9sm01983a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phase field model with two phase fields, representing the concentration and the head-tail separation of amphiphilic molecules, respectively, has been constructed using an extension of the Ohta-Kawasaki model (Macromolecules, 1986, 19, 2621-2632). It is shown that this molecularly-informed phase field model is capable of producing various self-assembled amphiphilic aggregates, such as bilayers, vesicles and micelles. Furthermore, pathways connecting two opposed bilayers with a fusion pore are obtained by using a combination of the phase field model and the string method. Multiple fusion pathways, including a classical pathway and a leaky pathway, have been obtained depending on the initial separation of the two bilayers. The study shed light on the understanding of the membrane fusion pathways and, more importantly, laid a foundation for further investigation of more complex membrane morphologies and transitions.
Collapse
Affiliation(s)
- Yucen Han
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
17
|
Kumar S, Kaur N, Mithu VS. Amphiphilic ionic liquid induced fusion of phospholipid liposomes. Phys Chem Chem Phys 2020; 22:25255-25263. [DOI: 10.1039/d0cp04014b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of increasing concentration of imidazolium-based ionic liquids ([CnMIM]+[Br]−) on the structural integrity of large unilamellar vesicles (LUVs) made of pure phosphatidylcholine (PC) and phosphatidylglycerol (PG) lipids.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Navleen Kaur
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Venus Singh Mithu
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
18
|
Dharmavaram S, She SB, Lázaro G, Hagan MF, Bruinsma R. Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput Biol 2019; 15:e1006602. [PMID: 31433804 PMCID: PMC6736314 DOI: 10.1371/journal.pcbi.1006602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 09/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
The formation of a membrane-enveloped virus starts with the assembly of a curved layer of capsid proteins lining the interior of the plasma membrane (PM) of the host cell. This layer develops into a spherical shell (capsid) enveloped by a lipid-rich membrane. In many cases, the budding process stalls prior to the release of the virus. Recently, Brownian dynamics simulations of a coarse-grained model system reproduced protracted pausing and stalling, which suggests that the origin of pausing/stalling is to be found in the physics of the budding process. Here, we propose that the pausing/stalling observed in the simulations can be understood as a purely kinetic phenomenon associated with the neck geometry. A geometrical potential energy barrier develops during the budding that must be overcome by capsid proteins diffusing along the membrane prior to incorporation into the capsid. The barrier is generated by a conflict between the positive Gauss curvature of the assembling capsid and the negative Gauss curvature of the neck region. A continuum theory description is proposed and is compared with the Brownian simulations of the budding of enveloped viruses. Despite intense study, the life-cycle of the HIV-1 virus continues to pose mysteries. One of these is the fact that the assembly of an HIV-1 virus along the plasma membrane (PM) of the host cell—the budding process—stalls prior to release of the virus. Many other important viral pathogens with a surrounding lipid membrane envelope display similar stalling. Combining numerical and analytical methods, we demonstrate that the neck-like shape of the membrane that forms prior to release of the virus creates a barrier that blocks the proteins required for the assembly process from reaching the budding virus. An improved understanding of the physics of the blocking process could enable new strategies to combat enveloped viruses.
Collapse
Affiliation(s)
- Sanjay Dharmavaram
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Selene Baochen She
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Guillermo Lázaro
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Francis Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Meher G, Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J Membr Biol 2019; 252:261-272. [PMID: 31011762 PMCID: PMC7079885 DOI: 10.1007/s00232-019-00064-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20–25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the ‘fusion peptide’. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
20
|
Allolio C, Haluts A, Harries D. A local instantaneous surface method for extracting membrane elastic moduli from simulation: Comparison with other strategies. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Steer D, Leung SSW, Meiselman H, Topgaard D, Leal C. Structure of Lung-Mimetic Multilamellar Bodies with Lipid Compositions Relevant in Pneumonia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7561-7574. [PMID: 29847137 DOI: 10.1021/acs.langmuir.8b01359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The hierarchical assembly of lipids, as modulated by composition and environment, plays a significant role in the function of biological membranes and a myriad of diseases. Elevated concentrations of calcium ions and cardiolipin (CL), an anionic tetra-alkyl lipid found in mitochondria and some bacterial cell membranes, have been implicated in pneumonia recently. However, their impact on the physicochemical properties of lipid assemblies in lungs and how it impairs alveoli function is still unknown. We use small- and wide-angle X-ray scattering (S/WAXS) and solid-state nuclear magnetic resonance (ssNMR) to probe the structure and dynamics of lung-mimetic multilamellar bodies (MLBs) in the presence of Ca2+ and CL. We conjecture that CL overexpressed in the hypophase of alveoli strongly affects the structure of lung-lipid bilayers and their stacking in the MLBs. Specifically, S/WAXS data revealed that CL induces significant shrinkage of the water-layer separating the concentric bilayers in multilamellar aggregates. ssNMR measurements indicate that this interbilayer tightening is due to undulation repulsion damping as CL renders the glycerol backbone of the membranes significantly more static. In addition to MLB dehydration, CL promotes intrabilayer phase separation into saturated-rich and unsaturated-rich lipid domains that couple across multiple layers. Expectedly, addition of Ca2+ screens the electrostatic repulsion between negatively charged lung membranes. However, when CL is present, addition of Ca2+ results in an apparent interbilayer expansion likely due to local structural defects. Combining S/WAXS and ssNMR on systems with compositions pertinent to healthy and unhealthy lung membranes, we propose how alteration of the physiochemical properties of MLBs can critically impact the breathing cycle.
Collapse
Affiliation(s)
| | | | | | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering , Lund University , SE-221 00 Lund , Sweden
| | | |
Collapse
|
22
|
Abstract
On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain-an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile-which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.
Collapse
Affiliation(s)
- M Mert Terzi
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
23
|
Boonstra S, Blijleven JS, Roos WH, Onck PR, van der Giessen E, van Oijen AM. Hemagglutinin-Mediated Membrane Fusion: A Biophysical Perspective. Annu Rev Biophys 2018; 47:153-173. [PMID: 29494252 DOI: 10.1146/annurev-biophys-070317-033018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.
Collapse
Affiliation(s)
- Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Antoine M van Oijen
- School of Chemistry; Faculty of Science, Medicine and Health; University of Wollongong, Wollongong, New South Wales 2522, Australia;
| |
Collapse
|
24
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Pulling force and surface tension drive membrane fusion. J Chem Phys 2017; 147:194703. [PMID: 29166098 DOI: 10.1063/1.4997393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
25
|
Abstract
Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.
Collapse
|
26
|
Kheyfets B, Galimzyanov T, Drozdova A, Mukhin S. Analytical calculation of the lipid bilayer bending modulus. Phys Rev E 2016; 94:042415. [PMID: 27841551 DOI: 10.1103/physreve.94.042415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/07/2022]
Abstract
Bending and Gaussian moduli of a homogenious single-component lipid bilayer are calculated analytically using microscopic model of the lipid hydrocarbon chains. The approach allows for thermodynamic averaging over different chains conformations. Each chain is modeled as a flexible string with finite bending rigidity and an incompressible cross-section area. The interchain steric repulsion is accounted for self-consistently determined single-chain confining parabolic potential. The model provides a simple analytical expression for the membrane bending modulus, which falls within a range of experimental values. An observed dependence of the modulus on hydrocarbon chain length is also reproduced. Correspondence between our microscopic model and the membrane theory of elasticity is established.
Collapse
Affiliation(s)
- Boris Kheyfets
- National University of Science and Technology MISIS, Leninskiy prospekt 4, Moscow 119049, Russia
| | - Timur Galimzyanov
- National University of Science and Technology MISIS, Leninskiy prospekt 4, Moscow 119049, Russia
| | - Anna Drozdova
- National University of Science and Technology MISIS, Leninskiy prospekt 4, Moscow 119049, Russia
| | - Sergei Mukhin
- National University of Science and Technology MISIS, Leninskiy prospekt 4, Moscow 119049, Russia
| |
Collapse
|
27
|
Kawamoto S, Klein ML, Shinoda W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. J Chem Phys 2016; 143:243112. [PMID: 26723597 DOI: 10.1063/1.4933087] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, SERC Building 1925 North 12th Street, Philadelphia, Pennsylvania 19122, USA
| | - Wataru Shinoda
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
28
|
Sodt A, Venable R, Lyman E, Pastor R. Nonadditive Compositional Curvature Energetics of Lipid Bilayers. PHYSICAL REVIEW LETTERS 2016; 117:138104. [PMID: 27715135 PMCID: PMC5134905 DOI: 10.1103/physrevlett.117.138104] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 05/26/2023]
Abstract
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
Collapse
Affiliation(s)
- A.J. Sodt
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - R.M. Venable
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - E. Lyman
- Department of Physics and Astronomy; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - R.W. Pastor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Han J, Pluhackova K, Bruns D, Böckmann RA. Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:855-65. [DOI: 10.1016/j.bbamem.2016.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
|
30
|
Keidel A, Bartsch TF, Florin EL. Direct observation of intermediate states in model membrane fusion. Sci Rep 2016; 6:23691. [PMID: 27029285 PMCID: PMC4814778 DOI: 10.1038/srep23691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 12/28/2022] Open
Abstract
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.
Collapse
Affiliation(s)
- Andrea Keidel
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tobias F. Bartsch
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
31
|
Ryham RJ, Klotz TS, Yao L, Cohen FS. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion. Biophys J 2016; 110:1110-24. [PMID: 26958888 PMCID: PMC4788739 DOI: 10.1016/j.bpj.2016.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm.
Collapse
Affiliation(s)
- Rolf J Ryham
- Department of Mathematics, Fordham University, Bronx, New York.
| | - Thomas S Klotz
- Department of Computational and Applied Mathematics, Rice University, Houston, Texas
| | - Lihan Yao
- Department of Mathematics, Fordham University, Bronx, New York
| | - Fredric S Cohen
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois
| |
Collapse
|
32
|
Abstract
Mammalian life begins with a cell-cell fusion event, i.e. the fusion of the spermatozoid with the oocyte and needs further cell-cell fusion processes for the development, growth, and maintenance of tissues and organs over the whole life span. Furthermore, cellular fusion plays a role in infection, cancer, and stem cell-dependent regeneration as well as including an expanded meaning of partial cellular fusion, nanotube formation, and microparticle-cell fusion. The cellular fusion process is highly regulated by proteins which carry the information to organize and regulate membranes allowing the merge of two separate lipid bilayers into one. The regulation of this genetically and epigenetically controlled process is achieved by different kinds of signals leading to communication of fusing cells. The local cellular and extracellular environment additionally initiates specific cell signaling necessary for the induction of the cell-cell fusion process. Common motifs exist in distinct cell-cell fusion processes and their regulation. However, there is specific regulation of different cell-cell fusion processes, e.g. myoblast, placental, osteoclast, and stem cell fusion. Hence, specialized fusion events vary between cell types and species. Molecular mechanisms remain largely unknown, especially limited knowledge is present for cancer and stem cell fusion mechanisms and regulation. More research is necessary for the understanding of cellular fusion processes which can lead to development of new therapeutic strategies grounding on cellular fusion regulation.
Collapse
Affiliation(s)
- Lena Willkomm
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | |
Collapse
|
33
|
Tang TYD, Brooks NJ, Ces O, Seddon JM, Templer RH. Structural studies of the lamellar to bicontinuous gyroid cubic (Q(G)(II)) phase transitions under limited hydration conditions. SOFT MATTER 2015; 11:1991-1997. [PMID: 25626161 DOI: 10.1039/c4sm02724h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Non-equilibrium pathways of lyotropic phase transitions such as the lamellar to inverse bicontinuous cubic phase transition are important dynamical processes resembling cellular fusion and fission processes which can be exploited in biotechnological processes such as drug delivery. However, utilising and optimising these structural transformations for applications require a detailed understanding of the energetic pathways which drive the phase transition. We have used the high pressure X-ray diffraction technique to probe the lamellar to Q(G)(II) phase transition in limited hydration monolinolein on the millisecond time scale. Our results show that the phase transition goes via a structural intermediate and once the Q(G)(II) phase initially forms the elastic energy in the bilayer drives this structure to its equilibrium lattice parameter.
Collapse
Affiliation(s)
- T-Y Dora Tang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | | | |
Collapse
|
34
|
Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J Neurogenet 2014; 28:302-15. [PMID: 24957080 PMCID: PMC4245166 DOI: 10.3109/01677063.2014.936014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.
Collapse
Affiliation(s)
- Susanne Filiz Önel
- Developmental Biology, Philipps University of Marburg , 35043 Marburg , Germany
| | | | | | | |
Collapse
|
35
|
Slochower DR, Wang YH, Tourdot RW, Radhakrishnan R, Janmey PA. Counterion-mediated pattern formation in membranes containing anionic lipids. Adv Colloid Interface Sci 2014; 208:177-88. [PMID: 24556233 DOI: 10.1016/j.cis.2014.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from -1 for the most abundant anionic lipids such as phosphatidylserine, to near -7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control.
Collapse
Affiliation(s)
- David R Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Hsiu Wang
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard W Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Physiology and Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Kawamoto S, Shinoda W. Free energy analysis along the stalk mechanism of membrane fusion. SOFT MATTER 2014; 10:3048-3054. [PMID: 24695575 DOI: 10.1039/c3sm52344f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The free energy profile of the stalk model of membrane fusion has been calculated using coarse-grained molecular dynamics simulations. The proposed method guides the lipid configuration using a guiding wall potential to make the transition from two apposed membranes to a stalk and a fusion pore. The free energy profile is obtained with a thermodynamic integration scheme using the mean force working on the guiding wall as a response of the system. We applied the method to two apposed flat bilayers composed of dioleoyl phosphatidylethanolamine/dioleoyl phosphatidylcholine expanding over the simulation box under the periodic boundary conditions. The two transition states are identified as pre-stalk and pre-pore states. The free energy barrier for the latter is confirmed to be in good agreement with that estimated by the pulling method. The present method provides a practical way to calculate the free energy profile along the stalk mechanism.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Health Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | |
Collapse
|
37
|
Multi-step formation of a hemifusion diaphragm for vesicle fusion revealed by all-atom molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1529-35. [PMID: 24468064 DOI: 10.1016/j.bbamem.2014.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/04/2014] [Accepted: 01/11/2014] [Indexed: 02/01/2023]
Abstract
Membrane fusion is essential for intracellular trafficking and virus infection, but the molecular mechanisms underlying the fusion process remain poorly understood. In this study, we employed all-atom molecular dynamics simulations to investigate the membrane fusion mechanism using vesicle models which were pre-bound by inter-vesicle Ca(2+)-lipid clusters to approximate Ca(2+)-catalyzed fusion. Our results show that the formation of the hemifusion diaphragm for vesicle fusion is a multi-step event. This result contrasts with the assumptions made in most continuum models. The neighboring hemifused states are separated by an energy barrier on the energy landscape. The hemifusion diaphragm is much thinner than the planar lipid bilayers. The thinning of the hemifusion diaphragm during its formation results in the opening of a fusion pore for vesicle fusion. This work provides new insights into the formation of the hemifusion diaphragm and thus increases understanding of the molecular mechanism of membrane fusion. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
38
|
Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. FRONTIERS IN PLANT SCIENCE 2013; 4:494. [PMID: 24348497 PMCID: PMC3848315 DOI: 10.3389/fpls.2013.00494] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/18/2013] [Indexed: 05/20/2023]
Abstract
Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, CNRSGrenoble, France
- Laboratoire de Physiologie Cellulaire et Végétale, Univ. Grenoble AlpesGrenoble, France
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies AlternativesGrenoble, France
- Laboratoire de Physiologie Cellulaire et Végétale, USC1359, Institut National de la Recherche AgronomiqueGrenoble, France
- *Correspondence: Juliette Jouhet, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), CNRS (UMR5168) / Univ. Grenoble Alpes / INRA (USC1359) / CEA Grenoble, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble Cedex 9, France e-mail:
| |
Collapse
|
39
|
|
40
|
Gerisch G, Ecke M, Neujahr R, Prassler J, Stengl A, Hoffmann M, Schwarz US, Neumann E. Membrane and actin reorganization in electropulse-induced cell fusion. J Cell Sci 2013; 126:2069-78. [DOI: 10.1242/jcs.124073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
When cells of Dictyostelium discoideum are exposed to electric pulses they are induced to fuse, yielding motile polykaryotic cells. By combining electron microscopy and direct recording of fluorescent cells, we have studied the emergence of fusion pores in the membranes and the localization of actin to the cell cortex. In response to electric pulsing, the plasma membranes of two contiguous cells are turned into tangles of highly bent and interdigitated membranes. Live-imaging of cells double-labeled for membranes and filamentous actin revealed that actin is induced to polymerize in the fusion zone to temporally bridge the gaps in the vesiculating membrane. The diffusion of green fluorescent protein (GFP) from one fusion partner to the other was scored using spinning disc confocal microscopy. Fusion pores that allowed intercellular exchange of GFP were formed after a delay, which may last up to 24 seconds after exposure of the cells to the electric field. These data indicate that the membranes persist in a fusogenic state before pores of about 3 nm diameter are formed.
Collapse
|
41
|
Abstract
One of the many aspects of membrane biophysics dealt with in this Faraday Discussion regards the material moduli that describe energies at a supramolecular level. This introductory lecture first critically reviews differences in reported numerical values of the bending modulus K(C), which is a central property for the biologically important flexibility of membranes. It is speculated that there may be a reason that the shape analysis method tends to give larger values of K(C) than the micromechanical manipulation method or the more recent X-ray method that agree very well with each other. Another theme of membrane biophysics is the use of simulations to provide exquisite detail of structures and processes. This lecture critically reviews the application of atomic level simulations to the quantitative structure of simple single component lipid bilayers and diagnostics are introduced to evaluate simulations. Another theme of this Faraday Discussion was lateral heterogeneity in biomembranes with many different lipids. Coarse grained simulations and analytical theories promise to synergistically enhance experimental studies when their interaction parameters are tuned to agree with experimental data, such as the slopes of experimental tie lines in ternary phase diagrams. Finally, attention is called to contributions that add relevant biological molecules to bilayers and to contributions that study the exciting shape changes and different non-bilayer structures with different lipids.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
42
|
|
43
|
Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci U S A 2012; 109:E1609-18. [PMID: 22589300 DOI: 10.1073/pnas.1119442109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent lipid monolayers. We observe that the stalk structure is highly universal in different lipid systems. The associated curvatures change in a subtle, but systematic fashion upon changes in lipid composition. In addition, we have studied the hydration interaction prior to the transition from the lamellar to the stalk phase. The results indicate that facilitating dehydration is the key to promote stalk formation, which becomes favorable at an approximately constant interbilayer separation of 9.0 ± 0.5 Å for the investigated lipid compositions.
Collapse
|
44
|
Boucrot E, Pick A, Çamdere G, Liska N, Evergren E, McMahon H, Kozlov M. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 2012; 149:124-36. [PMID: 22464325 PMCID: PMC3465558 DOI: 10.1016/j.cell.2012.01.047] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/09/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022]
Abstract
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.
Collapse
Affiliation(s)
- Emmanuel Boucrot
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Adi Pick
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gamze Çamdere
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Nicole Liska
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Emma Evergren
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Harvey T. McMahon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Michael M. Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
45
|
Qian S, Huang HW. A novel phase of compressed bilayers that models the prestalk transition state of membrane fusion. Biophys J 2012; 102:48-55. [PMID: 22225797 DOI: 10.1016/j.bpj.2011.11.4009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 01/02/2023] Open
Abstract
The force model of protein-mediated membrane fusion hypothesizes that fusion is driven by mechanical forces exerted on the membranes, but many details are unknown. Here, we investigated by x-ray diffraction the consequence of applying compressive force on a stack of membranes against the hydration barrier. We found that as the osmotic pressure increased, the lamellar phase transformed first to a new phase of tetragonal lattice (T-phase) over a narrow range of relative humidity, and then to a phase of rhombohedral lattice. The unit cell structure changed from parallel bilayers to a bent configuration with a point contact between adjacent bilayers and then to the stalk hemifusion configuration. The T-phase is discussed as a possible transition state in the membrane merging pathway of fusion. We estimate the work required to form the T-phase and the subsequent hemifusion-stalk-resembling R-phase. The work for the formation of a stalk is compatible with the energy estimated to be released by several SNARE complexes.
Collapse
Affiliation(s)
- Shuo Qian
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | |
Collapse
|
46
|
Zhao Y, Du Q. Diffuse interface model of multicomponent vesicle adhesion and fusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011903. [PMID: 21867209 DOI: 10.1103/physreve.84.011903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 05/13/2011] [Indexed: 05/31/2023]
Abstract
Prefusion and postfusion states of the biological fusion process between lipid bilayer vesicle membranes are studied in this paper. Based on the Helfrich-type continuum theory, a diffuse interface model is developed which describes the phase changes on the deformable vesicles via a scalar phase field function, and incorporates the adhesion effect between the different phases of the vesicles through a nonlocal interaction potential. Various equilibrium configurations in the prefusion and postfusion states are examined. The effects of spontaneous curvatures, bending, and Gaussian rigidities on the fusion process are discussed. Instead of considering only the regions in close contact as in many previous studies, the present approach allows us to include the energetic contributions from all parts of the vesicles. By carrying out simulations based on the gradient flow of the associated energy functional, we are also able to elucidate the dynamic transitions between the prefusion and postfusion states.
Collapse
Affiliation(s)
- Yanxiang Zhao
- Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
47
|
Nikolaus J, Warner JM, O'Shaughnessy B, Herrmann A. The pathway to membrane fusion through hemifusion. CURRENT TOPICS IN MEMBRANES 2011; 68:1-32. [PMID: 21771493 DOI: 10.1016/b978-0-12-385891-7.00001-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jörg Nikolaus
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Nikolaus J, Stöckl M, Langosch D, Volkmer R, Herrmann A. Direct visualization of large and protein-free hemifusion diaphragms. Biophys J 2010; 98:1192-9. [PMID: 20371318 DOI: 10.1016/j.bpj.2009.11.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 10/19/2022] Open
Abstract
Fusion of cellular membranes is a ubiquitous biological process requiring remodeling of two phospholipid bilayers. We believe it is very likely that merging of membranes proceeds via similar sequential intermediates. Contacting membranes form a stalk between the proximal leaflets that expands radially into an hemifusion diaphragm (HD) and subsequently open to a fusion pore. Although considered to be a key intermediate in fusion, direct experimental verification of this structure is difficult due to its transient nature. Using confocal fluorescence microscopy we have investigated the fusion of giant unilamellar vesicles (GUVs) containing phosphatidylserine and fluorescent virus derived transmembrane peptides or membrane proteins in the presence of divalent cations. Time-resolved imaging revealed that fusion was preceded by displacement of peptides and fluorescent lipid analogs from the GUV-GUV adhesion region. A detailed analysis of this area being several mum in size revealed that peptides were completely sequestered as expected for an HD. Lateral distribution of lipid analogs was consistent with formation of an HD but not with the presence of two adherent bilayers. Formation and size of the HD were dependent on lipid composition and peptide concentration.
Collapse
Affiliation(s)
- Jörg Nikolaus
- Institute of Biology, Faculty of Mathematics and Natural Sciences, Humboldt-University Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
49
|
Siegel DP. Fourth-order curvature energy model for the stability of bicontinuous inverted cubic phases in amphiphile-water systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8673-8683. [PMID: 20349969 DOI: 10.1021/la904838z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The bicontinuous inverted cubic (Q(II)) phases of amphiphiles in water have many practical applications. It is necessary to understand the stability of these phases as a function of composition and ambient conditions in order to make the best use of them. Moreover, many biomembrane lipids and some biomembrane lipid extracts form Q(II) phases. The stability of Q(II) phases in a given lipid composition is closely related to the susceptibility of that composition to membrane fusion: changes in composition that stabilize Q(II) phases usually increase the rate of membrane fusion. However, the factors determining Q(II) phase stability are not fully understood. Previously, an expression was derived for the curvature free energy of Q(II) phases with respect to that of the lamellar (L(alpha)) phase using a model for the curvature energy with terms up to fourth order in curvature as formulated by Mitov. Here this model is extended to account for the effects of water content on Q(II) phase stability. It is shown that the observed L(alpha)/Q(II) phase-transition temperature, transition enthalpy, and transition kinetics are all sensitive to water content. The same observables also become sensitive to small noncurvature energy contributions to the total free-energy difference between the Q(II) and L(alpha) phases, especially the unbinding energy in the L(alpha) phase. These predictions rationalize earlier observations of Q(II) phase formation in N-monomethylated dioleoylphosphatidylethanolamine that otherwise appear to be inconsistent. The model also provides a fundamental explanation of the hysteresis typically observed in transitions between the L(alpha) and Q(II) phases. It is an accurate model of Q(II) phase stability when the ratio of the volume fraction of the lipid in the Q(II) phase unit cell is < or = 0.5.
Collapse
Affiliation(s)
- David P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, Ohio 45216, USA.
| |
Collapse
|
50
|
Smirnova YG, Marrink SJ, Lipowsky R, Knecht V. Solvent-Exposed Tails as Prestalk Transition States for Membrane Fusion at Low Hydration. J Am Chem Soc 2010; 132:6710-8. [DOI: 10.1021/ja910050x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuliya G. Smirnova
- Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Reinhard Lipowsky
- Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Volker Knecht
- Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|