1
|
Garg V, Mathew R, Ibrahim R, Singh K, Ghosh SK. Crowding induced switching of polymer translocation by the amalgamation of entropy and osmotic pressure. iScience 2024; 27:109348. [PMID: 38523793 PMCID: PMC10959672 DOI: 10.1016/j.isci.2024.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
The translocation of polymers is omnipresent in inherently crowded biological systems. We investigate the dynamics of polymer translocation through a pore in free and crowded environments using Langevin dynamics simulation. We observed a location-dependent translocation rate of monomers showcasing counterintuitive behavior in stark contrast to the bead velocity along the polymer backbone. The free energy calculation of asymmetrically placed polymers indicates a critical number of segments to direct receiver-side translocation. For one-sided crowding, we have identified a critical crowding size revealing a nonzero probability of translocation toward the crowded-side. Moreover, we have observed that shifting the polymer toward the crowded-side compensates for one-sided crowding, yielding an equal probability akin to a crowder-free system. In two-sided crowding, a slight variation in crowder size and packing fraction induces a polymer to switch its translocation direction. These conspicuous yet counter-intuitive phenomena are rationalized by minimalistic theoretical arguments based on osmotic pressure and radial entropic forces.
Collapse
Affiliation(s)
- Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal 506004, India
| | - Rejoy Mathew
- Department of Physics, National Institute of Technology, Warangal 506004, India
| | - Riyan Ibrahim
- Department of Physics, National Institute of Technology, Warangal 506004, India
| | - Kulveer Singh
- Department of Physics, National Institute of Technology, Warangal 506004, India
| | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal 506004, India
| |
Collapse
|
2
|
Yin B, Tang P, Wang L, Xie W, Chen X, Wang Y, Weng T, Tian R, Zhou S, Wang Z, Wang D. An aptamer-assisted nanopore strategy with a salt gradient for direct protein sensing. J Mater Chem B 2023; 11:11064-11072. [PMID: 37966856 DOI: 10.1039/d3tb01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Peng Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Xiaohan Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| |
Collapse
|
3
|
Panigrahi LL, Sahoo B, Arakha M. Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19. FRONTIERS OF MATERIALS SCIENCE 2022; 16:220611. [PMID: 35966717 PMCID: PMC9362558 DOI: 10.1007/s11706-022-0611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Microbe-related, especially viral-related pandemics have currently paralyzed the world and such pathogenesis is expected to rise in the upcoming years. Although tremendous efforts are being made to develop antiviral drugs, very limited progress has been made in this direction. The nanotheranostic approach can be a highly potential rescue to combat this pandemic. Nanoparticles (NPs) due to their high specificity and biofunctionalization ability could be utilized efficiently for prophylaxis, diagnosis and treatment against microbial infections. In this context, titanium oxide, silver, gold NPs, etc. have already been utilized against deadly viruses like influenza, Ebola, HIV, and HBV. The discovery of sophisticated nanovaccines is under investigation and of prime importance to induce reproducible and strong immune responses against difficult pathogens. This review focuses on highlighting the role of various nano-domain materials such as metallic NPs, magnetic NPs, and quantum dots in the biomedical applications to combat the deadly microbial infections. Further, it also discusses the nanovaccines those are already available for various microbial diseases or are in clinical trials. Finally, it gives a perspective on the various nanotechnologies presently employed for efficient diagnosis and therapy against disease causing microbial infections, and how advancement in this field can benefit the health sector remarkably.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| | - Banishree Sahoo
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| |
Collapse
|
4
|
Qiu H, Zhou W, Guo W. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. ACS NANO 2021; 15:18848-18864. [PMID: 34841865 DOI: 10.1021/acsnano.1c07960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices. In this review, we discuss key advances in experimental and computational research into DNA sensing with nanopores built from 2D materials, focusing on both the ionic current and transverse current measurement schemes. Challenges associated with the development of 2D material nanopores toward DNA sequencing are further analyzed, concentrating on lowering the noise levels, slowing down DNA translocation, and inhibiting DNA fluctuations inside the pores. Finally, we overview future directions of research that may expedite the emergence of proof-of-concept DNA sequencing with 2D material nanopores.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
5
|
The Nanopore-Tweezing-Based, Targeted Detection of Nucleobases on Short Functionalized Peptide Nucleic Acid Sequences. Polymers (Basel) 2021; 13:polym13081210. [PMID: 33918592 PMCID: PMC8069169 DOI: 10.3390/polym13081210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The implication of nanopores as versatile components in dedicated biosensors, nanoreactors, or miniaturized sequencers has considerably advanced single-molecule investigative science in a wide range of disciplines, ranging from molecular medicine and nanoscale chemistry to biophysics and ecology. Here, we employed the nanopore tweezing technique to capture amino acid-functionalized peptide nucleic acids (PNAs) with α-hemolysin-based nanopores and correlated the ensuing stochastic fluctuations of the ionic current through the nanopore with the composition and order of bases in the PNAs primary structure. We demonstrated that while the system enables the detection of distinct bases on homopolymeric PNA or triplet bases on heteropolymeric strands, it also reveals rich insights into the conformational dynamics of the entrapped PNA within the nanopore, relevant for perfecting the recognition capability of single-molecule sequencing.
Collapse
|
6
|
Crnković A, Srnko M, Anderluh G. Biological Nanopores: Engineering on Demand. Life (Basel) 2021; 11:life11010027. [PMID: 33466427 PMCID: PMC7824896 DOI: 10.3390/life11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Collapse
|
7
|
Hagan JT, Sheetz BS, Bandara YMNDY, Karawdeniya BI, Morris MA, Chevalier RB, Dwyer JR. Chemically tailoring nanopores for single-molecule sensing and glycomics. Anal Bioanal Chem 2020; 412:6639-6654. [PMID: 32488384 DOI: 10.1007/s00216-020-02717-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
A nanopore can be fairly-but uncharitably-described as simply a nanofluidic channel through a thin membrane. Even this simple structural description holds utility and underpins a range of applications. Yet significant excitement for nanopore science is more readily ignited by the role of nanopores as enabling tools for biomedical science. Nanopore techniques offer single-molecule sensing without the need for chemical labelling, since in most nanopore implementations, matter is its own label through its size, charge, and chemical functionality. Nanopores have achieved considerable prominence for single-molecule DNA sequencing. The predominance of this application, though, can overshadow their established use for nanoparticle characterization and burgeoning use for protein analysis, among other application areas. Analyte scope continues to be expanded, and with increasing analyte complexity, success will increasingly hinge on control over nanopore surface chemistry to tune the nanopore, itself, and to moderate analyte transport. Carbohydrates are emerging as the latest high-profile target of nanopore science. Their tremendous chemical and structural complexity means that they challenge conventional chemical analysis methods and thus present a compelling target for unique nanopore characterization capabilities. Furthermore, they offer molecular diversity for probing nanopore operation and sensing mechanisms. This article thus focuses on two roles of chemistry in nanopore science: its use to provide exquisite control over nanopore performance, and how analyte properties can place stringent demands on nanopore chemistry. Expanding the horizons of nanopore science requires increasing consideration of the role of chemistry and increasing sophistication in the realm of chemical control over this nanoscale milieu.
Collapse
Affiliation(s)
- James T Hagan
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Brian S Sheetz
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Y M Nuwan D Y Bandara
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Buddini I Karawdeniya
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Melissa A Morris
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Robert B Chevalier
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA.
| |
Collapse
|
8
|
Hu F, Angelov B, Li S, Li N, Lin X, Zou A. Single‐Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Chembiochem 2020; 21:2467-2473. [DOI: 10.1002/cbic.202000119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Fangzhou Hu
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Borislav Angelov
- Institute of Physics, ELI BeamlinesAcademy of Sciences of the Czech Republic Na Slovance 2 18221 Prague Czech Republic
| | - Shuang Li
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Na Li
- National Center for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research Institute, CAS Shanghai 200120 P. R. China
| | - Xubo Lin
- Institute of Single Cell EngineeringBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Zhou W, Qiu H, Guo Y, Guo W. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors. J Phys Chem B 2020; 124:1611-1618. [PMID: 32027510 DOI: 10.1021/acs.jpcb.9b10702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein nanopores have been widely used as single-molecule sensors for the detection and characterization of biological polymers such as DNA, RNA, and polypeptides. A variety of protein nanopores with various geometries have been exploited for this purpose, which usually exhibit distinct sensing capabilities, but the underlying molecular mechanism remains elusive. Here, we systematically characterize the molecular transport properties of four widely studied protein nanopores, α-hemolysin, MspA, CsgG, and aerolysin, by extensive molecular dynamics simulations. It is found that a sudden drop in electrostatic potentials occurs at the sole constriction in MspA and CsgG nanopores in contrast to the gradual potential change inside α-hemolysin and aerolysin pores, indicating the crucial role of pore geometry in ionic and molecular transport. We further demonstrate that these protein nanopores exhibit open-pore currents and ssDNA-induced current blockades both in the order MspA > α-hemolysin > CsgG > aerolysin, but an equivalent blockade percentage around 80%. In addition, the substitution of key amino acids at the pore constriction, especially by charged ones, provides an efficient way to modulate the pore electrostatic potential and ionic current. This work sheds new light on the search for high-performance nanopores, engineering of protein nanopores, and design of bioinspired solid-state nanopores.
Collapse
Affiliation(s)
- Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
10
|
Abstract
The molecular scale pore structure, called nanopore, can be formed from protein ion channels by genetic engineering or fabricated on solid substrates using fashion nanotechnology. Target molecules in interaction with the functionalized lumen of nanopore, can produce characteristic changes in the pore conductance, which act as fingerprints, allowing us to identify single molecules and simultaneously quantify each target species in the mixture. Nanopore sensors have been created for tremendous biomedical detections, with targets ranging from metal ions, drug compounds and cellular second messengers, to proteins and DNAs. Recently, we have used the nanopore technique to dissect folding and unfolding mechanism of a single G-quadruplex DNA aptamer regulated by a variety of ions; we also created a portable and durable molecular device that integrated a protein pore sensor with a solidified lipid membrane for real-time detection.
Collapse
Affiliation(s)
- L Q Gu
- Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
11
|
Chen Q, Liu Z. Fabrication and Applications of Solid-State Nanopores. SENSORS 2019; 19:s19081886. [PMID: 31010038 PMCID: PMC6515193 DOI: 10.3390/s19081886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Nanopores fabricated from synthetic materials (solid-state nanopores), platforms for characterizing biological molecules, have been widely studied among researchers. Compared with biological nanopores, solid-state nanopores are mechanically robust and durable with a tunable pore size and geometry. Solid-state nanopores with sizes as small as 1.3 nm have been fabricated in various films using engraving techniques, such as focused ion beam (FIB) and focused electron beam (FEB) drilling methods. With the demand of massively parallel sensing, many scalable fabrication strategies have been proposed. In this review, typical fabrication technologies for solid-state nanopores reported to date are summarized, with the advantages and limitations of each technology discussed in detail. Advanced shrinking strategies to prepare nanopores with desired shapes and sizes down to sub-1 nm are concluded. Finally, applications of solid-state nanopores in DNA sequencing, single molecule detection, ion-selective transport, and nanopatterning are outlined.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
| | - Zewen Liu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging Nanopores with Analyte Scope and Environment. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00092-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Yang J, Wang YQ, Li MY, Ying YL, Long YT. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14940-14945. [PMID: 30462509 DOI: 10.1021/acs.langmuir.8b03264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
RNA sensing is of vital significance to advance our comprehension of gene expression and to further benefit medical diagnostics. Taking advantage of the excellent sensing capability of the aerolysin nanopore as a single-biomolecule interface, we for the first time achieved the direct characterization of single native RNA of Poly(A)4 and Poly(U)4. Poly(A)4 induces ∼10% larger blockade current amplitude than Poly(U)4. The statistical duration of Poly(A)4 is 18.83 ± 1.08 ms, which is 100 times longer than that of Poly(U)4. Our results demonstrated that the capture of RNA homopolymers is restricted by the biased diffusion. The translocation of RNA needs to overcome a lower free-energy barrier than that of DNA. Moreover, the strong RNA-aerolysin interaction is attributed to the hydroxyl in pentose, which prolongs the translocation time. This study opens an avenue for aerolysin nanopores to directly achieve RNA sensing, including discrimination of RNA epigenetic modification and selective detection of miRNA.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Ya-Qian Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Meng-Yin Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
14
|
Wasfi A, Awwad F, Ayesh AI. Graphene-based nanopore approaches for DNA sequencing: A literature review. Biosens Bioelectron 2018; 119:191-203. [DOI: 10.1016/j.bios.2018.07.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
|
15
|
Qing Y, Ionescu SA, Pulcu GS, Bayley H. Directional control of a processive molecular hopper. Science 2018; 361:908-912. [DOI: 10.1126/science.aat3872] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Abstract
Intrigued by the potential of nanoscale machines, scientists have long attempted to control molecular motion. We monitored the individual 0.7-nanometer steps of a single molecular hopper as it moved in an electric field along a track in a nanopore controlled by a chemical ratchet. The hopper demonstrated characteristics desired in a moving molecule: defined start and end points, processivity, no chemical fuel requirement, directional motion, and external control. The hopper was readily functionalized to carry cargos. For example, a DNA molecule could be ratcheted along the track in either direction, a prerequisite for nanopore sequencing.
Collapse
|
16
|
Ciuca A, Asandei A, Schiopu I, Apetrei A, Mereuta L, Seo CH, Park Y, Luchian T. Single-Molecule, Real-Time Dissecting of Peptide Nucleic Acid-DNA Duplexes with a Protein Nanopore Tweezer. Anal Chem 2018; 90:7682-7690. [PMID: 29799733 DOI: 10.1021/acs.analchem.8b01568] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide nucleic acids (PNAs) are artificial, oligonucleotides analogues, where the sugar-phosphate backbone has been substituted with a peptide-like N-(2-aminoethyl)glycine backbone. Because of their inherent benefits, such as increased stability and enhanced binding affinity toward DNA or RNA substrates, PNAs are intensively studied and considered beneficial for the fields of materials and nanotechnology science. Herein, we designed cationic polypeptide-functionalized, 10-mer PNAs, and demonstrated the feasible detection of hybridization with short, complementary DNA substrates, following analytes interaction with the vestibule entry of an α-hemolysin (α-HL) nanopore. The opposite charged state at the polypeptide-functionalized PNA-DNA duplex extremities, facilitated unzipping of a captured duplex at the lumen entry of a voltage-biased nanopore, followed by monomers threading. These processes were resolvable and identifiable in real-time, from the temporal profile of the ionic current through a nanopore accompanying conformational changes of a single PNA-DNA duplex inside the α-HL nanopore. By employing a kinetic description within the discrete Markov chains theory, we proposed a minimalist kinetic model to successfully describe the electric force-induced strand separation in the duplex. The distinct interactions of the duplex at either end of the nanopore present powerful opportunities for introducing new generations of force-spectroscopy nanopore-based platforms, enabling from the same experiment duplex detection and assessment of interstrand base pairing energy.
Collapse
Affiliation(s)
- Andrei Ciuca
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Alina Asandei
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Irina Schiopu
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Aurelia Apetrei
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Loredana Mereuta
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Chang Ho Seo
- Department of Bioinformatics , Kongju National University , Kongju 32588 , South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , South Korea
| | - Tudor Luchian
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| |
Collapse
|
17
|
Yang Q, Ai T, Lv Y, Huang Y, Geng J, Xiao D, Zhou C. Simultaneous Discrimination of Single-Base Mismatch and Full Match Using a Label-Free Single-Molecule Strategy. Anal Chem 2018; 90:8102-8107. [PMID: 29874049 DOI: 10.1021/acs.analchem.8b01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qiufang Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tingting Ai
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - You Lv
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqin Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jia Geng
- Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Cao C, Long YT. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Acc Chem Res 2018; 51:331-341. [PMID: 29364650 DOI: 10.1021/acs.accounts.7b00143] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.
Collapse
Affiliation(s)
- Chan Cao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
19
|
Jou I, Muthukumar M. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA. Biophys J 2017; 113:1664-1672. [PMID: 29045861 DOI: 10.1016/j.bpj.2017.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
We have investigated the dynamics of single-stranded DNA as it translocates through charge-mutated protein nanopores. Translocation of DNA is a crucial step in nanopore-based sequencing platforms, where control over translocation speed remains one of the main challenges. Taking advantage of the interactions between negatively charged DNA and positively charged amino acid residues, the translocation speed of DNA can be manipulated by deliberate charge decorations inside the nanopore. We employed coarse-grained Langevin dynamics simulations to monitor the step-by-step movement of DNA through different mutations of α-hemolysin protein nanopores. We found that although the average translocation time per nucleotide is longer, in agreement with experiments, the DNA nucleotides do not translocate with a uniform speed. Furthermore, the location and spacing of the charge decorations can alter the translocation dynamics significantly, trapping DNA in some cases. Our findings can give insights when designing charge patterns in nanopores.
Collapse
Affiliation(s)
- Ining Jou
- Department of Polymer Science and Engineering, Conte Research Center, University of Massachusetts, Amherst, Massachusetts
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, Conte Research Center, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
20
|
Zhang X, Zhang D, Zhao C, Tian K, Shi R, Du X, Burcke AJ, Wang J, Chen SJ, Gu LQ. Nanopore electric snapshots of an RNA tertiary folding pathway. Nat Commun 2017; 8:1458. [PMID: 29133841 PMCID: PMC5684407 DOI: 10.1038/s41467-017-01588-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The chemical properties and biological mechanisms of RNAs are determined by their tertiary structures. Exploring the tertiary structure folding processes of RNA enables us to understand and control its biological functions. Here, we report a nanopore snapshot approach combined with coarse-grained molecular dynamics simulation and master equation analysis to elucidate the folding of an RNA pseudoknot structure. In this approach, single RNA molecules captured by the nanopore can freely fold from the unstructured state without constraint and can be programmed to terminate their folding process at different intermediates. By identifying the nanopore signatures and measuring their time-dependent populations, we can “visualize” a series of kinetically important intermediates, track the kinetics of their inter-conversions, and derive the RNA pseudoknot folding pathway. This approach can potentially be developed into a single-molecule toolbox to investigate the biophysical mechanisms of RNA folding and unfolding, its interactions with ligands, and its functions. While RNA folding is critical for its function, study of this process is challenging. Here, the authors combine nanopore single-molecule manipulation with theoretical analysis to follow the folding of an RNA pseudoknot, monitoring the intermediate states and the kinetics of their interconversion.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Zhang
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Chenhan Zhao
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Kai Tian
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruicheng Shi
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Xiao Du
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew J Burcke
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Li-Qun Gu
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
21
|
Dwyer JR, Harb M. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. APPLIED SPECTROSCOPY 2017; 71:2051-2075. [PMID: 28714316 DOI: 10.1177/0003702817715496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Collapse
Affiliation(s)
- Jason R Dwyer
- 1 Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Maher Harb
- 2 Department of Physics and Materials, Science & Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification. Nat Commun 2017; 8:15450. [PMID: 28516911 PMCID: PMC5454367 DOI: 10.1038/ncomms15450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/29/2017] [Indexed: 01/28/2023] Open
Abstract
The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. DNA hybridization of two single-strands to form a double-stranded helix is widely used for genomic identification applications. Here, Vernick et al. record duplex formation of 20-mer oligonucleotide using a single-molecule field-effect transistor, where DNA kinetics is affected by electrostatic bias.
Collapse
|
23
|
Dwyer JR, Bandara YMNDY, Whelan JC, Karawdeniya BI, Nichols JW. Silicon Nitride Thin Films for Nanofluidic Device Fabrication. NANOFLUIDICS 2016. [DOI: 10.1039/9781849735230-00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Silicon nitride is a ubiquitous and well-established nanofabrication material with a host of favourable properties for creating nanofluidic devices with a range of compelling designs that offer extraordinary discovery potential. Nanochannels formed between two thin silicon nitride windows can open up vistas for exploration by freeing transmission electron microscopy to interrogate static structures and structural dynamics in liquid-based samples. Nanopores present a strikingly different architecture—nanofluidic channels through a silicon nitride membrane—and are one of the most promising tools to emerge in biophysics and bioanalysis, offering outstanding capabilities for single molecule sensing. The constrained environments in such nanofluidic devices make surface chemistry a vital design and performance consideration. Silicon nitride has a rich and complex surface chemistry that, while too often formidable, can be tamed with new, robust surface functionalization approaches. We will explore how a simple structural element—a ∼100 nm-thick silicon nitride window—can be used to fabricate devices to wrest unprecedented insights from the nanoscale world. We will detail the intricacies of native silicon nitride surface chemistry, present surface chemical modification routes that leverage the richness of available surface moieties, and examine the effect of engineered chemical surface functionality on nanofluidic device character and performance.
Collapse
Affiliation(s)
- J. R. Dwyer
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | | | - J. C. Whelan
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | - B. I. Karawdeniya
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | - J. W. Nichols
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| |
Collapse
|
24
|
Perera RT, Fleming AM, Peterson AM, Heemstra JM, Burrows CJ, White HS. Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore. Biophys J 2016; 110:306-314. [PMID: 26789754 DOI: 10.1016/j.bpj.2015.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023] Open
Abstract
Unzipping of double-stranded nucleic acids by an electric field applied across a wild-type α-hemolysin (αHL) nanopore provides structural information about different duplex forms. In this work, comparative studies on A-form DNA-RNA duplexes and B-form DNA-DNA duplexes with a single-stranded tail identified significant differences in the blockage current and the unzipping duration between the two helical forms. We observed that the B-form duplex blocks the channel 1.9 ± 0.2 pA more and unzips ∼15-fold more slowly than an A-form duplex at 120 mV. We developed a model to describe the dependence of duplex unzipping on structure. We demonstrate that the wider A-form duplex (d = 2.4 nm) is unable to enter the vestibule opening of αHL on the cis side, leading to unzipping outside of the nanopore with higher residual current and faster unzipping times. In contrast, the smaller B-form duplexes (d = 2.0 nm) enter the vestibule of αHL, resulting in decreased current blockages and slower unzipping. We investigated the effects of varying the length of the single-stranded overhang, and studied A-form DNA-PNA duplexes to provide additional support for the proposed model. This study identifies key differences between A- and B-form duplex unzipping that will be important in the design of future probe-based methods for detecting DNA or RNA.
Collapse
Affiliation(s)
- Rukshan T Perera
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | | | | | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
25
|
Cao C, Ying YL, Hu ZL, Liao DF, Tian H, Long YT. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. NATURE NANOTECHNOLOGY 2016; 11:713-8. [PMID: 27111839 DOI: 10.1038/nnano.2016.66] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 03/21/2016] [Indexed: 05/22/2023]
Abstract
Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.
Collapse
Affiliation(s)
- Chan Cao
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Zheng-Li Hu
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Dong-Fang Liao
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials &Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
|
27
|
Angevine CE, Seashols-Williams SJ, Reiner JE. Infrared Laser Heating Applied to Nanopore Sensing for DNA Duplex Analysis. Anal Chem 2016; 88:2645-51. [DOI: 10.1021/acs.analchem.5b03631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christopher E. Angevine
- Department of Physics, and ‡Department of
Forensic Science, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Sarah J. Seashols-Williams
- Department of Physics, and ‡Department of
Forensic Science, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Joseph E. Reiner
- Department of Physics, and ‡Department of
Forensic Science, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
28
|
Wong-Ekkabut J, Karttunen M. Molecular dynamics simulation of water permeation through the alpha-hemolysin channel. J Biol Phys 2016; 42:133-46. [PMID: 26264478 PMCID: PMC4713412 DOI: 10.1007/s10867-015-9396-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
The alpha-hemolysin (AHL) nanochannel is a non-selective channel that allows for uncontrolled transport of small molecules across membranes leading to cell death. Although it is a bacterial toxin, it has promising applications, ranging from drug delivery systems to nano-sensing devices. This study focuses on the transport of water molecules through an AHL nanochannel using molecular dynamics (MD) simulations. Our results show that AHL can quickly transport water across membranes. The first-passage time approach was used to estimate the diffusion coefficient and the mean exit time. To study the energetics of transport, the potential of mean force (PMF) of a water molecule along the AHL nanochannel was calculated. The results show that the energy barriers of water permeation across a nanopore are always positive along the channel and the values are close to thermal energy (kBT). These findings suggest that the observed quick permeation of water is due to small energy barriers and a hydrophobic inner channel surface resulting in smaller friction. We speculate that these physical mechanisms are important in how AHL causes cell death.
Collapse
Affiliation(s)
- Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, 50 Phahon Yothin Rd, Chatuchak, Bangkok, Thailand, 10900.
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1.
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, MetaForum, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
29
|
Ding Y, Fleming AM, White HS, Burrows CJ. Differentiation of G:C vs A:T and G:C vs G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS NANO 2015; 9:11325-32. [PMID: 26506108 PMCID: PMC4876701 DOI: 10.1021/acsnano.5b05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The α-hemolysin (α-HL) nanopore can detect DNA strands under an electrophoretic force via many regions of the channel. Our laboratories previously demonstrated that trapping duplex DNA in the vestibule of wild-type α-HL under force could distinguish the presence of an abasic site compared to a G:C base pair positioned in the latch zone at the top of the vestibule. Herein, a series of duplexes were probed in the latch zone to establish if this region can detect more subtle features of base pairs beyond the complete absence of a base. The results of these studies demonstrate that the most sensitive region of the latch can readily discriminate duplexes in which one G:C base pair is replaced by an A:T. Additional experiments determined that while neither 8-oxo-7,8-dihydroguanine nor 7-deazaguanine opposite C could be differentiated from a G:C base pair, in contrast, the epigenetic marker 5-methylcytosine, when present in both strands of the duplex, yielded new blocking currents when compared to strands with unmodified cytosine. The results are discussed with respect to experimental design for utilization of the latch zone of α-HL to probe specific regions of genomic samples.
Collapse
Affiliation(s)
| | | | - Henry S. White
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| | - Cynthia J. Burrows
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| |
Collapse
|
30
|
Waugh M, Carlsen A, Sean D, Slater GW, Briggs K, Kwok H, Tabard-Cossa V. Interfacing solid-state nanopores with gel media to slow DNA translocations. Electrophoresis 2015; 36:1759-67. [PMID: 25929480 DOI: 10.1002/elps.201400488] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 11/10/2022]
Abstract
We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.
Collapse
Affiliation(s)
- Matthew Waugh
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Autumn Carlsen
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - David Sean
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gary W Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Harold Kwok
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
31
|
Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Sci Rep 2015; 5:10419. [PMID: 26029865 PMCID: PMC4450769 DOI: 10.1038/srep10419] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/13/2015] [Indexed: 11/09/2022] Open
Abstract
Protein and solid-state nanometer-scale pores are being developed for the detection, analysis, and manipulation of single molecules. In the simplest embodiment, the entry of a molecule into a nanopore causes a reduction in the latter's ionic conductance. The ionic current blockade depth and residence time have been shown to provide detailed information on the size, adsorbed charge, and other properties of molecules. Here we describe the use of the nanopore formed by Staphylococcus aureus α-hemolysin and polypeptides with oppositely charged segments at the N- and C-termini to increase both the polypeptide capture rate and mean residence time of them in the pore, regardless of the polarity of the applied electrostatic potential. The technique provides the means to improve the signal to noise of single molecule nanopore-based measurements.
Collapse
|
32
|
Langecker M, Ivankin A, Carson S, Kinney SM, Simmel FC, Wanunu M. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. NANO LETTERS 2015; 15:783-90. [PMID: 25495735 PMCID: PMC4296928 DOI: 10.1021/nl504522n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/09/2014] [Indexed: 05/21/2023]
Abstract
Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.
Collapse
Affiliation(s)
- Martin Langecker
- Lehrstuhl für
Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Andrey Ivankin
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Spencer Carson
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shannon
R. M. Kinney
- Department
of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, Massachusetts 01119, United States
| | - Friedrich C. Simmel
- Lehrstuhl für
Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
- E-mail:
| | - Meni Wanunu
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- E-mail:
| |
Collapse
|
33
|
Wang Y, Tian K, Hunter LL, Ritzo B, Gu LQ. Probing molecular pathways for DNA orientational trapping, unzipping and translocation in nanopores by using a tunable overhang sensor. NANOSCALE 2014; 6:11372-9. [PMID: 25144935 PMCID: PMC6201287 DOI: 10.1039/c4nr03195d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanopores provide a unique single-molecule platform for genetic and epigenetic detection. The target nucleic acids can be accurately analyzed by characterizing their specific electric fingerprints or signatures in the nanopore. Here we report a series of novel nanopore signatures generated by target nucleic acids that are hybridized with a probe. A length-tunable overhang appended to the probe functions as a sensor to specifically modulate the nanopore current profile. The resulting signatures can reveal multiple mechanisms for the orientational trapping, unzipping, escaping and translocation of nucleic acids in the nanopore. This universal approach can be used to program various molecular movement pathways, elucidate their kinetics, and enhance the sensitivity and specificity of the nanopore sensor for nucleic acid detection.
Collapse
Affiliation(s)
- Yong Wang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
34
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
35
|
Ervin EN, Barrall GA, Pal P, Bean MK, Schibel AEP, Hibbs AD. Creating a Single Sensing Zone within an Alpha-Hemolysin Pore Via Site Directed Mutagenesis. BIONANOSCIENCE 2014; 4:78-84. [PMID: 24678449 PMCID: PMC3963172 DOI: 10.1007/s12668-013-0119-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although significant progress has recently been made towards realizing the goal of direct nanopore based DNA sequencing [1], there are still numerous hurdles that need to be overcome. One such hurdle associated with the use of the biological nanopore α-hemolysin (αHL) is the fact that the wild type channel contains three very distinct recognition or sensing regions within the β-barrel [2, 3], making identification of the bases residing within or moving through the pore very difficult. Through site directed mutagenesis, we have been able to selectively remove one of two sensing regions while simultaneously enhancing the third. Our approach has led to the creation of αHL pores containing single sensing zones and provides the basis for engineering αHL pores suitable for direct DNA sequencing.
Collapse
Affiliation(s)
- Eric N. Ervin
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| | - Geoffrey A. Barrall
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| | - Prithwish Pal
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| | - Megan K. Bean
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| | - Anna E. P. Schibel
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| | - Andrew D. Hibbs
- Electronic BioSciences, Inc., 5754 Pacific Center Blvd. Suite 204, San Diego, CA 92121
| |
Collapse
|
36
|
Matsumoto A, Miyahara Y. Current and emerging challenges of field effect transistor based bio-sensing. NANOSCALE 2013; 5:10702-10718. [PMID: 24064964 DOI: 10.1039/c3nr02703a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed "Bio-FETs", provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.
Collapse
Affiliation(s)
- Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
37
|
Buchsbaum SF, Mitchell N, Martin H, Wiggin M, Marziali A, Coveney PV, Siwy Z, Howorka S. Disentangling steric and electrostatic factors in nanoscale transport through confined space. NANO LETTERS 2013; 13:3890-3896. [PMID: 23819625 DOI: 10.1021/nl401968r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The voltage-driven passage of biological polymers through nanoscale pores is an analytically, technologically, and biologically relevant process. Despite various studies on homopolymer translocation there are still several open questions on the fundamental aspects of pore transport. One of the most important unresolved issues revolves around the passage of biopolymers which vary in charge and volume along their sequence. Here we exploit an experimentally tunable system to disentangle and quantify electrostatic and steric factors. This new, fundamental framework facilitates the understanding of how complex biopolymers are transported through confined space and indicates how their translocation can be slowed down to enable future sensing methods.
Collapse
Affiliation(s)
- Steven F Buchsbaum
- School of Physical Sciences, University of California, Irvine, California 92697, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wolna AH, Fleming AM, An N, He L, White HS, Burrows CJ. Electrical Current Signatures of DNA Base Modifications in Single Molecules Immobilized in the α-Hemolysin Ion Channel. Isr J Chem 2013; 53:417-430. [PMID: 24052667 PMCID: PMC3773884 DOI: 10.1002/ijch.201300022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanopore technology holds high potential for next-generation DNA sequencing. This method operates by drawing an individual single-stranded DNA molecule through a nanoscale pore while monitoring the current deflections that occur as the DNA passes through. Individual current levels for the four DNA nucleotides have been established by immobilization of an end biotinylated strand in the pore in which the nucleotide of interest is suspended at the most sensitive region of the ion channel. Due to the inherent reactivity of the DNA bases, many modified nucleotides in the genome exist resulting from oxidative and UV insults, among others. Herein, the current levels for the common DNA damages 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), uridine (U), abasic sites (AP), thymine dimers (T=T), thymine glycol (Tg) and 5-iodocytosine (5-I-C) were assessed via immobilization experiments. In some cases, the current difference between the damaged and canonical nucleotides was not well resolved; therefore, we took advantage of the chemical reactivity of the new functional groups present to make amine adducts that shifted the current levels outside the range of the native nucleotides. Among adducts studied, only the 2-aminomethyl-18-crown-6 adduct was able to give a large current shift in the immobilization experiment, as well as to be observed in a translocation experiment. The results show potential in providing current level modulators for identification of some types of DNA damage. In principle, any DNA base modification that can be converted chemically or enzymatically to an abasic site could be identified in this way.
Collapse
Affiliation(s)
- Anna H. Wolna
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| | - Aaron M. Fleming
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| | - Na An
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| | - Lidong He
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| | - Henry S. White
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| | - Cynthia J. Burrows
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City, UT 84112-0850
| |
Collapse
|
39
|
Tian K, He Z, Wang Y, Chen SJ, Gu LQ. Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS NANO 2013; 7:3962-9. [PMID: 23550815 PMCID: PMC3675772 DOI: 10.1021/nn305789z] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nanopore sensor can detect cancer-derived nucleic acid biomarkers such as microRNAs (miRNAs), providing a noninvasive tool potentially useful in medical diagnostics. However, the nanopore-based detection of these biomarkers remains confounded by the presence of numerous other nucleic acid species found in biofluid extracts. Their nonspecific interactions with the nanopore inevitably contaminate the target signals, reducing the detection accuracy. Here we report a novel method that utilizes a polycationic peptide-PNA probe as the carrier for selective miRNA detection in the nucleic acid mixture. The cationic probe hybridized with microRNA forms a dipole complex, which can be captured by the pore using a voltage polarity that is opposite the polarity used to capture negatively charged nucleic acids. As a result, nontarget species are driven away from the pore opening, and the target miRNA can be detected accurately without interference. In addition, we demonstrate that the PNA probe enables accurate discrimination of miRNAs with single-nucleotide difference. This highly sensitive and selective nanodielectrophoresis approach can be applied to the detection of clinically relevant nucleic acid fragments in complex samples.
Collapse
Affiliation(s)
- Kai Tian
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zhaojian He
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
| | - Yong Wang
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
| | - Li-Qun Gu
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence author: Li-Qun Gu, PhD Associate Professor of Biological Engineering and Dalton Cardiovascular Research Center University of Missouri, Columbia, MO 65211 Tel: 573-882-2057, Fax: 573-884-4232
| |
Collapse
|
40
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
41
|
Gu LQ, Wanunu M, Wang MX, McReynolds L, Wang Y. Detection of miRNAs with a nanopore single-molecule counter. Expert Rev Mol Diagn 2012; 12:573-84. [PMID: 22845478 DOI: 10.1586/erm.12.58] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
miRNAs are short noncoding RNA molecules that are important in regulating gene expression. Due to the correlation of their expression levels and various diseases, miRNAs are being investigated as potential biomarkers for molecular diagnostics. The fast-growing miRNA exploration demands rapid, accurate, low-cost miRNA detection technologies. This article will focus on two platforms of nanopore single-molecule approach that can quantitatively measure miRNA levels in samples from tissue and cancer patient plasma. Both nanopore methods are sensitive and specific, and do not need labeling, enzymatic reaction or amplification. In the next 5 years, the nanopore-based miRNA techniques will be improved and validated for noninvasive and early diagnosis of diseases.
Collapse
Affiliation(s)
- Li-Qun Gu
- Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
42
|
Uplinger J, Thomas B, Rollings R, Fologea D, McNabb D, Li J. K(+) , Na(+) , and Mg(2+) on DNA translocation in silicon nitride nanopores. Electrophoresis 2012; 33:3448-57. [PMID: 23147752 PMCID: PMC3514626 DOI: 10.1002/elps.201200165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022]
Abstract
In this work, we report on how salt concentration and cation species affect DNA translocation in voltage-biased silicon nitride nanopores. The translocation of dsDNA in linear, circular, and supercoiled forms was measured in salt solutions containing KCl, NaCl, and MgCl(2) . As the KCl concentrations were decreased from 1 to 0.1 M, the time taken by a DNA molecule to pass through a nanopore was shorter and the frequency of the translocation in a folded configuration was reduced, suggesting an increase in DNA electrophoretic mobility and DNA persistence length. When the salt concentration was kept at 1 M, but replacing K(+) with Na(+) , longer DNA translocation times (t(d) ) were observed. The addition of low concentrations of MgCl(2) with 1.6 M KCl resulted in longer t(d) and an increased frequency of supercoiled DNA molecules in a branched form. These observations were consistent with the greater counterion charge screening ability of Na(+) and Mg(2+) as compared to K(+) . In addition, we demonstrated that dsDNA molecules indeed translocated through a ∼10 nm nanopore by PCR amplification and gel electrophoresis. We also compared the dependence of DNA mobility and conformation on KCl concentration and cation species measured at single molecule level by silicon nitride nanopores with existing bulk-based experimental results and theoretical predictions.
Collapse
Affiliation(s)
| | | | | | | | - David McNabb
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Jiali Li
- Corresponding Author: Jiali Li, Department of Physics, Room 226, University of Arkansas, 825 w Dickson Street, Fayetteville, AR 72701, , Phone: (479) 575-7593. Fax: (479) 575-4580
| |
Collapse
|
43
|
de la Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing. ACS NANO 2012; 6:7556-83. [PMID: 22880686 DOI: 10.1021/nn301368z] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Selective transport in nanochannels (protein-based ion channels) is already used in living systems for electrical signaling in nerves and muscles, and this natural behavior is being approached for the application of biomimetic nanochannels in biosensors. On the basis of this principle, single nanochannels and nanochannel arrays seem to bring new advantages for biosensor development and applications. The purpose of this review is to provide a general comprehensive and critical overview on the latest trends in the development of nanochannel-based biosensing systems. A detailed description and discussion of representative and recent works covering the main nanochannel fabrication techniques, nanoporous material characterizations, and especially their application in both electrochemical and optical sensing systems is given. The state-of-the-art of the developed technology may open the way to new advances in the integration of nanochannels with (bio)molecules and synthetic receptors for the development of novel biodetection systems that can be extended to many other applications with interest for clinical analysis, safety, and security as well as environmental and other industrial studies and applications.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Nanobioelectronics & Biosensors Group, CIN2, ICN-CSIC, Catalan Institute of Nanotechnology, Campus UAB, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
44
|
Haque F, Lunn J, Fang H, Smithrud D, Guo P. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor. ACS NANO 2012; 6:3251-3261. [PMID: 22458779 PMCID: PMC3337346 DOI: 10.1021/nn3001615] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Jennifer Lunn
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45267
| | - Huaming Fang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - David Smithrud
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45267
| | - Peixuan Guo
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
45
|
Shim J, Gu LQ. Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods 2012; 57:40-6. [PMID: 22487183 DOI: 10.1016/j.ymeth.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/01/2023] Open
Abstract
This review article introduces the nanopore single-molecule method for the study of G-quadruplex nucleic acid structures. Single G-quadruplexes can be trapped into a 2 nm protein pore embedded in the lipid bilayer membrane. The trapped G-quadruplex specifically blocks the current through the nanopore, creating a signature event for quantitative analysis of G-quadruplex properties, from cation-determined folding and unfolding kinetics to the interactions with the protein ligand. The nanopore single-molecule method is simple, accurate, and requires no labels. It can be used to evaluate G-quadruplex mechanisms and it may have applications in G-quadruplex-based biosensors, nanomachines, and nanostructure assembly.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
46
|
Comer J, Aksimentiev A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:3376-3393. [PMID: 22606364 PMCID: PMC3350822 DOI: 10.1021/jp210641j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.
Collapse
Affiliation(s)
- Jeffrey Comer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
47
|
Schink S, Renner S, Alim K, Arnaut V, Simmel FC, Gerland U. Quantitative analysis of the nanopore translocation dynamics of simple structured polynucleotides. Biophys J 2012; 102:85-95. [PMID: 22225801 DOI: 10.1016/j.bpj.2011.11.4011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/02/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022] Open
Abstract
Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spectroscopy is particularly well suited for quantitative analysis. In contrast to forward translocation from the vestibule side of the pore, backward translocation times do not appear to be significantly affected by pore-DNA interactions. 2), We develop and verify experimentally a versatile mesoscopic theoretical framework for the quantitative analysis of translocation experiments with structured polynucleotides. The underlying model is based on sequence-dependent free energy landscapes constructed using the known thermodynamic parameters for polynucleotide basepairing. This approach limits the adjustable parameters to a small set of sequence-independent parameters. After parameter calibration, the theoretical model predicts the translocation dynamics of new sequences. These predictions can be leveraged to generate a baseline expectation even for more complicated structures where the assumptions underlying the one-dimensional free energy landscape may no longer be satisfied. Taken together, backward translocation through α-hemolysin pores combined with mesoscopic theoretical modeling is a promising approach for label-free single-molecule analysis of DNA and RNA folding.
Collapse
Affiliation(s)
- Severin Schink
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled AG, Bacri L, Gierak J, Pelta J, Auvray L, Mathé J. DNA unzipping and protein unfolding using nanopores. Methods Mol Biol 2012; 870:55-75. [PMID: 22528258 DOI: 10.1007/978-1-61779-773-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.
Collapse
Affiliation(s)
- Céline Merstorf
- Laboratoire LAMBE (Equipe MPI) CNRS UMR 8587, Université d'Evry-val d'Essonne, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Zheng D, Tan Q, Wang M, Gu LQ. Nanopore-based detection of circulating microRNAs in lung cancer patients. NATURE NANOTECHNOLOGY 2011; 6:668-74. [PMID: 21892163 PMCID: PMC3189330 DOI: 10.1038/nnano.2011.147] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 05/17/2023]
Abstract
MicroRNAs are short RNA molecules that regulate gene expression, and have been investigated as potential biomarkers because their expression levels are correlated with various diseases. However, detecting microRNAs in the bloodstream remains difficult because current methods are not sufficiently selective or sensitive. Here, we show that a nanopore sensor based on the α-haemolysin protein can selectively detect microRNAs at the single molecular level in plasma samples from lung cancer patients without the need for labels or amplification of the microRNA. The sensor, which uses a programmable oligonucleotide probe to generate a target-specific signature signal, can quantify subpicomolar levels of cancer-associated microRNAs and can distinguish single-nucleotide differences between microRNA family members. This approach is potentially useful for quantitative microRNA detection, the discovery of disease markers and non-invasive early diagnosis of cancer.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Dali Zheng
- Ellis Fischel Cancer Center and Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Qiulin Tan
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Michael Wang
- Ellis Fischel Cancer Center and Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
- Corresponding authors: Li-Qun Gu, PhD, Associate Professor, Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, Tel: 573-882-2057, Fax: 573-884-4232, . Michael Wang, MD, PhD, Assistant Professor, Ellis Fischel Cancer Center, Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO 65212,
| | - Li-Qun Gu
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Corresponding authors: Li-Qun Gu, PhD, Associate Professor, Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, Tel: 573-882-2057, Fax: 573-884-4232, . Michael Wang, MD, PhD, Assistant Professor, Ellis Fischel Cancer Center, Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO 65212,
| |
Collapse
|
50
|
Meng H, Detillieux D, Baran C, Krasniqi B, Christensen C, Madampage C, Stefureac RI, Lee JS. Nanopore analysis of tethered peptides. J Pept Sci 2011; 16:701-8. [PMID: 20814890 DOI: 10.1002/psc.1289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptides of 12 amino acids were tethered via a terminal cysteine to mono-, di-, tri-, and tetrabromomethyl-substituted benzene to produce bundles of one to four peptide strands (CY12-T1 to CY12-T4, respectively). The interaction of the bundles with the α-hemolysin pore was assessed by measuring the blockade currents (I) and times (T) at an applied potential of - 50, - 100, and - 150 mV. Three types of events could be distinguished: bumping events, with small I and short T where the molecule transiently interacts with the pore before diffusing away; translocation events, where the molecule threads through the pore with large I and the value of T decreases with increasing voltage; and intercalation events, where the molecule transiently enters the pore but does not translocate with large I and the value of T increases with increasing voltage. CY12-T1 and CY12-T2 gave only bumping and translocation events; CY12-T3 and CY12-T4 also gave intercalation events, some of which were of very long duration. The results suggest that three uncoiled peptide strands cannot simultaneously thread through the α-hemolysin pore and that proteins must completely unfold in order to translocate.
Collapse
Affiliation(s)
- Howard Meng
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | |
Collapse
|