1
|
Zhao Z, Yao W, Wang M, Wang J, Zhang T. Radial Flow Field of Spiral Cochlea and Its Effect On Stereocilia. J Biomech Eng 2022; 144:1143034. [PMID: 35789250 DOI: 10.1115/1.4054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/08/2022]
Abstract
The opening of the ion channels ultimately depends on the movement and energy conversion of the microstructural organization. It has not been clear how active sound amplification is generated by the microstructure of the cochlea's characteristic spiral shape. In this paper, an analytical model of the spiral cochlea is developed to investigate the radial flow field generated by the spiral shape of the cochlea and its effect on the outer hair cell stereocilia, and to analyze the effect of the spiral shape on the micromechanics of the cochlea. The results show that the spiral shape of the cochlea exerts a radial shear force on the hair cell stereocilia by generating a radial flow field. This causes the stereocilia to deflect in the radial flow field, with the maximum deflection occurring at the apex of the cochlea. This finding explains the microscopic mechanism that causes the cochlea's spiral shape to enhance low-frequency hearing in humans, and it provides a basis for further studies on the contribution of the movement of stereocilia in the radial flow field of the lymphatic fluid to activate ion channels for auditory production.
Collapse
Affiliation(s)
- Zhengshan Zhao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Mianzhi Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Jiakun Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Hearing Medicine Key Laboratory, National Health Commission of China; Department of Facial Plastic Reconstruction Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, PRC
| |
Collapse
|
2
|
Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia. Cell Rep 2016; 15:935-943. [PMID: 27117407 PMCID: PMC4859837 DOI: 10.1016/j.celrep.2016.03.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022] Open
Abstract
WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations. Major WHRN isoforms WHRN-S and WHRN-L have distinct localizations within stereocilia Lack of WHRN-S and WHRN-L causes short stereocilia bundles and profound deafness In absence of WHRN-L, WHRN-S can preserve stereocilia length in certain hair cells Differential isoform expression underlies distinct phenotypes of known Whrn mutations
Collapse
|
3
|
Patel SH, Salvi JD, Maoiléidigh DÓ, Hudspeth AJ. Frequency-selective exocytosis by ribbon synapses of hair cells in the bullfrog's amphibian papilla. J Neurosci 2012; 32:13433-8. [PMID: 23015434 PMCID: PMC3468150 DOI: 10.1523/jneurosci.1246-12.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 01/25/2023] Open
Abstract
The activity of auditory afferent fibers depends strongly on the frequency of stimulation. Although the bullfrog's amphibian papilla lacks the flexible basilar membrane that effects tuning in mammals, its afferents display comparable frequency selectivity. Seeking additional mechanisms of tuning in this organ, we monitored the synaptic output of hair cells by measuring changes in their membrane capacitance during sinusoidal electrical stimulation at various frequencies. Using perforated-patch recordings, we found that individual hair cells displayed frequency selectivity in synaptic exocytosis within the frequency range sensed by the amphibian papilla. Moreover, each cell's tuning varied in accordance with its tonotopic position. Using confocal imaging, we observed a tonotopic gradient in the concentration of proteinaceous Ca(2+) buffers. A model for synaptic release suggests that this gradient maintains the sharpness of tuning. We conclude that hair cells of the amphibian papilla use synaptic tuning as an additional mechanism for sharpening their frequency selectivity.
Collapse
Affiliation(s)
- Suchit H. Patel
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065
| | - Joshua D. Salvi
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065
| | - Dáibhid Ó Maoiléidigh
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065
| | - A. J. Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065
| |
Collapse
|
4
|
Bergevin C, Velenovsky DS, Bonine KE. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions. Biophys J 2010; 99:1064-72. [PMID: 20712989 DOI: 10.1016/j.bpj.2010.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/21/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022] Open
Abstract
The tectorial membrane (TM) is widely believed to play an important role in determining the ear's ability to detect and resolve incoming acoustic information. While it is still unclear precisely what that role is, the TM has been hypothesized to help overcome viscous forces and thereby sharpen mechanical tuning of the sensory cells. Lizards present a unique opportunity to further study the role of the TM given the diverse inner-ear morphological differences across species. Furthermore, stimulus-frequency otoacoustic emissions (SFOAEs), sounds emitted by the ear in response to a tone, noninvasively probe the frequency selectivity of the ear. We report estimates of auditory tuning derived from SFOAEs for 12 different species of lizards with widely varying TM morphology. Despite gross anatomical differences across the species examined herein, low-level SFOAEs were readily measurable in all ears tested, even in non-TM species whose basilar papilla contained as few as 50-60 hair cells. Our measurements generally support theoretical predictions: longer delays/sharper tuning features are found in species with a TM relative to those without. However, SFOAEs from at least one non-TM species (Anolis) with long delays suggest there are likely additional micromechanical factors at play that can directly affect tuning. Additionally, in the one species examined with a continuous TM (Aspidoscelis) where cell-to-cell coupling is presumably relatively stronger, delays were intermediate. This observation appears consistent with recent reports that suggest the TM may play a more complex macromechanical role in the mammalian cochlea via longitudinal energy distribution (and thereby affect tuning). Although significant differences exist between reptilian and mammalian auditory biophysics, understanding lizard OAE generation mechanisms yields significant insight into fundamental principles at work in all vertebrate ears.
Collapse
|
5
|
Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nat Commun 2010; 1:96. [PMID: 20981024 PMCID: PMC2982163 DOI: 10.1038/ncomms1094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/22/2010] [Indexed: 11/08/2022] Open
Abstract
Remarkable sensitivity and exquisite frequency selectivity are hallmarks of mammalian hearing, but their underlying mechanisms remain unclear. Cochlear insults and hearing disorders that decrease sensitivity also tend to broaden tuning, suggesting that these properties are linked. However, a recently developed mouse model of genetically altered hearing (Tectb(-/-)) shows decreased sensitivity and sharper frequency selectivity. In this paper, we show that the Tectb mutation reduces the spatial extent and propagation velocity of tectorial membrane (TM) travelling waves and that these changes in wave propagation are likely to account for all of the hearing abnormalities associated with the mutation. By reducing the spatial extent of TM waves, the Tectb mutation decreases the spread of excitation and thereby increases frequency selectivity. Furthermore, the change in TM wave velocity reduces the number of hair cells that effectively couple energy to the basilar membrane, which reduces sensitivity. These results highlight the importance of TM waves in hearing.
Collapse
|
6
|
von Tiedemann M, Fridberger A, Ulfendahl M, de Monvel JB. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:056012. [PMID: 21054106 DOI: 10.1117/1.3494564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.
Collapse
Affiliation(s)
- Miriam von Tiedemann
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience and Department of Otolaryngology, SE-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Bergevin C, Shera CA. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:2398-409. [PMID: 20370023 PMCID: PMC2865438 DOI: 10.1121/1.3303977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lizard ears produce otoacoustic emissions with characteristics often strikingly reminiscent of those measured in mammals. The similarity of their emissions is surprising, given that lizards and mammals manifest major differences in aspects of inner ear morphology and function believed to be relevant to emission generation. For example, lizards such as the gecko evidently lack traveling waves along their basilar membrane. Despite the absence of traveling waves, the phase-gradient delays of gecko stimulus-frequency otoacoustic emissions (SFOAEs) are comparable to those measured in many mammals. This paper describes a model of emission generation inspired by the gecko inner ear. The model consists of an array of coupled harmonic oscillators whose effective damping manifests a small degree of irregularity. Model delays increase with the assumed sharpness of tuning, reflecting the build-up time associated with mechanical resonance. When tuning bandwidths are chosen to match those of gecko auditory-nerve fibers, the model reproduces the major features of gecko SFOAEs, including their spectral structure and the magnitude and frequency dependence of their phase-gradient delays. The same model with appropriately modified parameters reproduces the features of SFOAEs in alligator lizards. Analysis of the model demonstrates that the basic mechanisms operating in the model are similar to those of the coherent-reflection model developed to describe mammalian emissions. These results support the notion that SFOAE delays provide a noninvasive measure of the sharpness of cochlear tuning.
Collapse
|
8
|
Dickinson BT. Hair receptor sensitivity to changes in laminar boundary layer shape. BIOINSPIRATION & BIOMIMETICS 2010; 5:16002. [PMID: 20157224 DOI: 10.1088/1748-3182/5/1/016002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.
Collapse
Affiliation(s)
- B T Dickinson
- Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542, USA.
| |
Collapse
|
9
|
Multiple roles for the tectorial membrane in the active cochlea. Hear Res 2009; 266:26-35. [PMID: 19853029 DOI: 10.1016/j.heares.2009.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/28/2022]
Abstract
This review is concerned with experimental results that reveal multiple roles for the tectorial membrane in active signal processing in the mammalian cochlea. We discuss the dynamic mechanical properties of the tectorial membrane as a mechanical system with several degrees of freedom and how its different modes of movement can lead to hair-cell excitation. The role of the tectorial membrane in distributing energy along the cochlear partition and how it channels this energy to the inner hair cells is described.
Collapse
|
10
|
Bergevin C, Freeman DM, Saunders JC, Shera CA. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:665-83. [PMID: 18500528 PMCID: PMC2562659 DOI: 10.1007/s00359-008-0338-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/18/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
Many non-mammalian ears lack physiological features considered integral to the generation of otoacoustic emissions in mammals, including basilar-membrane traveling waves and hair-cell somatic motility. To help elucidate the mechanisms of emission generation, this study systematically measured and compared evoked emissions in all four classes of tetrapod vertebrates using identical stimulus paradigms. Overall emission levels are largest in the lizard and frog species studied and smallest in the chicken. Emission levels in humans, the only examined species with somatic hair cell motility, were intermediate. Both geckos and frogs exhibit substantially higher levels of high-order intermodulation distortion. Stimulus frequency emission phase-gradient delays are longest in humans but are at least 1 ms in all species. Comparisons between stimulus-frequency emission and distortion-product emission phase gradients for low stimulus levels indicate that representatives from all classes except frog show evidence for two distinct generation mechanisms analogous to the reflection- and distortion-source (i.e., place- and wave-fixed) mechanisms evident in mammals. Despite morphological differences, the results suggest the role of a scaling-symmetric traveling wave in chicken emission generation, similar to that in mammals, and perhaps some analog in the gecko.
Collapse
Affiliation(s)
- Christopher Bergevin
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Microscale mechanical probes were designed and bulk-fabricated for applying shearing forces to biological tissues. These probes were used to measure shear impedance of the tectorial membrane (TM) in two dimensions. Forces were applied in the radial and longitudinal directions at frequencies ranging from 0.01-9 kHz and amplitudes from 0.02-4 microN. The force applied was determined by measuring the deflection of the probes' cantilever arms. TM impedance in the radial direction had a magnitude of 63 +/- 28 mN x s/m at 10 Hz and fell with frequency by 16 +/- 0.4 dB/decade, with a constant phase of -72 +/- 6 degrees . In the longitudinal direction, impedance was 36 +/- 9 mN x s/m at 10 Hz and fell by 19 +/- 0.4 dB/decade, with a constant phase of -78 +/- 4 degrees . Impedance was nearly constant as a function of force except at the highest forces, for which it fell slightly. These results show that the viscoelastic properties of the TM extend over a significant range of audio frequencies, consistent with a poroelastic interpretation of TM mechanics. The shear modulus G' determined from these measurements was 17-50 kPa, which is larger than in species with a lower auditory frequency range. This value suggests that hair bundles cannot globally shear the TM, but most likely cause bulk TM motion.
Collapse
|
12
|
Li A, Xue J, Peterson EH. Architecture of the mouse utricle: macular organization and hair bundle heights. J Neurophysiol 2007; 99:718-33. [PMID: 18046005 DOI: 10.1152/jn.00831.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hair bundles are critical to mechanotransduction by vestibular hair cells, but quantitative data are lacking on vestibular bundles in mice or other mammals. Here we quantify bundle heights and their variation with macular locus and hair cell type in adult mouse utricular macula. We also determined that macular organization differs from previous reports. The utricle has approximately 3,600 hair cells, half on each side of the line of polarity reversal (LPR). A band of low hair cell density corresponds to a band of calretinin-positive calyces, i.e., the striola. The relation between the LPR and the striola differs from previous reports in two ways. First, the LPR lies lateral to the striola instead of bisecting it. Second, the LPR follows the striolar trajectory anteriorly, but posteriorly it veers from the edge of the striola to reach the posterior margin of the macula. Consequently, more utricular bundles are oriented mediolaterally than previously supposed. Three hair cell classes are distinguished in calretinin-stained material: type II hair cells, type ID hair cells contacting calretinin-negative (dimorphic) afferents, and type IC hair cells contacting calretinin-positive (calyceal) afferents. They differ significantly on most bundle measures. Type II bundles have short stereocilia. Type IC bundles have kinocilia and stereocilia of similar heights, i.e., KS ratios (ratio of kinocilium to stereocilia heights) approximately 1, unlike other receptor classes. In contrast to these class-specific differences, bundles show little regional variation except that KS ratios are lowest in the striola. These low KS ratios suggest that bundle stiffness is greater in the striola than in the extrastriola.
Collapse
Affiliation(s)
- A Li
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
13
|
Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci U S A 2007; 104:16510-5. [PMID: 17925447 DOI: 10.1073/pnas.0703665104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.
Collapse
|
14
|
Abstract
The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.
Collapse
Affiliation(s)
- Igor Tomo
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience, M1, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Jacob S, Tomo I, Fridberger A, de Monvel JB, Ulfendahl M. Rapid confocal imaging for measuring sound-induced motion of the hearing organ in the apical region. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:021005. [PMID: 17477712 DOI: 10.1117/1.2718568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We describe a novel confocal image acquisition system capable of measuring the sound-evoked motion of the organ of Corti. The hearing organ is imaged with a standard laser scanning confocal microscope during sound stimulation. The exact temporal relation between each image pixel and the sound stimulus is quantified. The motion of the structures under study is obtained by fitting a Fourier series to the time dimension of a continuous sequence of acquired images. Previous versions of this acquisition system used a simple search to find pixels with similar phase values. The Fourier series approach permits substantially faster image acquisition with reduced noise levels and improved motion estimation. The system is validated by imaging various vibrating samples attached to a feedback-controlled piezoelectric translator. When using a rigid sample attached to the translator, the system is capable of measuring motion with peak-to-peak amplitudes smaller than 50 nm with an error below 20% at frequencies between 50 and 600 Hz. Examples of image sequences from the inner ear are given, along with detailed performance characteristics of the method.
Collapse
Affiliation(s)
- Stefan Jacob
- Karolinska Institutet, Center for Hearing and Communication Research, Departments of Otolaryngology and Clinical Neuroscience, M1 Karolinska Universitetssjukhuset, SE-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
16
|
Sandoz P, Friedt JM, Carry E. In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:023706. [PMID: 17578116 DOI: 10.1063/1.2472604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This article introduces an improved approach for the characterization of in-plane rigid-body vibration, based on digital processing of stroboscopic images of the moving part. The method involves a sample preparation step, in order to pattern a periodic microstructure on the vibrating device, for instance, by focused ion beam milling. An image processing method has then been developed to perform the optimum reconstruction of this a priori known object feature. In-plane displacement and rotation are deduced simultaneously with a high resolution (10-2 pixel and 0.5 x 10(-3) rad, respectively). The measurement principle combines phase measurements-that provide the high resolution-with correlation-that unwraps the phase with the proper phase constants. The vibration modes of a tuning fork are used for demonstrating the capabilities of the method. For applications allowing the sample preparation, the proposed methodology is more convenient than common interference methods or image processing techniques for the characterization of the vibration modes, even for amplitudes in the nanometer range.
Collapse
Affiliation(s)
- Patrick Sandoz
- Départment d'Optique PM Duffieux, Institut FEMTO-ST UMR CNRS 6174, Université de Franche-Comté, 25030 Besançon Cedex, France.
| | | | | |
Collapse
|
17
|
Abstract
The ability of hair bundles to signal head movements and sounds depends significantly on their structure, but a quantitative picture of bundle structure has proved elusive. The problem is acute for vestibular organs because their hair bundles exhibit complex morphologies that vary with endorgan, hair cell type, and epithelial locus. Here we use autocorrelation analysis to quantify stereociliary arrays (the number, spacing, and distribution of stereocilia) on hair cells of the turtle utricle. Our first goal was to characterize zonal variation across the macula, from medial extrastriola, through striola, to lateral extrastriola. This is important because it may help explain zonal variation in response dynamics of utricular hair cells and afferents. We also use known differences in type I and II bundles to estimate array characteristics of these two hair cell types. Our second goal was to quantify variation in array orientation at single macular loci and use this to estimate directional tuning in utricular afferents. Our major findings are that, of the features measured, array width is the most distinctive feature of striolar bundles, and within the striola there are significant, negatively correlated gradients in stereocilia number and spacing that parallel gradients in bundle heights. Together with previous results on stereocilia number and bundle heights, our results support the hypothesis that striolar hair cells are specialized to signal high-frequency/acceleration head movements. Finally, there is substantial variation in bundle orientation at single macular loci that may help explain why utricular afferents respond to stimuli orthogonal to their preferred directions.
Collapse
Affiliation(s)
- M H Rowe
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
18
|
Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J. Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia. Proc Natl Acad Sci U S A 2006; 103:1918-23. [PMID: 16446441 PMCID: PMC1413628 DOI: 10.1073/pnas.0507231103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cochlea contains two types of sensory cells, the inner and outer hair cells. Sound-evoked deflection of outer hair cell stereocilia leads to fast force production that will enhance auditory sensitivity up to 1,000-fold. In contrast, inner hair cells are thought to have a purely receptive function. Deflection of their stereocilia produces receptor potentials, transmitter release, and action potentials in the auditory nerve. Here, we describe a method for rapid confocal imaging. The method was used to image stereocilia during simultaneous sound stimulation in an in vitro preparation of the guinea pig cochlea. We show that inner hair cell stereocilia move because they interact with the fluid surrounding the hair bundles, but stereocilia deflection occurs at a different phase of the stimulus than is generally expected. In outer hair cells, stereocilia deflections were approximately 1/3 of the reticular lamina displacement. Smaller deflections were found in inner hair cells. The ratio between stereocilia deflection and reticular lamina displacement is important for auditory function, because it determines the stimulus applied to transduction channels. The low ratio measured here suggests that amplification of hair-bundle movements may be necessary in vivo to preserve transduction fidelity at low stimulus levels. In the case of the inner hair cells, this finding would represent a departure from traditional views on their function.
Collapse
Affiliation(s)
- Anders Fridberger
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, M1 Karolinska Universitetssjukhuset, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
19
|
Xue J, Peterson EH. Hair Bundle Heights in the Utricle: Differences Between Macular Locations and Hair Cell Types. J Neurophysiol 2006; 95:171-86. [PMID: 16177175 DOI: 10.1152/jn.00800.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hair bundle structure is a major determinant of bundle mechanics and thus of a hair cell's ability to encode sound and head movement stimuli. Little quantitative information about bundle structure is available for vestibular organs. Here we characterize hair bundle heights in the utricle of a turtle, Trachemys scripta. We visualized bundles from the side using confocal images of utricular slices. We measured kinocilia and stereocilia heights and array length (distance from tall to short end of bundle), and we calculated a KS ratio (kinocilium height/height of the tallest stereocilia) and bundle slope (height fall-off from tall to short end of bundle). To ensure that our measurements reflect in vivo dimensions as closely as possible, we used fixed but undehydrated utricular slices, and we measured heights in three dimensions by tracing kinocilia and stereocilia through adjacent confocal sections. Bundle heights vary significantly with position on the utricular macula and with hair cell type. Type II hair cells are found throughout the macula. We identified four subgroups that differ in bundle structure: zone 1 (lateral extrastriola), striolar zone 2, striolar zone 3, and zone 4 (medial extrastriola). Type I hair cells are confined to striolar zone 3. They have taller stereocilia, longer arrays, lower KS ratios, and steeper slopes than do neighboring (zone 3) type II bundles. Models and experiments suggest that these location- and type-specific differences in bundle heights will yield parallel variations in bundle mechanics. Our data also raise the possibility that differences in bundle structure and mechanics will help explain location- and type-specific differences in the physiological profiles of utricular afferents, which have been reported in frogs and mammals.
Collapse
Affiliation(s)
- Jingbing Xue
- Department of Biological Sciences, Irvine Hall, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
20
|
Chan DK, Hudspeth AJ. Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro. Biophys J 2005; 89:4382-95. [PMID: 16169985 PMCID: PMC1367002 DOI: 10.1529/biophysj.105.070474] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detection of sound by the cochlea involves a complex mechanical interplay among components of the cochlear partition. An in vitro preparation of the second turn of the jird's cochlea provides an opportunity to measure cochlear responses with subcellular resolution under controlled mechanical, ionic, and electrical conditions that simulate those encountered in vivo. Using photodiode micrometry, laser interferometry, and stroboscopic video microscopy, we have assessed the mechanical responses of the cochlear partition to acoustic and electrical stimuli near the preparation's characteristic frequency. Upon acoustic stimulation, the partition responds principally as a rigid plate pivoting around its insertion along the spiral lamina. The radial motion at the reticular lamina greatly surpasses that of the tectorial membrane, giving rise to shear that deflects the mechanosensitive hair bundles. Electrically evoked mechanical responses are qualitatively dissimilar from their acoustically evoked counterparts and suggest the recruitment of both hair-bundle- and soma-based electromechanical transduction processes. Finally, we observe significant changes in the stiffness of the cochlear partition upon tip-link destruction and tectorial-membrane removal, suggesting that these structures contribute considerably to the system's mechanical impedance and that hair-bundle-based forces can drive active motion of the cochlear partition.
Collapse
Affiliation(s)
- Dylan K Chan
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10021-6399, USA
| | | |
Collapse
|
21
|
Aranyosi AJ, Freeman DM. Two modes of motion of the alligator lizard cochlea: measurements and model predictions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:1585-92. [PMID: 16240819 DOI: 10.1121/1.1993147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measurements of motion of an in vitro preparation of the alligator lizard basilar papilla in response to sound demonstrate elliptical trajectories. These trajectories are consistent with the presence of both a translational and rotational mode of motion. The translational mode is independent of frequency, and the rotational mode has a displacement peak near 5 kHz. These measurements can be explained by a simple mechanical system in which the basilar papilla is supported asymmetrically on the basilar membrane. In a quantitative model, the translational admittance is compliant while the rotational admittance is second order. Best-fit model parameters are consistent with estimates based on anatomy and predict that fluid flow across hair bundles is a primary source of viscous damping. The model predicts that the rotational mode contributes to the high-frequency slopes of auditory nerve fiber tuning curves, providing a physical explanation for a low-pass filter required in models of this cochlea. The combination of modes makes the sensitivity of hair bundles more uniform with radial position than that which would result from pure rotation. A mechanical analogy with the organ of Corti suggests that these two modes of motion may also be present in the mammalian cochlea.
Collapse
Affiliation(s)
- A J Aranyosi
- Speech and Hearing Biosciences and Technology Program, Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
22
|
Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K, Van Camp G, Russell IJ, Richardson GP. A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat Neurosci 2005; 8:1035-42. [PMID: 15995703 DOI: 10.1038/nn1496] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/03/2005] [Indexed: 02/04/2023]
Abstract
Alpha-tectorin (encoded by Tecta) is a component of the tectorial membrane, an extracellular matrix of the cochlea. In humans, the Y1870C missense mutation in TECTA causes a 50- to 80-dB hearing loss. In transgenic mice with the Y1870C mutation in Tecta, the tectorial membrane's matrix structure is disrupted, and its adhesion zone is reduced in thickness. These abnormalities do not seriously influence the tectorial membrane's known role in ensuring that cochlear feedback is optimal, because the sensitivity and frequency tuning of the mechanical responses of the cochlea are little changed. However, neural thresholds are elevated, neural tuning is broadened, and a sharp decrease in sensitivity is seen at the tip of the neural tuning curve. Thus, using Tecta(Y1870C/+) mice, we have genetically isolated a second major role for the tectorial membrane in hearing: it enables the motion of the basilar membrane to optimally drive the inner hair cells at their best frequency.
Collapse
Affiliation(s)
- P Kevin Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | | | |
Collapse
|