1
|
Ghoneim M, Musselman CA. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes. J Fluoresc 2023; 33:413-421. [PMID: 36435903 PMCID: PMC9957830 DOI: 10.1007/s10895-022-03093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Single molecule FRET (Forster resonance energy transfer) is very powerful method for studying biomolecular binding dynamics and conformational transitions. Only a few donor - acceptor dye pairs have been characterized for use in single-molecule FRET (smFRET) studies. Hence, introducing and characterizing additional FRET dye pairs is important in order to widen the scope of applications of single-molecule FRET in biomolecular studies. Here we characterize the properties of the Cy3.5 and Cy5.5 dye pair under FRET at the single-molecule level using naked double-stranded DNA (dsDNA) and the nucleosome. We show that this pair of dyes is photostable for ~ 5 min under continuous illumination. We also report Cy3.5-Cy5.5 FRET proximity dependence and stability in the presence of several biochemical buffers and photoprotective reagents in the context of double-stranded DNA. Finally, we demonstrate compatibility of the Cy3.5-Cy5.5 pair for smFRET in vitro studies of nucleosomes.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 80045, Aurora, CO, USA.
| | - Catherine A. Musselman
- grid.430503.10000 0001 0703 675XBiochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO USA
| |
Collapse
|
2
|
Bueno-Alejo C, Santana Vega M, Chaplin AK, Farrow C, Axer A, Burley GA, Dominguez C, Kara H, Paschalis V, Tubasum S, Eperon IC, Clark AW, Hudson AJ. Surface Passivation with a Perfluoroalkane Brush Improves the Precision of Single-Molecule Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49604-49616. [PMID: 36306432 PMCID: PMC9650645 DOI: 10.1021/acsami.2c16647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Single-molecule imaging is invaluable for investigating the heterogeneous behavior and interactions of biological molecules. However, an impediment to precise sampling of single molecules is the irreversible adsorption of components onto the surfaces of cover glasses. This causes continuous changes in the concentrations of different molecules dissolved or suspended in the aqueous phase from the moment a sample is dispensed, which will shift, over time, the position of chemical equilibria between monomeric and multimeric components. Interferometric scattering microscopy (iSCAT) is a technique in the single-molecule toolkit that has the capability to detect unlabeled proteins and protein complexes both as they adsorb onto and desorb from a glass surface. Here, we examine the reversible and irreversible interactions between a number of different proteins and glass via analysis of the adsorption and desorption of protein at the single-molecule level. Furthermore, we present a method for surface passivation that virtually eliminates irreversible adsorption while still ensuring the residence time of molecules on surfaces is sufficient for detection of adsorption by iSCAT. By grafting high-density perfluoroalkane brushes on cover-glass surfaces, we observe approximately equal numbers of adsorption and desorption events for proteins at the measurement surface (±1%). The fluorous-aqueous interface also prevents the kinetic trapping of protein complexes and assists in establishing a thermodynamic equilibrium between monomeric and multimeric components. This surface passivation approach is valuable for in vitro single-molecule experiments using iSCAT microscopy because it allows for continuous monitoring of adsorption and desorption of protein without either a decline in detection events or a change in sample composition due to the irreversible binding of protein to surfaces.
Collapse
Affiliation(s)
- Carlos
J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Marina Santana Vega
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Amanda K. Chaplin
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Chloe Farrow
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alexander Axer
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Cyril Dominguez
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Hesna Kara
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Vasileios Paschalis
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Sumera Tubasum
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Ian C. Eperon
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alasdair W. Clark
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Andrew J. Hudson
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
3
|
Carpenter W, Lavania AA, Borden JS, Oltrogge LM, Perez D, Dahlberg PD, Savage DF, Moerner WE. Ratiometric Sensing of Redox Environments Inside Individual Carboxysomes Trapped in Solution. J Phys Chem Lett 2022; 13:4455-4462. [PMID: 35549289 PMCID: PMC9150107 DOI: 10.1021/acs.jpclett.2c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diffusion of biological nanoparticles in solution impedes our ability to continuously monitor individual particles and measure their physical and chemical properties. To overcome this, we previously developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which uses scattering to localize a particle and applies electrokinetic forces that counteract Brownian motion, thus enabling extended observation. Here we present an improved ISABEL trap that incorporates a near-infrared scatter illumination beam and rapidly interleaves 405 and 488 nm fluorescence excitation reporter beams. With the ISABEL trap, we monitored the internal redox environment of individual carboxysomes labeled with the ratiometric redox reporter roGFP2. Carboxysomes widely vary in scattering contrast (reporting on size) and redox-dependent ratiometric fluorescence. Furthermore, we used redox sensing to explore the chemical kinetics within intact carboxysomes, where bulk measurements may contain unwanted contributions from aggregates or interfering fluorescent proteins. Overall, we demonstrate the ISABEL trap's ability to sensitively monitor nanoscale biological objects, enabling new experiments on these systems.
Collapse
Affiliation(s)
- William
B. Carpenter
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abhijit A. Lavania
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Julia S. Borden
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California 94720, United States
| | - Luke M. Oltrogge
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California 94720, United States
| | - Davis Perez
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter D. Dahlberg
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Division
of CryoEM and Bioimaging, SSRL, SLAC National
Accelerator Laboratory, Menlo Park, California 94025, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California 94720, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Dey A, Maiti S. Determining the Stoichiometry of Amyloid Oligomers by Single-Molecule Photobleaching. Methods Mol Biol 2022; 2538:55-74. [PMID: 35951293 DOI: 10.1007/978-1-0716-2529-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Small oligomers are the initial intermediates in the pathway to amyloid fibril formation. They have a distinct identity from the monomers as well as from the protofibrils and the fibrils, both in their structure and in their properties. In many cases, they play a crucial biological role. However, due to their transient nature, they are difficult to characterize. "Oligomer" is a diffuse definition, encompassing aggregates of many different sizes, and this lack of precise definition causes much confusion and disagreement between different research groups. Here, we define the small oligomers as "n"-mers with n < 10, which is the size range in which the amyloid proteins typically exist at the initial phase of the aggregation process. Since the oligomers dynamically interconvert into each other, a solution of aggregating amyloid proteins will contain a distribution of sizes. A precise characterization of an oligomeric solution will, therefore, require quantification of the relative population of each size. Size-based separation methods, such as size-exclusion chromatography, are typically used to characterize this distribution. However, if the interconversion between oligomers of different sizes is fast, this would not yield reliable results. Single-molecule photobleaching (smPB) is a direct method to evaluate this size distribution in a heterogeneous solution without separation. In addition, understanding the mechanism of action of amyloid oligomers requires knowing the affinity of each oligomer type to different cellular components, such as the cell membrane. These measurements are also amenable to smPB. Here we show how to perform smPB, both for oligomers in solution and for oligomers attached to the membrane.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
6
|
Jung J, Kim SY, Kim SK. Single-molecule study of the effects of temperature, pH, and RNA base on the stepwise enzyme kinetics of 10–23 deoxyribozyme. RSC Adv 2022; 12:14883-14887. [PMID: 35702195 PMCID: PMC9113834 DOI: 10.1039/d2ra02131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated how the stepwise enzyme kinetics of 10–23 deoxyribozyme was affected by temperature, pH, and RNA residue of the substrate at the single-molecule level. A deoxyribozyme-substrate system was employed to temporally categorize a single-turnover reaction into four distinct steps: binding, cleavage, dissociation of one of the cleaved fragments, and dissociation of the other fragment. The dwell time of each step was measured as the temperature was varied from 26 to 34 °C, to which the transition state theory was applied to obtain the enthalpy and entropy of activation for individual steps. In addition, we found that only the cleavage step was significantly affected by pH, indicating that it involves deprotonation of a single proton. We also found that different RNA residues specifically affect the cleavage step and cause the dwell time to change by as much as 5 times. We investigated how the stepwise enzyme kinetics of 10–23 deoxyribozyme was affected by temperature, pH, and RNA residue of the substrate at the single-molecule level.![]()
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seon Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Plesa T, Stan GB, Ouldridge TE, Bae W. Quasi-robust control of biochemical reaction networks via stochastic morphing. J R Soc Interface 2021; 18:20200985. [PMID: 33849334 PMCID: PMC8086924 DOI: 10.1098/rsif.2020.0985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.
Collapse
Affiliation(s)
- Tomislav Plesa
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Thomas E. Ouldridge
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Wooli Bae
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
8
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
9
|
Vera AM, Tinnefeld P. Single-Molecule Approved Surface Passivation. Structure 2021; 28:1269-1270. [PMID: 33264595 DOI: 10.1016/j.str.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Single-molecule experiments reveal structure function relationships and biomolecular dynamics in physiologically relevant conditions. In this issue of Structure, Park et al. (2020) report an optimized surface passivation strategy with polyethylene glycol in a dense, contracted conformation. Assembly of a functional transcription pre-initiation complex is demonstrated.
Collapse
Affiliation(s)
- Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 München, Germany.
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 München, Germany.
| |
Collapse
|
10
|
Sung HL, Nesbitt DJ. High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:15853-15866. [PMID: 32706360 DOI: 10.1039/d0cp01921f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Zelger-Paulus S, Hadzic MCAS, Sigel RKO, Börner R. Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy. Methods Mol Biol 2020; 2113:1-16. [PMID: 32006303 DOI: 10.1007/978-1-0716-0278-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.
Collapse
Affiliation(s)
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
12
|
Suddala KC, Price IR, Dandpat SS, Janeček M, Kührová P, Šponer J, Banáš P, Ke A, Walter NG. Local-to-global signal transduction at the core of a Mn 2+ sensing riboswitch. Nat Commun 2019; 10:4304. [PMID: 31541094 PMCID: PMC6754395 DOI: 10.1038/s41467-019-12230-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 01/01/2023] Open
Abstract
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.
Collapse
Affiliation(s)
- Krishna C Suddala
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian R Price
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michal Janeček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Petra Kührová
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Yoo J, Louis JM, Chung HS. Diverse Folding Pathways of HIV-1 Protease Monomer on a Rugged Energy Landscape. Biophys J 2019; 117:1456-1466. [PMID: 31587829 DOI: 10.1016/j.bpj.2019.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022] Open
Abstract
The modern energy landscape theory of protein folding predicts multiple folding pathways connecting a myriad of unfolded conformations and a well-defined folded state. However, direct experimental observation of heterogeneous folding pathways is difficult. Naturally evolved proteins typically exhibit a smooth folding energy landscape for fast and efficient folding by avoiding unfavorable kinetic traps. In this case, rapid fluctuations between unfolded conformations result in apparent two-state behavior and make different pathways indistinguishable. However, the landscape roughness can be different, depending on the selection pressures during evolution. Here, we characterize the unusually rugged folding energy landscape of human immunodeficiency virus-1 protease monomer using single-molecule Förster resonance energy transfer spectroscopy. Our data show that fluctuations between unfolded conformations are slow, which enables the experimental observation of heterogeneous folding pathways as predicted by the landscape theory. Although the landscape ruggedness is sensitive to the mutations and fluorophore locations, the folding rate is similar for various protease constructs. The natural evolution of the protease to have a rugged energy landscape likely results from intrinsic pressures to maintain robust folding when human immunodeficiency virus-1 mutates frequently, which is essential for its survival.
Collapse
Affiliation(s)
- Janghyun Yoo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Hagai D, Lerner E. Systematic Assessment of Burst Impurity in Confocal-Based Single-Molecule Fluorescence Detection Using Brownian Motion Simulations. Molecules 2019; 24:molecules24142557. [PMID: 31337081 PMCID: PMC6680824 DOI: 10.3390/molecules24142557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
Abstract
Single-molecule fluorescence detection (SMFD) experiments are useful in distinguishing sub-populations of molecular species when measuring heterogeneous samples. One experimental platform for SMFD is based on a confocal microscope, where molecules randomly traverse an effective detection volume. The non-uniformity of the excitation profile and the random nature of Brownian motion, produce fluctuating fluorescence signals. For these signals to be distinguished from the background, burst analysis is frequently used. Yet, the relation between the results of burst analyses and the underlying information of the diffusing molecules is still obscure and requires systematic assessment. In this work we performed three-dimensional Brownian motion simulations of SMFD, and tested the positions at which molecules emitted photons that passed the burst analysis criteria for different values of burst analysis parameters. The results of this work verify which of the burst analysis parameters and experimental conditions influence both the position of molecules in space when fluorescence is detected and taken into account, and whether these bursts of photons arise purely from single molecules, or not entirely. Finally, we show, as an example, the effect of bursts that are not purely from a single molecule on the accuracy in single-molecule Förster resonance energy transfer measurements.
Collapse
Affiliation(s)
- Dolev Hagai
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
15
|
Jalihal AP, Lund PE, Walter NG. Coming Together: RNAs and Proteins Assemble under the Single-Molecule Fluorescence Microscope. Cold Spring Harb Perspect Biol 2019; 11:11/4/a032441. [PMID: 30936188 DOI: 10.1101/cshperspect.a032441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNAs, across their numerous classes, often work in concert with proteins in RNA-protein complexes (RNPs) to execute critical cellular functions. Ensemble-averaging methods have been instrumental in revealing many important aspects of these RNA-protein interactions, yet are insufficiently sensitive to much of the dynamics at the heart of RNP function. Single-molecule fluorescence microscopy (SMFM) offers complementary, versatile tools to probe RNP conformational and compositional changes in detail. In this review, we first outline the basic principles of SMFM as applied to RNPs, describing key considerations for labeling, imaging, and quantitative analysis. We then sample applications of in vitro and in vivo single-molecule visualization using the case studies of pre-messenger RNA (mRNA) splicing and RNA silencing, respectively. After discussing specific insights single-molecule fluorescence methods have yielded, we briefly review recent developments in the field and highlight areas of anticipated growth.
Collapse
Affiliation(s)
- Ameya P Jalihal
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109.,Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109.,Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Croop B, Zhang C, Lim Y, Gelfand RM, Han KY. Recent advancement of light-based single-molecule approaches for studying biomolecules. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1445. [PMID: 30724484 DOI: 10.1002/wsbm.1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
Abstract
Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry. In this paper, we will review the state of the art in single-molecule applications with a focus over the last few years of development. The advancements covered will mainly include light-based in vitro methods, and we will discuss the fundamentals of each with a focus on the platforms themselves. We will also summarize their limitations and current and future applications to the wider biological and chemical fields. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Benjamin Croop
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Chenyi Zhang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Youngbin Lim
- Department of Bioengineering, Stanford University, Stanford, California
| | - Ryan M Gelfand
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| |
Collapse
|
17
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
18
|
Abstract
The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA. In this review we tour the stages of RNA folding studies, considering them as "epochs" that can be generalized across scientific disciplines. These epochs span from the discovery of catalytic RNA, through biophysical insights into the putative primordial RNA World, to characterization of structured RNAs, the building and testing of models, and, finally, to the development of models with the potential to yield generalizable predictive and quantitative models for RNA conformational, thermodynamic, and kinetic behavior. We hope that this accounting will aid others as they navigate the many fascinating questions about RNA and its roles in biology, in the past, present, and future.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford, California 94305
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Namita Bisaria
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
19
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
20
|
Mortensen KI, Tassone C, Ehrlich N, Andresen TL, Flyvbjerg H. How To Characterize Individual Nanosize Liposomes with Simple Self-Calibrating Fluorescence Microscopy. NANO LETTERS 2018; 18:2844-2851. [PMID: 29614230 DOI: 10.1021/acs.nanolett.7b05312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanosize lipid vesicles are used extensively at the interface between nanotechnology and biology, e.g., as containers for chemical reactions at minute concentrations and vehicles for targeted delivery of pharmaceuticals. Typically, vesicle samples are heterogeneous as regards vesicle size and structural properties. Consequently, vesicles must be characterized individually to ensure correct interpretation of experimental results. Here we do that using dual-color fluorescence labeling of vesicles-of their lipid bilayers and lumens, separately. A vesicle then images as two spots, one in each color channel. A simple image analysis determines the total intensity and width of each spot. These four data all depend on the vesicle radius in a simple manner for vesicles that are spherical, unilamellar, and optimal encapsulators of molecular cargo. This permits identification of such ideal vesicles. They in turn enable calibration of the dual-color fluorescence microscopy images they appear in. Since this calibration is not a separate experiment but an analysis of images of vesicles to be characterized, it eliminates the potential source of error that a separate calibration experiment would have been. Nonideal vesicles in the same images were characterized by how their four data violate the calibrated relationship established for ideal vesicles. In this way, our method yields size, shape, lamellarity, and encapsulation efficiency of each imaged vesicle. Applying this procedure to extruded samples of vesicles, we found that, contrary to common assumptions, only a fraction of vesicles are ideal.
Collapse
Affiliation(s)
- Kim I Mortensen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Chiara Tassone
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Nicky Ehrlich
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| |
Collapse
|
21
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Aviram HY, Pirchi M, Barak Y, Riven I, Haran G. Two states or not two states: Single-molecule folding studies of protein L. J Chem Phys 2018; 148:123303. [DOI: 10.1063/1.4997584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haim Yuval Aviram
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Menahem Pirchi
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Barak
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Riven
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
23
|
Götz M, Wortmann P, Schmid S, Hugel T. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions. J Vis Exp 2018. [PMID: 29443086 DOI: 10.3791/56896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.
Collapse
Affiliation(s)
- Markus Götz
- Institute of Physical Chemistry, University of Freiburg
| | | | - Sonja Schmid
- Institute of Physical Chemistry, University of Freiburg; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg;
| |
Collapse
|
24
|
Lerner E, Cordes T, Ingargiol A, Alhadid Y, Chung S, Michalet X, Weiss S. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 2018; 359:eaan1133. [PMID: 29348210 PMCID: PMC6200918 DOI: 10.1126/science.aan1133] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Antonino Ingargiol
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yazan Alhadid
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Voith von Voithenberg L, Lamb DC. Single Pair Förster Resonance Energy Transfer: A Versatile Tool To Investigate Protein Conformational Dynamics. Bioessays 2018; 40. [DOI: 10.1002/bies.201700078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/05/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Lena Voith von Voithenberg
- Department Chemie; Center for Nanoscience (CeNS); Center for Integrated Protein Science Munich (CIPSM); Nanosystem Initiative Munich (NIM); Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
- BIOSS Centre for Signalling Studies; Schänzlestr. 18 79104 Freiburg Germany
| | - Don C. Lamb
- Department Chemie; Center for Nanoscience (CeNS); Center for Integrated Protein Science Munich (CIPSM); Nanosystem Initiative Munich (NIM); Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
26
|
Walder R, LeBlanc MA, Van Patten WJ, Edwards DT, Greenberg JA, Adhikari A, Okoniewski SR, Sullan RMA, Rabuka D, Sousa MC, Perkins TT. Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation. J Am Chem Soc 2017; 139:9867-9875. [PMID: 28677396 DOI: 10.1021/jacs.7b02958] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - William J Van Patten
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Devin T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - Ayush Adhikari
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Ruby May A Sullan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - David Rabuka
- Catalent Biologics-West , Emeryville, California 94608, United States
| | | | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
27
|
Zhang Z, Yomo D, Gradinaru C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1242-1253. [PMID: 28392350 DOI: 10.1016/j.bbamem.2017.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Nonspecific interactions between lipids and fluorophores can alter the outcomes of single-molecule spectroscopy of membrane proteins in live cells, liposomes or lipid nanodiscs and of cytosolic proteins encapsulated in liposomes or tethered to supported lipid bilayers. To gain insight into these effects, we examined interactions between 9 dyes that are commonly used as labels for single-molecule fluorescence (SMF) and 6 standard lipids including cationic, zwitterionic and anionic types. The diffusion coefficients of dyes in the absence and presence of set amounts of lipid vesicles were measured by fluorescence correlation spectroscopy (FCS). The partition coefficients and the free energies of partitioning for different fluorophore-lipid pairs were obtained by global fitting of the titration FCS curves. Lipids with different charges, head groups and degrees of chain saturation were investigated, and interactions with dyes are discussed in terms of hydrophobic, electrostatic and steric contributions. Fluorescence imaging of individual fluorophores adsorbed on supported lipid bilayers provides visualization and additional quantification of the strength of dye-lipid interaction in the context of single-molecule measurements. By dissecting fluorophore-lipid interactions, our study provides new insights into setting up single-molecule fluorescence spectroscopy experiments with minimal interference from interactions between fluorescent labels and lipids in the environment.
Collapse
Affiliation(s)
- Zhenfu Zhang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Dan Yomo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Claudiu Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
| |
Collapse
|
28
|
Hu Y, Lai Y, Wang Y, Zhao M, Zhang Y, Crowe M, Tian Z, Long J, Diao J. SNARE-Reconstituted Liposomes as Controllable Zeptoliter Nanoreactors for Macromolecules. ACTA ACUST UNITED AC 2017; 1:e1600018. [DOI: 10.1002/adbi.201600018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yachong Hu
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Ying Lai
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Minglei Zhao
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yunxiang Zhang
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Michael Crowe
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Zhiqi Tian
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Jiajie Diao
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| |
Collapse
|
29
|
Maleki P, Budhathoki JB, Roy WA, Balci H. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics 2017; 292:483-498. [PMID: 28150040 DOI: 10.1007/s00438-017-1288-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 11/26/2022]
Abstract
In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
30
|
Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel RK. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Single molecule fluorescence spectroscopy for quantitative biological applications. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Saito M, Kamonprasertsuk S, Suzuki S, Nanatani K, Oikawa H, Kushiro K, Takai M, Chen PT, Chen EHL, Chen RPY, Takahashi S. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy. J Phys Chem B 2016; 120:8818-29. [DOI: 10.1021/acs.jpcb.6b05481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masataka Saito
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Supawich Kamonprasertsuk
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satomi Suzuki
- Laboratory
of Applied Microbiology, Department of Microbial Biotechnology, Graduate
School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kei Nanatani
- Department
of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroyuki Oikawa
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Keiichiro Kushiro
- Department
of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Po-ting Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, No. 1. Sec.
4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Eric H.-L. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
| | - Rita P.-Y. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, No. 1. Sec.
4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
33
|
Farooq S, Hohlbein J. Camera-based single-molecule FRET detection with improved time resolution. Phys Chem Chem Phys 2016; 17:27862-72. [PMID: 26439729 DOI: 10.1039/c5cp04137f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Förster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by either pixel-binning or cropping the field of view decreases the number of molecules that can be monitored simultaneously. Here, we present a generalised excitation scheme termed stroboscopic alternating-laser excitation (sALEX) that significantly improves the time resolution without sacrificing highly parallelised detection in total internal reflection fluorescence (TIRF) microscopy. In addition, we adapt a technique known from diffusion-based confocal microscopy to analyse the complex shape of FRET efficiency histograms. We apply both sALEX and dynamic probability distribution analysis (dPDA) to resolve conformational dynamics of interconverting DNA hairpins in the millisecond time range.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
34
|
Rinaldi AJ, Lund PE, Blanco MR, Walter NG. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat Commun 2016; 7:8976. [PMID: 26781350 PMCID: PMC4735710 DOI: 10.1038/ncomms9976] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 01/20/2023] Open
Abstract
In response to intracellular signals in Gram-negative bacteria, translational riboswitches—commonly embedded in messenger RNAs (mRNAs)—regulate gene expression through inhibition of translation initiation. It is generally thought that this regulation originates from occlusion of the Shine-Dalgarno (SD) sequence upon ligand binding; however, little direct evidence exists. Here we develop Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) to investigate the ligand-dependent accessibility of the SD sequence of an mRNA hosting the 7-aminomethyl-7-deazaguanine (preQ1)-sensing riboswitch. Spike train analysis reveals that individual mRNA molecules alternate between two conformational states, distinguished by ‘bursts' of probe binding associated with increased SD sequence accessibility. Addition of preQ1 decreases the lifetime of the SD's high-accessibility (bursting) state and prolongs the time between bursts. In addition, ligand-jump experiments reveal imperfect riboswitching of single mRNA molecules. Such complex ligand sensing by individual mRNA molecules rationalizes the nuanced ligand response observed during bulk mRNA translation. In response to intracellular signals, bacterial translational riboswitches embedded in mRNAs can regulate gene expression through inhibition of translation initiation. Here, the authors describe SiM-KARTS, a novel approach for detecting changes in the structure of single RNA molecules in response to a ligand.
Collapse
Affiliation(s)
- Arlie J Rinaldi
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mario R Blanco
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
35
|
Morten MJ, Peregrina JR, Figueira-Gonzalez M, Ackermann K, Bode BE, White MF, Penedo JC. Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach. Nucleic Acids Res 2015; 43:10907-24. [PMID: 26578575 PMCID: PMC4678828 DOI: 10.1093/nar/gkv1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023] Open
Abstract
Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.
Collapse
Affiliation(s)
- Michael J Morten
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Jose R Peregrina
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Maria Figueira-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Katrin Ackermann
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Bela E Bode
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - J Carlos Penedo
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS, UK
| |
Collapse
|
36
|
Mutschler H, Wochner A, Holliger P. Freeze-thaw cycles as drivers of complex ribozyme assembly. Nat Chem 2015; 7:502-8. [PMID: 25991529 DOI: 10.1038/nchem.2251] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.
Collapse
Affiliation(s)
- Hannes Mutschler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Aniela Wochner
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
37
|
Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 2015; 6:6655. [PMID: 25851214 PMCID: PMC4403447 DOI: 10.1038/ncomms7655] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.
Collapse
|
38
|
Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns. Proc Natl Acad Sci U S A 2015; 112:3403-8. [PMID: 25737541 DOI: 10.1073/pnas.1322759112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.
Collapse
|
39
|
Ghosh S, Roy A, Banik D, Kundu N, Kuchlyan J, Dhir A, Sarkar N. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2310-2320. [PMID: 25643899 DOI: 10.1021/la504819v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The rotational dynamics and translational diffusion of a hydrophilic organic molecule, rhodamine 6G perchlorate (R6G ClO4) in small unilamellar vesicles formed by two different ionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), with cholesterol have been investigated using fluorescence spectroscopic methods. Moreover, in this article the formation of vesicle using anionic surfactant, SDS at different cholesterol-to-surfactant molar ratio (expressed by Q value (Q = [cholesterol]/[surfactant])) has also been reported. Visual observation, dynamic light scattering (DLS) study, turbidity measurement, steady state fluorescence anisotropy (r0) measurement, and eventually microscopic images reveal the formation of small unilamellar vesicles in aqueous solution. Also, in this study, an attempt has been made to observe whether the cationic probe molecule, rhodamine 6G (R6G) experiences similar or different microenvironment in cholesterol-SDS and cholesterol-CTAB assemblies with increase in cholesterol concentration. The influence of cholesterol on rotational and translational diffusion of R6G molecules has been investigated by monitoring UV-vis absorption, fluorescence, time-resolved fluorescence anisotropy, and finally fluorescence correlation spectroscopy (FCS) measurements. In cholesterol-SDS assemblies, due to the strong electrostatic attractive interaction between the negatively charged surface of vesicle and cationic R6G molecules, the rotational and diffusion motion of R6G becomes slower. However, in cholesterol-CTAB aggregates, the enhanced hydrophobicity and electrostatic repulsion induces the migration of R6G from vesicle bilayer to aqueous phase. The experimental observations suggest that the surface charge of vesicles has a stronger influence than the hydrophobicity of the vesicle bilayer on the rotational and diffusion motion of R6G molecules.
Collapse
Affiliation(s)
- Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Yano Y, Kondo K, Kitani R, Yamamoto A, Matsuzaki K. Cholesterol-Induced Lipophobic Interaction between Transmembrane Helices Using Ensemble and Single-Molecule Fluorescence Resonance Energy Transfer. Biochemistry 2015; 54:1371-9. [DOI: 10.1021/bi501528e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Kitani
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Arisa Yamamoto
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Colomb W, Sarkar SK. Extracting physics of life at the molecular level: A review of single-molecule data analyses. Phys Life Rev 2015; 13:107-37. [PMID: 25660417 DOI: 10.1016/j.plrev.2015.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
42
|
Perez-Gonzalez DC, Penedo JC. Single-Molecule Strategies for DNA and RNA Diagnostics. RNA TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-17305-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
van der Velde JHM, Oelerich J, Huang J, Smit JH, Hiermaier M, Ploetz E, Herrmann A, Roelfes G, Cordes T. The Power of Two: Covalent Coupling of Photostabilizers for Fluorescence Applications. J Phys Chem Lett 2014; 5:3792-3798. [PMID: 26278749 DOI: 10.1021/jz501874f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence is a versatile tool for spectroscopic investigations and imaging of dynamic processes and structures across various scientific disciplines. The photophysical performance, that is, signal stability and signal duration, of the employed fluorophores is a major limiting factor. In this Letter, we propose a general concept to covalently link molecules, which are known for their positive effect in photostabilization, to form a combined photostabilizer with new properties. The direct linkage of two (or more) photostabilizers will allow one to obtain combined or synergetic effects in fluorophore stabilization and can simplify the preparation of imaging buffers that would otherwise require a mixture of photostabilizers for optimal performance. This concept was explored by synthesizing a molecule with a reducing and oxidizing moiety that is referred to as internal ROXS or "iROXS". Using single-molecule fluorescence microscopy, inter- and intramolecular healing of iROXS was observed, that is, strongly reduced blinking and increased photostability of the cyanine fluorophore Cy5. Moreover, it is shown that a covalently coupled photostabilizer can replace a mixture of molecules needed to make a functional photostabilizing ROXS buffer and might hence represent the new standard for defined and reproducible imaging conditions in single-molecule experiments. In self-healing fluorophores with intramolecular triplet-state quenching, an unprecedented photostability increase of >100-fold was obtained when using iROXS, which is even competitive with solution-based healing. Control experiments show that the oxidizing part of the iROXS molecule, an aromatic nitro group, dominates the healing process. The suggested synthetic concept and the proof-of-concept experiments represent the starting point for the quest to identify optimal combinations of linked photostabilizers for various fluorescence applications.
Collapse
|
44
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|
45
|
Hohlbein J, Craggs TD, Cordes T. Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 2014; 43:1156-71. [PMID: 24037326 DOI: 10.1039/c3cs60233h] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables the sorting of fluorescently labelled species based on the number and type of fluorophores present. ALEX also provides a convenient way of accessing the correction factors necessary for determining accurate molecular distances. Here, we provide a comprehensive overview of the concept and current applications of ALEX and we explicitly discuss how to obtain fully corrected distance information across the entire FRET range. We also present new ideas for applications of ALEX which will push the limits of smFRET-based experiments in terms of temporal and spatial resolution for the study of complex biological systems.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands.
| | | | | |
Collapse
|
46
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
47
|
Measurement of the change in twist at a helical junction in RNA using the orientation dependence of FRET. Biophys J 2014; 105:2175-81. [PMID: 24209863 DOI: 10.1016/j.bpj.2013.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Indocarbocyanine fluorophores attached via the 5' terminus of double-stranded nucleic acids have a strong propensity to stack onto the terminal basepair. We previously demonstrated that the efficiency of fluorescence resonance energy transfer between cyanine 3 and 5 terminally attached to duplex species exhibits a pronounced modulation with helix length. This results from a systematic variation in the orientation parameter κ(2) as the relative rotation of the fluorophore transition moments changes due to the helical geometry. Analysis of such profiles provides a rich source of orientational information. In this work, we applied this methodology to the structure of a three-way helical junction that plays an important role in the hepatitis C virus internal ribosome entry site. By comparing matched pairs of duplex and junction species, we were able to measure the change in rotation at the junction. The data reveal a 29.5° overwinding and a small axial extension. This shows the power of this approach for measuring orientational information in biologically important RNA junctions.
Collapse
|
48
|
Sun Y, Atas E, Lindqvist LM, Sonenberg N, Pelletier J, Meller A. Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding. Structure 2014; 22:941-8. [PMID: 24909782 DOI: 10.1016/j.str.2014.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/06/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation initiation factor 4AI (eIF4AI) is the prototypical DEAD-box RNA helicase. It has a "dumbbell" structure consisting of two domains connected by a flexible linker. Previous studies demonstrated that eIF4AI, in conjunction with eIF4H, bind to loop structures and repetitively unwind RNA hairpins. Here, we probe the conformational dynamics of eIF4AI in real time using single-molecule FRET. We demonstrate that eIF4AI/eIF4H complex can repetitively unwind RNA hairpins by transitioning between an eIF4AI "open" and a "closed" conformation using the energy derived from ATP hydrolysis. Our experiments directly track the conformational changes in the catalytic cycle of eIF4AI and eIF4H, and this correlates precisely with the kinetics of RNA unwinding. Furthermore, we show that the small-molecule eIF4A inhibitor hippuristanol locks eIF4AI in the closed conformation, thus efficiently inhibiting RNA unwinding. These results indicate that the large conformational changes undertaken by eIF4A during the helicase catalytic cycle are rate limiting.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Evrim Atas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Lisa M Lindqvist
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Amit Meller
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Faculty of Biomedical Engineering, The Technion, Haifa 32000, Israel.
| |
Collapse
|
49
|
Yildiz UH, De Hoog HPM, Fu Z, Tomczak N, Parikh AN, Nallani M, Liedberg B. Third-party ATP sensing in polymersomes: a label-free assay of enzyme reactions in vesicular compartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:442-7, 441. [PMID: 23963775 DOI: 10.1002/smll.201300060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/28/2013] [Indexed: 05/02/2023]
Affiliation(s)
- Umit Hakan Yildiz
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 6375532
| | | | | | | | | | | | | |
Collapse
|
50
|
JØRGENSEN SUNEK, HATZAKIS NIKOSS. INSIGHTS IN ENZYME FUNCTIONAL DYNAMICS AND ACTIVITY REGULATION BY SINGLE MOLECULE STUDIES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. [Formula: see text]Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Collapse
Affiliation(s)
- SUNE K. JØRGENSEN
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| | - NIKOS S. HATZAKIS
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|