1
|
Wang LKP, Shanmugasundaram M, Cooney E, Lee PDK. Siblings with vitamin D-dependent rickets type 1A: Importance of genetic testing and a review of genotype-phenotype correlations. Am J Med Genet A 2024; 194:e63780. [PMID: 38822637 DOI: 10.1002/ajmg.a.63780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Vitamin D-dependent rickets type 1A (VDDR1A) is a rare condition caused by biallelic pathogenic variants in CYP27B1, which encodes 25-hydroxyvitamin D3-1-α-hydroxylase. Inadequate activity of this enzyme results in deficient 1α-hydroxylation of inactive 25-hydroxyvitamin D to biologically active 1,25-dihydroxyvitamin D, with consequent adverse effects on calcium and phosphate metabolism. A female child was clinically diagnosed at 18 months old with hypophosphatemic rickets based on phenotype and biochemical testing, with neither parent affected. A subsequent affected male sibling led to the reconsideration of the diagnosis. Exome sequencing showed a homozygous CYP27B1 c.1040T>A (p.Ile347Asn) variant for both children. No variants were found in genes associated with hypophosphatemic rickets. A review of published cases of VDDR1A with homozygous CYP27B1 variants indicates variable clinical presentation, lack of genotype-phenotype correlation, and low serum phosphate at diagnosis in most cases. These findings emphasize the clinical importance of molecular testing as part of the diagnostic evaluation for cases of non-nutritional rickets.
Collapse
Affiliation(s)
| | | | - Erin Cooney
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Phillip D K Lee
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Shang S, He Z, Hou W, Chen X, Zhao X, Han H, Chen S, Yang S, Tai F. Molecular cloning, expression analysis and functional characterization of chicken cytochrome P450 27A1: A novel mitochondrial vitamin D 3 25-hydroxylase. Poult Sci 2023; 102:102747. [PMID: 37276702 PMCID: PMC10258509 DOI: 10.1016/j.psj.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vitamin D3 is hydroxylated by cytochrome P450 (CYP) before exerting biological effects. The chicken CYP involved in vitamin D3 25-hydroxylation has yet to be cloned, and little is known about its functional characteristics, tissue distribution, and cellular expression. We identified a novel, full-length CYP27A1 gene cloned from chicken hepatocyte cDNA that encodes a putative protein of 518 amino acids. Swiss modeling revealed that chicken CYP27A1 has a classic open-fold form. Multisequence homology alignment determined that CYP27A1 contains conserved motifs for substrate recognition and binding. Quantitative real-time PCR analysis in 2-mo-old Partridge Shank broilers demonstrated that CYP27A1 mRNA levels were highest in the liver, followed by the thigh muscles, the breast muscles, and kidneys. The transcripts of CYP27A1 in breast muscles were significantly higher in males than in females. A subcellular localization analysis demonstrated that CYP27A1 was mainly expressed in the mitochondria. In vitro enzyme assays suggested that recombinant CYP27A1 hydroxylates vitamin D3 at the C-25 position to form 25-hydroxyvitamin D3 (25(OH)D3). The Km and Vmax values for CYP27A1-dependent vitamin D3 25-hydroxylation were estimated to be 4.929 μM and 0.389 mol min-1 mg-1 protein, respectively. In summary, these results suggest that CYP27A1 encodes a mitochondrial CYP that plays an important physiologic role in the 25-hydroxylation of vitamin D3 in chickens, providing novel insights into vitamin D3 metabolism in this species.
Collapse
Affiliation(s)
- S Shang
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, China; Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, China
| | - Z He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - W Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - X Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - X Zhao
- Hanzhong Central Hospital, Hanzhong, China
| | - H Han
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - S Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - S Yang
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - F Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
4
|
Rational design of thermophilic CYP119 for progesterone hydroxylation by in silico mutagenesis and docking screening. J Mol Graph Model 2023; 118:108323. [PMID: 36137435 DOI: 10.1016/j.jmgm.2022.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Steroid-based chemicals can affect the metabolism, immune functions, and development of sexual characteristics. Because of these effects, steroid derivatives are widely used in the pharmaceutical industry. Progesterone is a steroid-based hormone that mainly controls the ovulation period of women but is also a precursor molecule for the synthesis of important hormones like testosterone and cortisone. Cytochrome P450 (CYP) enzymes are important for the production of hydroxyprogesterones in the industry since they can catalyze regio- and enantioselective hydroxylation reactions. Although human CYP enzymes can catalyze hydroxyprogesterone synthesis with high selectivity, these enzymes are membrane bound, which limits their application for industrial production. CYP119 is a soluble and thermophilic enzyme from the archaea Sulfolobus acidocaldarius. Even though the native substrate of the enzyme is not known, CYP119 can catalyze styrene epoxidation, lauric acid hydroxylation, and Amplex®Red peroxidation. In this work, an in silico mutagenesis approach was used to design CYP119 mutants with high progesterone affinity. Energy scores of progesterone docking simulations were used for the design and elimination of single, double, and triple mutants of CYP119. Among designed 674 mutants, five of them match the criteria for progesterone hydroxylation. The most common mutation of these five mutants, L69G mutant was analyzed using independent molecular dynamics (MD) simulations in comparison with the wild-type (WT) enzyme. L69G CYP119, was expressed and isolated from Escherichia coli; it showed 800-fold higher affinity for progesterone compared to WT CYP119. L69G CYP119 also catalyzed progesterone hydroxylation. The novel designed enzyme L69G CYP119 is a potential versatile biocatalyst for progesterone hydroxylation that is expected to be stable under industrial production conditions.
Collapse
|
5
|
Lan Y, Shao R, Zhang J, Liu J, Liao X, Liang S, Mai K, Ai Q, Wan M. Vitamin D 3 enhances the antibacterial ability in head-kidney macrophages of turbot (Scophthalmus maximus L.) through C-type lectin receptors. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108491. [PMID: 36503059 DOI: 10.1016/j.fsi.2022.108491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.
Collapse
Affiliation(s)
- Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jiayu Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Grgic O, Gazzara MR, Chesi A, Medina-Gomez C, Cousminer DL, Mitchell JA, Prijatelj V, de Vries J, Shevroja E, McCormack SE, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Mahboubi S, Faucz FR, Feelders RA, de Jong FH, Uitterlinden AG, Visser JA, Ghanem LR, Wolvius EB, Hofland LJ, Stratakis CA, Zemel BS, Barash Y, Grant SFA, Rivadeneira F. CYP11B1 variants influence skeletal maturation via alternative splicing. Commun Biol 2021; 4:1274. [PMID: 34754074 PMCID: PMC8578655 DOI: 10.1038/s42003-021-02774-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
We performed genome-wide association study meta-analysis to identify genetic determinants of skeletal age (SA) deviating in multiple growth disorders. The joint meta-analysis (N = 4557) in two multiethnic cohorts of school-aged children identified one locus, CYP11B1 (expression confined to the adrenal gland), robustly associated with SA (rs6471570-A; β = 0.14; P = 6.2 × 10-12). rs6410 (a synonymous variant in the first exon of CYP11B1 in high LD with rs6471570), was prioritized for functional follow-up being second most significant and the one closest to the first intron-exon boundary. In 208 adrenal RNA-seq samples from GTEx, C-allele of rs6410 was associated with intron 3 retention (P = 8.11 × 10-40), exon 4 inclusion (P = 4.29 × 10-34), and decreased exon 3 and 5 splicing (P = 7.85 × 10-43), replicated using RT-PCR in 15 adrenal samples. As CYP11B1 encodes 11-β-hydroxylase, involved in adrenal glucocorticoid and mineralocorticoid biosynthesis, our findings highlight the role of adrenal steroidogenesis in SA in healthy children, suggesting alternative splicing as a likely underlying mechanism.
Collapse
Affiliation(s)
- Olja Grgic
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 2615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 2615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Diana L Cousminer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 2615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Jonathan A Mitchell
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Vid Prijatelj
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jard de Vries
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Enisa Shevroja
- Bone and Joint Department, Center of Bone Diseases, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Joan M Lappe
- Division of Endocrinology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Vicente Gilsanz
- Division of Orthopedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, 622 West 168th Street, PH17 W 307, New York, NY, 10032, USA
| | - John A Shepherd
- Cancer Epidemiology, University of Hawai'i Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Soroosh Mahboubi
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, 6710 Rockledge Dr, Bethesda, MD, 20817, USA
| | - Richard A Feelders
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Frank H de Jong
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Louis R Ghanem
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, 6710 Rockledge Dr, Bethesda, MD, 20817, USA
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 2615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 2615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard Philadelphia, Philadelphia, PA, 19104, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Clinical and molecular genetic features of cerebrotendinous xanthomatosis in Taiwan: Report of a novel CYP27A1 mutation and literature review. J Clin Lipidol 2019; 13:954-959.e1. [PMID: 31706903 DOI: 10.1016/j.jacl.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid storage disorder associated with mutations in the CYP27A1 gene, and the genetic features of CTX in Taiwanese have not been examined before. OBJECTIVES We report a new CTX family with a novel mutation in the CYP27A1 gene and analyze the clinical and molecular genetic features of CTX in Taiwan. METHODS The clinical and molecular genetic features of the two siblings from the new CTX family and the other 7 reported Taiwanese CTX patients were included for analysis. The clinical features of the enrolled CTX patients were recorded using the indicators that make up the suspicion index (SI). RESULTS The age at CTX diagnosis of the two siblings in the new CTX family were in late 30s, and predominantly psychiatric features. Both siblings had compound heterozygous splicing mutations in the CYP27A1 gene, including one mutation in exon 2 (c.435G>T, cryptic splice site) and one mutation in intron 7 (c.1264A>G, canonical splice site). None of the CTX patients in Taiwan were diagnosed during childhood or adolescence, and the most common clinical features of the 9 Taiwanese CTX patients were tendinous xanthomas, followed by ataxia and/or spastic paraparesis, dentate nuclei signal alternation at magnetic resonance imaging, intellectual disability and/or psychiatric disturbance, and polyneuropathy. Mutations in the CYP27A1 gene in the Taiwanese population were most commonly observed in exon 2, followed by exon 8 and intron 7. Except for one CTX patient who had an SI score of 100, the SI scores ranged from 300 to 400 before the study of the CYP27A1 gene and diagnosis. CONCLUSIONS We reported two Taiwanese CTX siblings who had compound heterozygous mutations in CYP27A1. Exons 2 and 8 and intron 7 are the hotspots for Taiwanese CTX mutations. The diagnosis of CTX in Taiwan is usually delayed and is probably under-recognized based on statistical estimations. Early identification and genetic diagnosis may be helpful to CTX patients because early treatment can reduce the accumulation of cholestanol and slow disease progression.
Collapse
|
8
|
Jones G, Kottler ML, Schlingmann KP. Genetic Diseases of Vitamin D Metabolizing Enzymes. Endocrinol Metab Clin North Am 2017; 46:1095-1117. [PMID: 29080636 DOI: 10.1016/j.ecl.2017.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D metabolism involves 3 highly specific cytochrome P450 (CYP) enzymes (25-hydroxylase, 1α-hydroxylase, and 24-hydroxylase) involved in the activation of vitamin D3 to the hormonal form, 1,25-(OH)2D3, and the inactivation of 1,25-(OH)2D3 to biliary excretory products. Mutations of the activating enzymes CYP2R1 and CYP27B1 cause lack of normal 1,25-(OH)2D3 synthesis and result in rickets whereas mutations of the inactivating enzyme CYP24A1 cause build-up of excess 1,25-(OH)2D3 and result in hypercalcemia, nephrolithiasis, and nephrocalcinosis. This article reviews the literature for 3 clinical conditions. Symptoms, diagnosis, treatment, and management of vitamin D-dependent rickets and idiopathic infantile hypercalcemia are discussed.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Room 650, Botterell Hall, Kingston, ON K7L 3N6, Canada.
| | - Marie Laure Kottler
- Department of Genetics, University de Basse-Normandie, National Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Caen University Hospital, Avenue de la Côte de Nacre, 14033 Caen, France; Team 7450 BIOTARGEN, Caen-Normandy University, Esplanade de la Paix, 14032 Caen, France
| | - Karl Peter Schlingmann
- Department of General Pediatrics, University Children's Hospital, Waldeyerstr. 22, D-48149 Muenster, Germany
| |
Collapse
|
9
|
Chen C, Zhang Y, Wu H, Sun YM, Cai YH, Wu JJ, Wang J, Gong LY, Ding ZT. Clinical and molecular genetic features of cerebrotendinous xanthomatosis patients in Chinese families. Metab Brain Dis 2017. [PMID: 28623566 DOI: 10.1007/s11011-017-0047-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebrotendinous xanthomatosis (CTX) is a lipid-storage disease caused by mutations in CYP27A1. Current publications of Chinese CTX were mainly based on case reports. Here we investigated the clinical manifestations, genetic features in Chinese CTX patients. The clinical materials of 4 Chinese CTX pedigrees were collected. The genetic testing was done by polymerase chain reaction plus Sanger sequencing. The features of Chinese CTX patients reported previously were also reviewed. Three novel mutations of p.Arg513Cys, c.1477-2A > C in family 1 and p.Arg188Stop in family 4 (NM 000784.3) in CYP27A1 were found. The probands in our study manifested cerebellar ataxia, tendon xanthoma and spastic paresis in family 1 and 4, tendon xanthoma plus spastic paraparesis in family 2, asymptomatic tendon xanthoma in family 3. Three known mutations of p.Arg137Gln, p.Arg127Trp and p.Arg405Gln were found respectively in Family 2, 3 and 4. For the Chinese patients reviewed, the most common findings were xanthomatosis (100%), pyramidal signs (100%), cerebellar ataxia (66.7%), cognitive impairment (66.7%), cataracts (50.0%), and peripheral neuropathy (33.3%). Chronic diarrhea was infrequently seen (5.6%). No mutation was found associated with any given clinical features. We identified 3 novel mutations in CYP27A1. In Chinese CTX patients, xanthomatosis was the most common symptom while cataracts and chronic diarrhea were less frequent. The special features in Chinese CTX patients might caused by the lack of serum cholestanol test and should be confirmed in larger number of patients in the future.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue Zhang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Hui Wu
- Department of Neurology, Jing'an District Center Hospital of Shanghai, 259 Xikang Road, Shanghai, 20040, China
| | - Yi-Min Sun
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Department of Neurology, Huashan Hospital North, 108 Luxiang Road, Shanghai, 201907, China
| | - Ye-Hua Cai
- Ultrasound Department, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jian-Jun Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ling-Yun Gong
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
- Department of Neurology, Huashan Hospital North, 108 Luxiang Road, Shanghai, 201907, China.
| | - Zheng-Tong Ding
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
10
|
Federspiel JD, Codreanu SG, Goyal S, Albertolle ME, Lowe E, Teague J, Wong H, Guengerich FP, Liebler DC. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells. Mol Cell Proteomics 2016; 15:3233-3242. [PMID: 27503896 DOI: 10.1074/mcp.m116.059709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.
Collapse
Affiliation(s)
- Joel D Federspiel
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee
| | - Simona G Codreanu
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee
| | - Sandeep Goyal
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee
| | - Matthew E Albertolle
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee
| | - Eric Lowe
- §Onyx Pharmaceuticals, an Amgen subsidiary, San Francisco, California 94080
| | - Juli Teague
- §Onyx Pharmaceuticals, an Amgen subsidiary, San Francisco, California 94080
| | - Hansen Wong
- §Onyx Pharmaceuticals, an Amgen subsidiary, San Francisco, California 94080
| | - F Peter Guengerich
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, Vanderbilt University School of MedicineNashville, Tennessee;
| |
Collapse
|
11
|
Smalley SV, Preiss Y, Suazo J, Vega JA, Angellotti I, Lagos CF, Rivera E, Kleinsteuber K, Campion J, Martínez JA, Maiz A, Santos JL. Novel splice-affecting variants in CYP27A1 gene in two Chilean patients with Cerebrotendinous Xanthomatosis. Genet Mol Biol 2015. [PMID: 25983621 DOI: 10.1590/s1415‐475738120140087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cerebrotendinous Xanthomatosis (CTX), a rare lipid storage disorder, is caused by recessive loss-of-function mutations of the 27-sterol hydroxylase (CYP27A1), producing an alteration of the synthesis of bile acids, with an accumulation of cholestanol. Clinical characteristics include juvenile cataracts, diarrhea, tendon xanthomas, cognitive impairment and other neurological manifestations. Early diagnosis is critical, because treatment with chenodeoxycholic acid may prevent neurological damage. We studied the CYP27A1 gene in two Chilean CTX patients by sequencing its nine exons, exon-intron boundaries, and cDNA from peripheral blood mononuclear cells. Patient 1 is a compound heterozygote for the novel substitution c.256-1G > T that causes exon 2 skipping, leading to a premature stop codon in exon 3, and for the previously-known pathogenic mutation c.1183C > T (p.Arg395Cys). Patient 2 is homozygous for the novel mutation c.1185-1G > A that causes exon 7 skipping and the generation of a premature stop codon in exon 8, leading to the loss of the crucial adrenoxin binding domain of CYP27A1.
Collapse
Affiliation(s)
- Susan V Smalley
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yudith Preiss
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile . ; School of Medicine, Universidad Diego Portales, Santiago, Chile
| | - José Suazo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile . ; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javier Andrés Vega
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Angellotti
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Rivera
- Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile . ; Department of Neurology, Hospital Carlos Van Buren, Valparaíso, Chile
| | - Karin Kleinsteuber
- Faculty of Medicine, Universidad de Chile, Santiago, Chile . ; Clínica Las Condes, Santiago, Chile
| | - Javier Campion
- Department of Food Sciences and Physiology, Universidad de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Food Sciences and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Alberto Maiz
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Luis Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Smalley SV, Preiss Y, Suazo J, Vega JA, Angellotti I, Lagos CF, Rivera E, Kleinsteuber K, Campion J, Martínez JA, Maiz A, Santos JL. Novel splice-affecting variants in CYP27A1 gene in two Chilean patients with Cerebrotendinous Xanthomatosis. Genet Mol Biol 2014; 38:30-6. [PMID: 25983621 PMCID: PMC4415556 DOI: 10.1590/s1415-475738120140087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebrotendinous Xanthomatosis (CTX), a rare lipid storage disorder, is caused by
recessive loss-of-function mutations of the 27-sterol hydroxylase
(CYP27A1), producing an alteration of the synthesis of bile
acids, with an accumulation of cholestanol. Clinical characteristics include juvenile
cataracts, diarrhea, tendon xanthomas, cognitive impairment and other neurological
manifestations. Early diagnosis is critical, because treatment with chenodeoxycholic
acid may prevent neurological damage. We studied the CYP27A1 gene in
two Chilean CTX patients by sequencing its nine exons, exon-intron boundaries, and
cDNA from peripheral blood mononuclear cells. Patient 1 is a compound heterozygote
for the novel substitution c.256-1G > T that causes exon 2 skipping, leading to a
premature stop codon in exon 3, and for the previously-known pathogenic mutation
c.1183C > T (p.Arg395Cys). Patient 2 is homozygous for the novel mutation
c.1185-1G > A that causes exon 7 skipping and the generation of a premature stop
codon in exon 8, leading to the loss of the crucial adrenoxin binding domain of
CYP27A1.
Collapse
Affiliation(s)
- Susan V Smalley
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yudith Preiss
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile . ; School of Medicine, Universidad Diego Portales, Santiago, Chile
| | - José Suazo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile . ; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javier Andrés Vega
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Angellotti
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Rivera
- Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile . ; Department of Neurology, Hospital Carlos Van Buren, Valparaíso, Chile
| | - Karin Kleinsteuber
- Faculty of Medicine, Universidad de Chile, Santiago, Chile . ; Clínica Las Condes, Santiago, Chile
| | - Javier Campion
- Department of Food Sciences and Physiology, Universidad de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Food Sciences and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Alberto Maiz
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Luis Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Inanloorahatloo K, Zand Parsa AF, Huse K, Rasooli P, Davaran S, Platzer M, Fan JB, Amini S, Steemers F, Elahi E. Mutation in CYP27A1 identified in family with coronary artery disease. Eur J Med Genet 2013; 56:655-60. [PMID: 24080357 DOI: 10.1016/j.ejmg.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide. Myocardial infarction is the most severe outcome of CAD. Despite extensive efforts, the genetics of CAD is poorly understood. We aimed to identify the genetic cause of CAD in a pedigree with several affected individuals. Exome sequencing led to identification of a mutation in CYP27A1 that causes p.Arg225His in the encoded protein sterol 27-hydroxylase as the likely cause of CAD in the pedigree. The enzyme is multifunctional, and several of its functions including its functions in vitamin D metabolism and reverse cholesterol transport (RCT) are relevant to the CAD phenotype. Measurements of vitamin D levels suggested that the mutation does not affect CAD by affecting this parameter. We suggest that the mutation may cause CAD by affecting RCT. Screening of all coding regions of the CYP27A1 in 100 additional patients led to finding four variations (p.Arg14Gly, p.Arg26Lys, p.Ala27Arg, and p.Val86Met) in seven patients that may contribute to their CAD status. CYP27A1 is the known causative gene of cerebrotendinous xanthomatosis, a disorder which is sometimes accompanied by early onset atherosclerosis. This and the observation of potentially harmful variations in unrelated CAD patients provide additional evidence for the suggested causative role of the p.Arg225His mutation in CAD.
Collapse
Affiliation(s)
- Kolsoum Inanloorahatloo
- School of Biology, College of Science, University of Tehran, Tehran, Iran; Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
15
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
16
|
Fencl F, Bláhová K, Schlingmann KP, Konrad M, Seeman T. Severe hypercalcemic crisis in an infant with idiopathic infantile hypercalcemia caused by mutation in CYP24A1 gene. Eur J Pediatr 2013; 172:45-9. [PMID: 23001465 DOI: 10.1007/s00431-012-1818-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED We report on a male infant presenting at 4 months of age with failure to thrive, dehydration, hypotonia, lethargy, and vomiting. Laboratory and imaging tests revealed severe hypercalcemia (5.8 mmol/l), suppressed parathyroid hormone (0.41 pmol/l), hypercalciuria (8.0 mmol/mmol creatinine), elevated 25-hydroxyvitamin D3 (over 600 nmol/l), and nephrocalcinosis. These symptoms are characteristic of idiopathic infantile hypercalcemia (IIH, MIM 143880). Conservative therapy (parenteral rehydration, diuretics, corticosteroids, bisphosphonates, and vitamin D prophylaxis withdrawal) was not able to improve the symptoms and laboratory values, and acute hemodiafiltration was necessary to normalize hypercalcemia. Clinical symptoms resolved rapidly after normalization of serum calcium levels. Molecular genetic testing revealed a homozygous mutation (R396W) in the CYP24A1 gene (MIM 126065) encoding 25-hydroxyvitamin D3 24-hydroxylase, which is the key enzyme responsible for 1,25-dihydroxyvitamin D3 degradation. The CYP24A1 gene mutation leads to the increased sensitivity of the patients to even prophylactic doses of vitamin D and to the development of severe symptomatic hypercalcemia in patients with IIH. CONCLUSION Our patient is only the thirteenth patient with IIH caused by mutation in the CYP24A1 gene and the first one needing acute hemodiafiltration for severe symptomatic hypercalcemic crisis. In all patients with suspected IIH the DNA analysis for CYP24A1 gene mutations should be performed regardless of the type of vitamin D supplementation and serum levels of vitamin D.
Collapse
Affiliation(s)
- Filip Fencl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Bröking E, Fehrenbach H, Wingen AM, Güran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365:410-21. [PMID: 21675912 DOI: 10.1056/nejmoa1103864] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Vitamin D supplementation for the prevention of rickets is one of the oldest and most effective prophylactic measures in medicine, having virtually eradicated rickets in North America. Given the potentially toxic effects of vitamin D, the recommendations for the optimal dose are still debated, in part owing to the increased incidence of idiopathic infantile hypercalcemia in Britain in the 1950s during a period of high vitamin D supplementation in fortified milk products. We investigated the molecular basis of idiopathic infantile hypercalcemia, which is characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. METHODS We used a candidate-gene approach in a cohort of familial cases of typical idiopathic infantile hypercalcemia with suspected autosomal recessive inheritance. Identified mutations in the vitamin D-metabolizing enzyme CYP24A1 were evaluated with the use of a mammalian expression system. RESULTS Sequence analysis of CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, the key enzyme of 1,25-dihydroxyvitamin D(3) degradation, revealed recessive mutations in six affected children. In addition, CYP24A1 mutations were identified in a second cohort of infants in whom severe hypercalcemia had developed after bolus prophylaxis with vitamin D. Functional characterization revealed a complete loss of function in all CYP24A1 mutations. CONCLUSIONS The presence of CYP24A1 mutations explains the increased sensitivity to vitamin D in patients with idiopathic infantile hypercalcemia and is a genetic risk factor for the development of symptomatic hypercalcemia that may be triggered by vitamin D prophylaxis in otherwise apparently healthy infants.
Collapse
|
20
|
Pimentel ECG, Bauersachs S, Tietze M, Simianer H, Tetens J, Thaller G, Reinhardt F, Wolf E, König S. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim Genet 2010; 42:251-62. [DOI: 10.1111/j.1365-2052.2010.02148.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Alzahrani AS, Zou M, Baitei EY, Alshaikh OM, Al-Rijjal RA, Meyer BF, Shi Y. A novel G102E mutation of CYP27B1 in a large family with vitamin D-dependent rickets type 1. J Clin Endocrinol Metab 2010; 95:4176-83. [PMID: 20534770 DOI: 10.1210/jc.2009-2278] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Mutations in the CYP27B1 gene, which encodes vitamin D 1alpha-hydroxylase, are the genetic basis for vitamin D-dependent rickets type 1 (VDDR-I). OBJECTIVE The aim of this study was to investigate the CYP27B1 mutation in a large family with VDDR-I and characterize the genotype-phenotype correlation. PATIENTS AND METHODS The index patient was a 23-yr-old female who had a progressive form of rickets and growth retardation since the age of 9 months. Laboratory data showed hypocalcemia, low urine calcium, hypophosphatemia, high serum alkaline phosphatase, elevated PTH, and low serum 1,25-dihydroxyvitamin D(3). Her parents were healthy first-degree cousins, and two of her 12 siblings were affected with similar but milder rickets. Three other siblings were asymptomatic but had biochemical evidence of the disease. The entire coding region of the CYP27B1 gene was sequenced, and the mutation was characterized by functional studies. RESULTS We found a novel biallelic c.305G>A sequence variation at codon 102, changing amino acid from glycine to glutamic acid (G102E) in the patient and five affected siblings, whereas a monoallelic c.305G>A variation was present in the mother and five nonaffected siblings. This variation was not present in 100 population controls. Expression of this mutant in CHO cells revealed an 80% reduction in the 1alpha-hydroxylase activity as compared to wild-type activity. CONCLUSIONS A novel mutation in the CYP27B1 gene was found in patients with VDDR-I. This mutation resulted in a significant reduction in 1alpha-hydroxylase activity. The residual enzymatic activity may account for the mild phenotype presentation in some affected members.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Departments of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Vitamin D has gone through a renaissance with the association of vitamin D deficiency with a wide array of common diseases including breast, colorectal and prostate cancers, cardio-vascular disease, autoimmune conditions and infections. Vitamin D analogs constitute a valuable group of compounds which can be used to regulate gene expression in functions as varied as calcium and phosphate homeostasis, as well as cell growth regulation and cell differentiation of a wide spectrum of cell types. This review will discuss the full range of vitamin D compounds currently available, some of their possible uses, and potential mechanisms of action.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biochemistry Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
23
|
Hagey LR, Vidal N, Hofmann AF, Krasowski MD. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 2010; 10:133. [PMID: 20444292 PMCID: PMC2886068 DOI: 10.1186/1471-2148-10-133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 05/06/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). RESULTS While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. CONCLUSIONS The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates, suggesting that bile salt analysis may have utility in selected paleontological research.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California - San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
24
|
Hagey LR, Møller PR, Hofmann AF, Krasowski MD. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 2010; 83:308-21. [PMID: 20113173 PMCID: PMC2845723 DOI: 10.1086/649966] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.
Collapse
Affiliation(s)
- Lee R. Hagey
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Peter R. Møller
- National History Museum of Denmark, Zoological Museum, University of Copenhagen, Denmark
| | - Alan F. Hofmann
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
25
|
Hata M, Tanaka Y, Kyoda N, Osakabe T, Yuki H, Ishii I, Kitada M, Neya S, Hoshino T. An epoxidation mechanism of carbamazepine by CYP3A4. Bioorg Med Chem 2008; 16:5134-48. [DOI: 10.1016/j.bmc.2008.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/25/2022]
|
26
|
Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW. Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 2008; 380:95-106. [PMID: 18511070 DOI: 10.1016/j.jmb.2008.03.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 01/08/2023]
Abstract
The activation of vitamin D to its hormonal form is mediated by cytochrome P450 enzymes. CYP2R1 catalyzes the initial step converting vitamin D into 25-hydroxyvitamin D. A CYP2R1 gene mutation causes an inherited form of rickets due to 25-hydroxylase deficiency. To understand the narrow substrate specificity of CYP2R1 we obtained the hemeprotein in a highly purified state, confirmed the enzyme as a vitamin D 25-hydroxylase, and solved the crystal structure of CYP2R1 in complex with vitamin D3. The CYP2R1 structure adopts a closed conformation with the substrate access channel being covered by the ordered B'-helix and slightly opened to the surface, which defines the substrate entrance point. The active site is lined by conserved, mostly hydrophobic residues. Vitamin D3 is bound in an elongated conformation with the aliphatic side-chain pointing toward the heme. The structure reveals the secosteroid binding mode in an extended active site and allows rationalization of the molecular basis of the inherited rickets associated with CYP2R1.
Collapse
|
27
|
Abstract
The aim of this current review is to summarize the present status of pharmacokinetics in Drug Discovery. The review is structured into four sections. The first section is a general overview of what we understand by pharmacokinetics and the different LADMET aspects: Liberation, Absorption, Distribution, Metabolism, Excretion, and Toxicity. The second section highlights the different computational or in silico approaches to estimate/predict one or several aspects of the pharmacokinetic profile of a discovery lead compound. The third section discusses the most commonly used in vitro methodologies. The fourth and last section examines the various approaches employed towards the pharmacokinetic assessment of discovery molecules; including all the LADME processes, discussing the different mathematical methodologies available to establish the PK profile of a test compound; what the main differences are and what should be the criteria for using one or another mathematical approach. The major conclusion of this review is that the use of the appropriate preclinical assays has a key role in the long-term viability of a pharmaceutical company since applying the right tools early in discovery will play a key role in determining the company's ability to discover novel safe and effective therapeutics to patients as quickly as possible.
Collapse
Affiliation(s)
- Ana Ruiz-Garcia
- Pharmacokinetics and Drug Metabolism, Amgen, Inc, 1201 Amgen Court West, Seattle, Washington 98119, USA.
| | | | | | | |
Collapse
|
28
|
Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M, Ikushiro SI, Shiro Y, Sakaki T. Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. Biochemistry 2008; 47:4017-27. [PMID: 18314962 DOI: 10.1021/bi7023767] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin D 3 (VD 3), a prohormone in mammals, plays a crucial role in the maintenance of calcium and phosphorus concentrations in serum. Activation of VD 3 requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney by cytochrome P450 (CYP) enzymes. Bacterial CYP105A1 converts VD 3 into 1alpha,25-dihydroxyvitamin D 3 (1alpha,25(OH) 2D 3) in two independent reactions, despite its low sequence identity with mammalian enzymes (<21% identity). The present study determined the crystal structures of a highly active mutant (R84A) of CYP105A1 from Streptomyces griseolus in complex and not in complex with 1alpha,25(OH) 2D 3. The compound 1alpha,25(OH) 2D 3 is positioned 11 A from the iron atom along the I helix within the pocket. A similar binding mode is observed in the structure of the human CYP2R1-VD 3 complex, indicating a common substrate-binding mechanism for 25-hydroxylation. A comparison with the structure of wild-type CYP105A1 suggests that the loss of two hydrogen bonds in the R84A mutant increases the adaptability of the B' and F helices, creating a transient binding site. Further mutational analysis of the active site reveals that 25- and 1alpha-hydroxylations share residues that participate in these reactions. These results provide the structural basis for understanding the mechanism of the two-step hydroxylation that activates VD 3.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gupta RP, Patrick K, Bell NH. Mutational analysis of CYP27A1: assessment of 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D. Metabolism 2007; 56:1248-55. [PMID: 17697869 PMCID: PMC2707179 DOI: 10.1016/j.metabol.2007.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/20/2007] [Indexed: 01/08/2023]
Abstract
The CYP27A1 gene encodes a mitochondrial enzyme that modulates the acidic biosynthetic pathway for bile acids beginning with the 27-hydroxylation of cholesterol. CYP27A1 also 25-hydroxylates vitamin D(3). Gene mutations cause cerebrotendinous xanthomatosis (CTX), an autosomal recessive disorder, and may cause 25-hydroxyvitamin D deficiency and early-onset osteoporosis and fractures in affected patients. To examine the effects of mutations of CYP27A1 on vitamin D and cholesterol hydroxylating activity, recombinant CYP27A1 and mutant complementary DNAs produced by site-directed mutagenesis were stably expressed in either Escherichia coli or COS-1 cells. Activities of wild-type and mutant enzymes were determined with cholesterol, vitamin D(3), and 1alpha-hydroxyvitamin D(3) (1alphaOHD(3)) as substrates. Of the 15 mutants tested, 11 expressed protein and 4 expressed little or no protein. Functional heme activity, estimated by reduced CO difference spectra at 450 nm, was absent in 12 mutants. When expressed in E. coli, 3 mutants, K226R, D321G, and P408S, each known to cause clinically CTX, showed modest decreases in reduced CO spectra peak and either no change or decreases of less than 50% in hydroxylation of cholesterol, vitamin D(3), and 1alphaOHD(3) compared with wild type. When expressed transiently in COS-1 cells, each of these mutants showed 25-hydroxylation activity for 1alphaOHD(3) as well as wild type. Thus, 3 mutants, K226R, D321G, and P408S, known to occur clinically with nonfunctioning mutants, hydroxylated cholesterol, vitamin D(3), and 1alphaOHD(3). How they contribute to the pathogenesis of CTX despite being biologically active in vitro remains to be determined.
Collapse
Affiliation(s)
- Ram P. Gupta
- Department of Medicine, Medical University of South Carolina, Strom Thurmond Research Building, 114 Doughty Street Charleston, SC 29403
| | - Kennerly Patrick
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Strom Thurmond Research Building, 114 Doughty Street Charleston, SC 29403
| | - Norman H. Bell
- Department of Medicine, Medical University of South Carolina, Strom Thurmond Research Building, 114 Doughty Street Charleston, SC 29403
| |
Collapse
|
30
|
Prosser DE, Kaufmann M, O'Leary B, Byford V, Jones G. Single A326G mutation converts human CYP24A1 from 25-OH-D3-24-hydroxylase into -23-hydroxylase, generating 1alpha,25-(OH)2D3-26,23-lactone. Proc Natl Acad Sci U S A 2007; 104:12673-8. [PMID: 17646648 PMCID: PMC1937525 DOI: 10.1073/pnas.0702093104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies of 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24A1) have demonstrated that it is a bifunctional enzyme capable of the 24-hydroxylation of 1alpha,25-(OH)(2)D(3), leading to the excretory form, calcitroic acid, and 23-hydroxylation, culminating in 1alpha,25-(OH)(2)D(3)-26,23-lactone. The degree to which CYP24A1 performs either 23- or 24-hydroxylation is species-dependent. In this paper, we show that the human enzyme that predominantly 24-hydroxylates its substrate differs from the opossum enzyme that 23-hydroxylates it at only a limited number of amino acid residues. Mutagenesis of the human form at a single substrate-binding residue (A326G) dramatically changes the regioselectivity of the enzyme from a 24-hydroxylase to a 23-hydroxylase, whereas other modifications have no effect. Ala-326 is located in the I-helix, close to the terminus of the docked 25-hydroxylated side chain in a CYP24A1 homology model, a result that we interpret indicates that substitution of a glycine at 326 provides extra space for the side chain of the substrate to move deeper into the pocket and place it in a optimal stereochemical position for 23-hydroxylation. We discuss the physiological ramifications of these results for species possessing the A326G substitution, as well as implications for optimal vitamin D analog design.
Collapse
Affiliation(s)
- David E. Prosser
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Martin Kaufmann
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brendan O'Leary
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Valarie Byford
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Glenville Jones
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
- *To whom correspondence should be addressed at:
Department of Biochemistry, Queen's University, Botterell Hall, Room 650, Kingston, ON, Canada K7L 3N6. E-mail:
| |
Collapse
|
31
|
Hosseinpour F, Ellfolk M, Norlin M, Wikvall K. Phenobarbital suppresses vitamin D3 25-hydroxylase expression: A potential new mechanism for drug-induced osteomalacia. Biochem Biophys Res Commun 2007; 357:603-7. [PMID: 17445763 DOI: 10.1016/j.bbrc.2007.03.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 03/25/2007] [Indexed: 01/08/2023]
Abstract
Prolonged therapy with phenobarbital may cause vitamin D deficiency or osteomalacia. In the current study, we propose a novel mechanism for drug-induced osteomalacia involving impaired bioactivation of vitamin D(3) due to decreased 25-hydroxylation of vitamin D(3) in liver. The present data, using the pig as model, demonstrate direct effects by phenobarbital on the expression of CYP27A1 and CYP2D25, two important 25-hydroxylases. Treatment by phenobarbital markedly reduced the rate of 25-hydroxylation by primary hepatocytes and suppressed the cellular CYP27A1 mRNA levels. The rate of 25-hydroxylation by two different purified 25-hydroxylases, microsomal CYP2D25, and mitochondrial CYP27A1, respectively, was dose-dependently inhibited by phenobarbital. Reporter assay experiments in liver-derived HepG2 cells revealed a marked PXR-mediated transcriptional downregulation of the CYP2D25 promoter. In addition, the data indicate that phenobarbital might affect the mRNA stability of CYP2D25. Taken together, the data suggest that vitamin D(3) 25-hydroxylation may be suppressed by phenobarbital. A downregulation of 25-hydroxylation by phenobarbital may explain, at least in part, the increased risk of osteomalacia, bone loss, and fractures in long-term phenobarbital therapy.
Collapse
MESH Headings
- Animals
- Anticonvulsants/adverse effects
- Anticonvulsants/pharmacology
- Cell Line, Tumor
- Cells, Cultured
- Cholestanetriol 26-Monooxygenase/antagonists & inhibitors
- Cholestanetriol 26-Monooxygenase/genetics
- Cholestanetriol 26-Monooxygenase/metabolism
- Constitutive Androstane Receptor
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Hydroxylation/drug effects
- Luciferases/genetics
- Luciferases/metabolism
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Mitochondria/drug effects
- Mitochondria/enzymology
- Osteomalacia/chemically induced
- Osteomalacia/enzymology
- Osteomalacia/metabolism
- Phenobarbital/adverse effects
- Phenobarbital/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Swine
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Vitamin D/metabolism
Collapse
Affiliation(s)
- Fardin Hosseinpour
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
32
|
Gomaa MS, Simons C, Brancale A. Homology model of 1alpha,25-dihydroxyvitamin D3 24-hydroxylase cytochrome P450 24A1 (CYP24A1): active site architecture and ligand binding. J Steroid Biochem Mol Biol 2007; 104:53-60. [PMID: 17240137 DOI: 10.1016/j.jsbmb.2006.09.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/14/2006] [Indexed: 01/08/2023]
Abstract
Homology models of cytochrome P450 24A1 (CYP24A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using molecular operating environment (MOE) software the lowest energy CYP24A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP24A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP24A1 model. The natural substrate, 1,25-dihydroxyvitamin D(3) (calcitriol) and the CYP24 inhibitor (R)-N-(2-(1H-imidazol-1-yl)-2-phenylethyl)-4'-chlorobiphenyl-4-carboxamide ((R)-VID-400) were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure.
Collapse
Affiliation(s)
- Mohamed Sayed Gomaa
- Medicinal Chemistry, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | |
Collapse
|
33
|
Sawada N, Yamamoto K, Yamada S, Ikushiro S, Kamakura M, Ohta M, Inouye K, Sakaki T. Role of Gln 85 of human CYP27A1 in 25-hydroxyvitamin D(3)-binding and protein folding. Biochem Biophys Res Commun 2007; 355:211-6. [PMID: 17292862 DOI: 10.1016/j.bbrc.2007.01.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 11/23/2022]
Abstract
CYP27A1 catalyzes vitamin D(3) 25-hydroxylation and further hydroxylation at C-1alpha, C-24 or C-26(27). Molecular modeling of human CYP27A1 and docking with 25-hydroxyvitamin D(3) predicted that Gln 85 might be important for 1alpha-hydroxylation activity of CYP27A1 by forming a hydrogen bond with the 25-OH group of 25-hydroxyvitamin D(3). Expectedly, the mutant Q85H expressed in Escherichia coli showed no detectable 1alpha-hydroxylation activity toward 25-hydroxyvitamin D(3). In addition, Q85H prefers 24-hydroxylation toward 25-hydroxyvitamin D(3) whereas the wild-type prefers 26(27)-hydroxylation. A molecular modeling study also suggests that Gln 85 of CYP27A1 simultaneously interacts with Asn 107 and the hydroxyl group of the substrate. The fact that Q85L did not contain a heme molecule suggests that the hydrogen bond between Gln 85 and Asn 107 is important for protein folding of CYP27A1. Based on these results, it is possible that Gln 85 plays essential roles in both substrate-binding and protein folding.
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Masuda S, Prosser DE, Guo YD, Kaufmann M, Jones G. Generation of a homology model for the human cytochrome P450, CYP24A1, and the testing of putative substrate binding residues by site-directed mutagenesis and enzyme activity studies. Arch Biochem Biophys 2006; 460:177-91. [PMID: 17224124 DOI: 10.1016/j.abb.2006.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
A systematic analysis of conserved H-bonding patterns and tertiary structural motifs from 13 crystal structures was used to create a homology model for the human multicatalytic cytochrome P450, CYP24A1, involved in catabolism of 1alpha,25-dihydroxyvitamin D3. The substrate was docked in the active site and used to identify potential substrate contact residues in the B' helix, B'/C loop, F-helix and the beta-5 hairpin. Seven CYP24A1 mutants were created and studied by mammalian cell transfection and CYP24A1 activity assay. Mutants showed reduced metabolic rates and altered metabolite patterns compared to wild-type. We conclude that: Ile-131 positions substrate via A-ring and cis-triene contacts; Trp-134 and Gly-499 are determinants of substrate access; Leu-148 contacts the substrate side-chain; Met-246 is important in mediating regioselectivity. Our findings validate the new model of CYP24A1, which can now be used to predict structural modifications for rational vitamin D drug design.
Collapse
Affiliation(s)
- Sonoko Masuda
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
35
|
Annalora AJ, Bobrovnikov-Marjon E, Serda R, Pastuszyn A, Graham SE, Marcus CB, Omdahl JL. Hybrid homology modeling and mutational analysis of cytochrome P450C24A1 (CYP24A1) of the Vitamin D pathway: insights into substrate specificity and membrane bound structure-function. Arch Biochem Biophys 2006; 460:262-73. [PMID: 17207766 PMCID: PMC1978416 DOI: 10.1016/j.abb.2006.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 01/08/2023]
Abstract
Cytochrome P450C24A1 (CYP24A1), a peripheral inner mitochondrial membrane hemoprotein and candidate oncogene, regulates the side-chain metabolism and biological function of vitamin D and many of its related analog drugs. Rational mutational analysis of rat CYP24A1 based on hybrid (2C5/BM-3) homology modeling and affinity labeling studies clarified the role of key domains (N-terminus, A', A, and F-helices, beta3a strand, and beta5 hairpin) in substrate binding and catalysis. The scope of our study was limited by an inability to purify stable mutant enzyme targeting soluble domains (B', G, and I-helices) and suggested greater conformational flexibility among CYP24A1's membrane-associated domains. The most notable mutants developed by modeling were V391T and I500A, which displayed defective-binding function and profound metabolic defects for 25-hydroxylated vitamin D3 substrates similar to a non-functional F-helix mutant (F249T) that we previously reported. Val-391 (beta3a strand) and Ile-500 (beta5 hairpin) are modeled to interact with Phe-249 (F-helix) in a hydrophobic cluster that directs substrate-binding events through interactions with the vitamin D cis-triene moiety. Prior affinity labeling studies identified an amino-terminal residue (Ser-57) as a putative active-site residue that interacts with the 3beta-OH group of the vitamin D A-ring. Studies with 3-epi and 3-deoxy-1,25(OH)2D3 analogs confirmed interactions between the 3beta-OH group and Ser-57 effect substrate recognition and trafficking while establishing that the trans conformation of A-ring hydroxyl groups (1alpha and 3beta) is obligate for high-affinity binding to rat CYP24A1. Our work suggests that CYP24A1's amphipathic nature allows for monotopic membrane insertion, whereby a pw2d-like substrate access channel is formed to shuttle secosteroid substrate from the membrane to the active-site. We hypothesize that CYP24A1 has evolved a unique amino-terminal membrane-binding motif that contributes to substrate specificity and docking through coordinated interactions with the vitamin D A-ring.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131-5331, USA.
| | | | | | | | | | | | | |
Collapse
|