1
|
Zamanian-Daryoush M, Gogonea V, DiDonato AJ, Buffa JA, Choucair I, Levison BS, Hughes RA, Ellington AD, Huang Y, Li XS, DiDonato JA, Hazen SL. Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-I impairs cholesterol efflux activity and high-density lipoprotein biogenesis. J Biol Chem 2020; 295:4836-4848. [PMID: 32098873 DOI: 10.1074/jbc.ra119.012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (μmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Anthony J DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Bruce S Levison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Randall A Hughes
- United States Army Research Laboratory South, University of Texas, Austin, Texas 78712
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - Ying Huang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
2
|
First eight residues of apolipoprotein A-I mediate the C-terminus control of helical bundle unfolding and its lipidation. PLoS One 2020; 15:e0221915. [PMID: 31945064 PMCID: PMC6964839 DOI: 10.1371/journal.pone.0221915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/30/2019] [Indexed: 11/23/2022] Open
Abstract
The crystal structure of a C-terminal deletion of apolipoprotein A-I (apoA1) shows a large helical bundle structure in the amino half of the protein, from residues 8 to 115. Using site directed mutagenesis, guanidine or thermal denaturation, cell free liposome clearance, and cellular ABCA1-mediated cholesterol efflux assays, we demonstrate that apoA1 lipidation can occur when the thermodynamic barrier to this bundle unfolding is lowered. The absence of the C-terminus renders the bundle harder to unfold resulting in loss of apoA1 lipidation that can be reversed by point mutations, such as Trp8Ala, and by truncations as short as 8 residues in the amino terminus, both of which facilitate helical bundle unfolding. Locking the bundle via a disulfide bond leads to loss of apoA1 lipidation. We propose a model in which the C-terminus acts on the N-terminus to destabilize this helical bundle. Upon lipid binding to the C-terminus, Trp8 is displaced from its interaction with Phe57, Arg61, Leu64, Val67, Phe71, and Trp72 to destabilize the bundle. However, when the C-terminus is deleted, Trp8 cannot be displaced, the bundle cannot unfold, and apoA1 cannot be lipidated.
Collapse
|
3
|
Melchior JT, Walker RG, Cooke AL, Morris J, Castleberry M, Thompson TB, Jones MK, Song HD, Rye KA, Oda MN, Sorci-Thomas MG, Thomas MJ, Heinecke JW, Mei X, Atkinson D, Segrest JP, Lund-Katz S, Phillips MC, Davidson WS. A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat Struct Mol Biol 2017; 24:1093-1099. [PMID: 29131142 PMCID: PMC5749415 DOI: 10.1038/nsmb.3501] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)A-I is an organizing scaffold protein that is critical to high-density lipoprotein (HDL) structure and metabolism, probably mediating many of its cardioprotective properties. However, HDL biogenesis is poorly understood, as lipid-free apoA-I has been notoriously resistant to high-resolution structural study. Published models from low-resolution techniques share certain features but vary considerably in shape and secondary structure. To tackle this central issue in lipoprotein biology, we assembled a team of structural biologists specializing in apolipoproteins and set out to build a consensus model of monomeric lipid-free human apoA-I. Combining novel and published cross-link constraints, small-angle X-ray scattering (SAXS), hydrogen-deuterium exchange (HDX) and crystallography data, we propose a time-averaged model consistent with much of the experimental data published over the last 40 years. The model provides a long-sought platform for understanding and testing details of HDL biogenesis, structure and function.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Allison L Cooke
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mark Castleberry
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Martin K Jones
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyun D Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Mary G Sorci-Thomas
- Department of Medicine, Section on Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaohu Mei
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jere P Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sissel Lund-Katz
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Wang S, Gulshan K, Brubaker G, Hazen SL, Smith JD. ABCA1 mediates unfolding of apolipoprotein AI N terminus on the cell surface before lipidation and release of nascent high-density lipoprotein. Arterioscler Thromb Vasc Biol 2013; 33:1197-205. [PMID: 23559627 DOI: 10.1161/atvbaha.112.301195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To gain insight into the mechanism by which ABCA1 generates nascent high-density lipoprotein. APPROACH AND RESULTS HEK293 cells were stably transfected with ABCA1 vectors, encoding wild type, and the W590S and C1477R Tangier disease mutation isoforms, along with the K939M ATP-binding domain mutant. Apolipoprotein AI (ApoAI) binding, plasma membrane remodeling, cholesterol efflux, apoAI cell surface unfolding, and apoAI cell surface lipidation were determined, the latter 2 measured using novel fluorescent apoAI indicators. The W590S isoform had decreased plasma membrane remodeling and lipid efflux activities, and the C1477R isoform had decreased apoAI binding, and lipid efflux activities, whereas the K939M isoform did not bind apoAI, remodel the membrane, or efflux cholesterol. However, all ABCA1 isoforms led to apoAI unfolding at the cell surface, which was higher for the isoforms that increased apoAI binding. ApoAI lipidation was not detected on ABCA1-expressing cells, only in the conditioned medium, consistent with rapid release of nascent high-density lipoprotein from ABCA1-expressing cells. CONCLUSIONS We identified a third activity of ABCA1, the ability to unfold the N terminus of apoAI on the cell surface. Our results support a model in which unfolded apoAI on the cell surface is an intermediate in its lipidation and that, once apoAI is lipidated, it forms an unstable structure that is rapidly released from the cells to generate high-density lipoprotein.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
5
|
Thompson EJ, DePaul AJ, Patel SS, Sorin EJ. Evaluating molecular mechanical potentials for helical peptides and proteins. PLoS One 2010; 5:e10056. [PMID: 20418937 PMCID: PMC2850926 DOI: 10.1371/journal.pone.0010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble.
Collapse
Affiliation(s)
- Erik J. Thompson
- Department of Chemical Engineering, California State University Long Beach, Long Beach, California, United States of America
| | - Allison J. DePaul
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Sarav S. Patel
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Koyama M, Tanaka M, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H. Interaction between the N- and C-terminal domains modulates the stability and lipid binding of apolipoprotein A-I. Biochemistry 2010; 48:2529-37. [PMID: 19239199 DOI: 10.1021/bi802317v] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The tertiary structures of human and mouse apolipoprotein A-I (apoA-I) are comprised of an N-terminal helix bundle and a separate C-terminal domain. To define the possible intramolecular interaction between the N- and the C-terminal domains, we examined the effects on protein stability and lipid-binding properties of exchanging either the C-terminal domain or helix between human and mouse apoA-I. Chemical denaturation experiments demonstrated that replacement of the C-terminal domain or helical segment in human apoA-I with the mouse counterparts largely destabilizes the N-terminal helix bundle. Removal of the C-terminal domain or alpha-helix in human apoA-I had a similar effect on the destabilization of the helix bundle against urea denaturation, indicating that the C-terminal helical segment mainly contributes to stabilizing the N-terminal helix bundle structure in the apoA-I molecule. Consistent with this, KI quenching experiments indicated that removal or replacement of the C-terminal domain or helix in human apoA-I causes Trp residues in the N-terminal domain to become exposed to solvent. Measurements of the heats of binding to egg phosphatidylcholine (PC) vesicles and the kinetics of solubilization of dimyristoyl PC vesicles demonstrated that the destabilized human N-terminal helix bundle can strongly interact with lipids without the hydrophobic C-terminal helix. In addition, site-specific labeling of the N- and C-terminal helices by acrylodan to probe the conformational stability and the spatial proximity of the two domains indicated that the C-terminal helix is located near the N-terminal helix bundle, leading to a relatively less solvent-exposed, more organized conformation of the C-terminal domain. Taken together, these results suggest that interaction between the N- and C-terminal tertiary structure domains in apoA-I modulates the stability and lipid-binding properties of the N-terminal helix bundle.
Collapse
Affiliation(s)
- Mao Koyama
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Xu X, Zhang L, Shen D, Wu H, Peng L, Li J. Effect of metal ion substitutions in anticoagulation factor I from the venom of Agkistrodon acutus on the binding of activated coagulation factor X and on structural stability. J Biol Inorg Chem 2009; 14:559-71. [PMID: 19184130 DOI: 10.1007/s00775-009-0470-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/11/2009] [Indexed: 11/29/2022]
Abstract
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X (FXa)-binding protein that binds in a Ca(2+)-dependent fashion with marked anticoagulant activity. The thermodynamics of the binding of alkaline earth metal ions to ACF I and the effects of alkaline earth metal ions on the guanidine hydrochloride (GdnHCl)-induced unfolding of ACF I and the binding of ACF I to FXa were studied by isothermal titration calorimetry, fluorescence, circular dichroism, and surface plasmon resonance, respectively. The results indicate that the ionic radii of the cations occupying Ca(2+)-binding sites in ACF I crucially affect the binding affinity of ACF I for alkaline earth metal ions as well as the structural stability of ACF I against GdnHCl denaturation. Sr(2+) and Ba(2+), with ionic radii larger than the ionic radius of Ca(2+), can bind to Ca(2+)-free ACF I (apo-ACF I), while Mg(2+), with an ionic radius smaller than that of Ca(2+), shows significantly low affinity for the binding to apo-ACF I. All bindings of Ca(2+), Sr(2+), and Ba(2+) ions in two sites of ACF I are mainly enthalpy-driven and the entropy is unfavorable for them. Sr(2+)-stabilized ACF I exhibits slightly lower resistance to GdnHCl denaturation than Ca(2+)-ACF I, while Ba(2+)-stabilized ACF I exhibits much lower resistance to GdnHCl denaturation than Ca(2+)-ACF I. Mg(2+) and Sr(2+), with ionic radii close to that of Ca(2+), can bind to FXa and therefore also induce the binding of ACF I to FXa, whereas Ba(2+), with a much larger ionic radius than Ca(2+), cannot support the binding of ACF I with FXa. Our observations suggest that bindings of Ca(2+), Sr(2+), and Ba(2+) ions in two sites of ACF I increase the structural stability of ACF I, but these bindings are not essential for the binding of ACF I with FXa, and that the binding of Mg(2+), Ca(2+), and Sr(2+) ions to FXa may be essential for the recognition between FXa and ACF I.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
8
|
Surface rheology and adsorption kinetics reveal the relative amphiphilicity, interfacial activity, and stability of human exchangeable apolipoproteins. Biophys J 2007; 94:1735-45. [PMID: 17993480 DOI: 10.1529/biophysj.107.115220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchangeable apolipoproteins are located in the surface of lipoprotein particles and regulate lipid metabolism through direct protein-protein and protein-lipid interactions. These proteins are characterized by the presence of tandem repeats of amphiphatic alpha-helix segments and a high surface activity in monolayers and lipoprotein surfaces. A noteworthy aspect in the description of the function of exchangeable apolipoproteins is the requirement of a quantitative account of the relation between their physicochemical and structural characteristics and changes in the mesoscopic system parameters such as the maximum surface pressure and relative stability at interfaces. To comply with this demand, we set out to establish the relations among alpha-helix amphiphilicity, surface concentration, and surface rheology of apolipoproteins ApoA-I, ApoA-II, ApoC-I, ApoC-II, and ApoC-III adsorbed at the air-water interface. Our studies render further insights into the interfacial properties of exchangeable apolipoproteins, including the kinetics of their adsorption and the physical properties of the interfacial layer.
Collapse
|
9
|
Chroni A, Koukos G, Duka A, Zannis VI. The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo. Biochemistry 2007; 46:5697-708. [PMID: 17447731 PMCID: PMC2528067 DOI: 10.1021/bi602354t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece.
| | | | | | | |
Collapse
|
10
|
Obici L, Franceschini G, Calabresi L, Giorgetti S, Stoppini M, Merlini G, Bellotti V. Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 2006; 13:191-205. [PMID: 17107880 DOI: 10.1080/13506120600960288] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Apolipoprotein A-I, the major structural apolipoprotein of high-density lipoproteins, efficiently protects humans from cholesterol accumulation in tissues; however, it can cause systemic amyloidosis in the presence of peculiar amino acid replacements. The wild-type molecule also has an intrinsic tendency to generate amyloid fibrils that localise within the atherosclerotic plaques. The structure, folding and metabolism of normal apolipoprotein A-I are extremely complex and as yet not completely clarified, but their understanding appears essential for the elucidation of the amyloid transition. We reviewed present knowledge on the structure, function and amyloidogenic propensity of apolipoprotein A-I with the aim of highlighting the possible molecular mechanisms that might contribute to the pathogenesis of this disease. Important clues on apolipoprotein A-I amyloidogenesis may be obtained from classical comparative studies of the properties of the wild-type versus the amyloidogenic counterpart. Additionally, in the case of apoA-I, further insights on the molecular mechanisms underlying its amyloidogenic propensity may derive from comparative studies between amyloidogenic variants and other mutations associated with hypoalphalipoproteinemia without amyloidosis.
Collapse
Affiliation(s)
- Laura Obici
- Centro per lo Studio e la Cura delle Amiloidosi Sistemiche, Laboratorio di Biotecnologie, IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|