1
|
Pirnia A, Maqdisi R, Mittal S, Sener M, Singharoy A. Perspective on Integrative Simulations of Bioenergetic Domains. J Phys Chem B 2024; 128:3302-3319. [PMID: 38562105 DOI: 10.1021/acs.jpcb.3c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioenergetic processes in cells, such as photosynthesis or respiration, integrate many time and length scales, which makes the simulation of energy conversion with a mere single level of theory impossible. Just like the myriad of experimental techniques required to examine each level of organization, an array of overlapping computational techniques is necessary to model energy conversion. Here, a perspective is presented on recent efforts for modeling bioenergetic phenomena with a focus on molecular dynamics simulations and its variants as a primary method. An overview of the various classical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics, and Monte Carlo methods is presented. Example applications discussed include multiscale simulations of membrane-wide electron transport, rate kinetics of ATP turnover from electrochemical gradients, and finally, integrative modeling of the chromatophore, a photosynthetic pseudo-organelle.
Collapse
Affiliation(s)
- Adam Pirnia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Ranel Maqdisi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Sumit Mittal
- VIT Bhopal University, Sehore 466114, Madhya Pradesh, India
| | - Melih Sener
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| |
Collapse
|
2
|
Rathod AK, Chavda D, Manna M. Phase Transition and Phase Separation in Realistic Thylakoid Lipid Membrane of Marine Algae in All-Atom Simulations. J Chem Inf Model 2023. [PMID: 37075469 DOI: 10.1021/acs.jcim.2c01614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Thylakoid membranes are specialized membranes predominantly composed of uncommon galacto- and sulfolipids, having distinct roles in photosynthesis. Large acyl chain variety and richness in polyunsaturated fatty acid (PUFA) content of thylakoid lipids further add to the compositional complexity. The function of these membrane systems is intimately dependent on the fluidity of its lipid matrix, which is strongly modulated by the lipid composition and temperature. The present work, employing extensive atomistic simulations, provides the first atomistic view of the phase transition and domain coexistence in a model membrane composed of thylakoid lipids of a commercially important red alga Gracilaria corticata between 10 and 40 °C. The growth and photosynthetic activity of marine algae are greatly influenced by the seawater temperature. So far, little is known about the molecular organization of lipids in thylakoid membranes, in particular their adaptive arrangements under temperature stress. Our simulations show that the algal thylakoid membrane undergoes a transition from a gel-like phase at a low temperature, 10-15 °C, to a homogeneous liquid-crystalline phase at a high temperature, 40 °C. Clear evidence of spontaneous phase separation into coexisting nanoscale domains is detected at intermediate temperatures nearing the optimal growth temperature range. Particularly, at 25-30 °C, we identified the formation of a stable ripple phase, where the gel-like domains rich in saturated and nearly hexagonally packed lipids were separated from fluid-like domains enriched in lipids containing PUFA chains. The phase separation is driven by the spontaneous and preferential segregation of lipids into differentially ordered domains, mainly depending on the acyl chain types. Cholesterol impairs the phase transition and the emergence of domains and induces a fairly uniform liquid-ordered phase in the membrane over the temperatures studied. This work improves the understanding of the properties and reorganization of lipids in the thylakoid membrane in response to temperature variation.
Collapse
Affiliation(s)
- Arun K Rathod
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Mandal M, Saito K, Ishikita H. Substitution of Ca 2+ and changes in the H-bond network near the oxygen-evolving complex of photosystem II. Phys Chem Chem Phys 2023; 25:6473-6480. [PMID: 36785919 DOI: 10.1039/d2cp05036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ca2+, which provides binding sites for ligand water molecules W3 and W4 in the Mn4CaO5 cluster, is a prerequisite for O2 evolution in photosystem II (PSII). We report structural changes in the H-bond network and the catalytic cluster itself upon the replacement of Ca2+ with other alkaline earth metals, using a quantum mechanical/molecular mechanical approach. The small radius of Mg2+ makes W3 donate an H-bond to D1-Glu189 in Mg2+-PSII. If an additional water molecule binds at the large surface of Ba2+, it donates H-bonds to D1-Glu189 and the ligand water molecule at the dangling Mn, altering the H-bond network. The potential energy profiles of the H-bond between D1-Tyr161 (TyrZ) and D1-His190 and the interconversion between the open- and closed-cubane S2 conformations remain substantially unaltered upon the replacement of Ca2+. Remarkably, the O5⋯Ca2+ distance is shortest among all O5⋯metal distances irrespective of the radius being larger than that of Mg2+. Furthermore, Ca2+ is the only alkaline earth metal that equalizes the O5⋯metal and O2⋯metal distances and facilitates the formation of the symmetric cubane structure.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India.
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
4
|
Sarngadharan P, Maity S, Kleinekathöfer U. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. J Chem Phys 2022; 156:215101. [DOI: 10.1063/5.0091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides absorbing light, the core antenna complex CP43 of photosystem II is of great importance in transferring excitation energy from the antenna complexes to the reaction center. Excitation energies, spectral densities, and linear absorption spectra of the complex have been evaluated by a multiscale approach. In this scheme, quantum mechanics/molecular mechanics molecular dynamics simulations are performed employing the parameterized density functional tight binding (DFTB) while the time-dependent long-range-corrected DFTB scheme is applied for the excited state calculations. The obtained average spectral density of the CP43 complex shows a very good agreement with experimental results. Moreover, the excitonic Hamiltonian of the system along with the computed site-dependent spectral densities was used to determine the linear absorption. While a Redfield-like approximation has severe shortcomings in dealing with the CP43 complex due to quasi-degenerate states, the non-Markovian full second-order cumulant expansion formalism is able to overcome the drawbacks. Linear absorption spectra were obtained, which show a good agreement with the experimental counterparts at different temperatures. This study once more emphasizes that by combining diverse techniques from the areas of molecular dynamics simulations, quantum chemistry, and open quantum systems, it is possible to obtain first-principle results for photosynthetic complexes, which are in accord with experimental findings.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
5
|
Narzi D, Guidoni L. Structural and dynamic insights into Mn 4Ca cluster-depleted Photosystem II. Phys Chem Chem Phys 2021; 23:27428-27436. [PMID: 34860219 DOI: 10.1039/d1cp02367e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the first steps of natural oxygenic photosynthesis, sunlight is used to oxidize water molecules to protons, electrons and molecular oxygen. This reaction takes place on the Mn4Ca cluster located in the reaction centre of Photosystem II (PSII), where the cluster is assembled and continuously repaired through a process known as photoactivation. Understanding the molecular details of such a process has important implications in different fields, in particular inspiring synthesis and repair strategies for artificial photosynthesis devices. In this regard, a detailed structural and dynamic characterization of Photosystem II lacking a Mn4Ca cluster, namely apo PSII, is a prerequisite for the full comprehension of the photoactivation. Recently, the structure of the apo PSII was resolved at 2.55 Å resolution [Zhang et al., eLife, 2017, 6, e26933], suggesting a pre-organized structure of the protein cavity hosting the cluster. Anyway, the question of whether these findings are a feature of the method used remains open. Here, by means of classical Molecular Dynamics simulations, we characterized the structural and dynamic features of the apo PSII for different protonation states of the cluster cavity. Albeit an overall conformational stability common to all investigated systems, we found significant deviations in the conformation of the side chains of the active site with respect to the X-ray positions. Our findings suggest that not all residues acting as Mn ligands are pre-organized prior to the Mn4Ca formation and previous local conformational changes are required in order to bind the first Mn ion in the high-affinity binding site.
Collapse
Affiliation(s)
- Daniele Narzi
- Department of Physical and Chemical Science, Università dellAquila, LAquila, Italy.
| | - Leonardo Guidoni
- Department of Physical and Chemical Science, Università dellAquila, LAquila, Italy.
| |
Collapse
|
6
|
Sirohiwal A, Neese F, Pantazis DA. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. Chem Sci 2021; 12:4463-4476. [PMID: 34163712 PMCID: PMC8179452 DOI: 10.1039/d0sc06616h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural photosynthesis relies on light harvesting and excitation energy transfer by specialized pigment-protein complexes. Their structure and the electronic properties of the embedded chromophores define the mechanisms of energy transfer. An important example of a pigment-protein complex is CP47, one of the integral antennae of the oxygen-evolving photosystem II (PSII) that is responsible for efficient excitation energy transfer to the PSII reaction center. The charge-transfer excitation induced among coupled reaction center chromophores resolves into charge separation that initiates the electron transfer cascade driving oxygenic photosynthesis. Mapping the distribution of site energies among the 16 chlorophyll molecules of CP47 is essential for understanding excitation energy transfer and overall antenna function. In this work, we demonstrate a multiscale quantum mechanics/molecular mechanics (QM/MM) approach utilizing full time-dependent density functional theory with modern range-separated functionals to compute for the first time the excitation energies of all CP47 chlorophylls in a complete membrane-embedded cyanobacterial PSII dimer. The results quantify the electrostatic effect of the protein on the site energies of CP47 chlorophylls, providing a high-level quantum chemical excitation profile of CP47 within a complete computational model of "near-native" cyanobacterial PSII. The ranking of site energies and the identity of the most red-shifted chlorophylls (B3, followed by B1) differ from previous hypotheses in the literature and provide an alternative basis for evaluating past approaches and semiempirically fitted sets. Given that a lot of experimental studies on CP47 and other light-harvesting complexes utilize extracted samples, we employ molecular dynamics simulations of isolated CP47 to identify which parts of the polypeptide are most destabilized and which pigments are most perturbed when the antenna complex is extracted from PSII. We demonstrate that large parts of the isolated complex rapidly refold to non-native conformations and that certain pigments (such as chlorophyll B1 and β-carotene h1) are so destabilized that they are probably lost upon extraction of CP47 from PSII. The results suggest that the properties of isolated CP47 are not representative of the native complexed antenna. The insights obtained from CP47 are generalizable, with important implications for the information content of experimental studies on biological light-harvesting antenna systems.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany.,Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
7
|
Sirohiwal A, Neese F, Pantazis DA. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J Am Chem Soc 2020; 142:18174-18190. [PMID: 33034453 PMCID: PMC7582616 DOI: 10.1021/jacs.0c08526] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex that uses light-induced charge separation to power oxygenic photosynthesis. Its reaction center chromophores, where the charge transfer cascade is initiated, are arranged symmetrically along the D1 and D2 core polypeptides and comprise four chlorophyll (PD1, PD2, ChlD1, ChlD2) and two pheophytin molecules (PheoD1 and PheoD2). Evolution favored productive electron transfer only via the D1 branch, with the precise nature of primary excitation and the factors that control asymmetric charge transfer remaining under investigation. Here we present a detailed atomistic description for both. We combine large-scale simulations of membrane-embedded PSII with high-level quantum-mechanics/molecular-mechanics (QM/MM) calculations of individual and coupled reaction center chromophores to describe reaction center excited states. We employ both range-separated time-dependent density functional theory and the recently developed domain based local pair natural orbital (DLPNO) implementation of the similarity transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD), the first coupled cluster QM/MM calculations of the reaction center. We find that the protein matrix is exclusively responsible for both transverse (chlorophylls versus pheophytins) and lateral (D1 versus D2 branch) excitation asymmetry, making ChlD1 the chromophore with the lowest site energy. Multipigment calculations show that the protein matrix renders the ChlD1 → PheoD1 charge-transfer the lowest energy excitation globally within the reaction center, lower than any pigment-centered local excitation. Remarkably, no low-energy charge transfer states are located within the "special pair" PD1-PD2, which is therefore excluded as the site of initial charge separation in PSII. Finally, molecular dynamics simulations suggest that modulation of the electrostatic environment due to protein conformational flexibility enables direct excitation of low-lying charge transfer states by far-red light.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Kavanagh MA, Karlsson JKG, Colburn JD, Barter LMC, Gould IR. A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation. Proc Natl Acad Sci U S A 2020; 117:19705-19712. [PMID: 32747579 PMCID: PMC7443915 DOI: 10.1073/pnas.1922158117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments' porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1 and PheD1 as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton-charge transfer states (ChlD1+PheD1-)* and (PD2+PD1-)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.
Collapse
Affiliation(s)
- Maeve A Kavanagh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - Joshua K G Karlsson
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Jonathan D Colburn
- School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, Scotland
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom;
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - Ian R Gould
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom;
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| |
Collapse
|
9
|
Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2020; 117:16373-16382. [PMID: 32601233 PMCID: PMC7368266 DOI: 10.1073/pnas.2000895117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In photosynthetic reaction centers from purple bacteria (PbRC) and the water-oxidizing enzyme, photosystem II (PSII), charge separation occurs along one of the two symmetrical electron-transfer branches. Here we report the microscopic origin of the unidirectional charge separation, fully considering electron-hole interaction, electronic coupling of the pigments, and electrostatic interaction with the polarizable entire protein environments. The electronic coupling between the pair of bacteriochlorophylls is large in PbRC, forming a delocalized excited state with the lowest excitation energy (i.e., the special pair). The charge-separated state in the active branch is stabilized by uncharged polar residues in the transmembrane region and charged residues on the cytochrome c 2 binding surface. In contrast, the accessory chlorophyll in the D1 protein (ChlD1) has the lowest excitation energy in PSII. The charge-separated state involves ChlD1 •+ and is stabilized predominantly by charged residues near the Mn4CaO5 cluster and the proceeding proton-transfer pathway. It seems likely that the acquirement of water-splitting ability makes ChlD1 the initial electron donor in PSII.
Collapse
|
10
|
Liguori N, Croce R, Marrink SJ, Thallmair S. Molecular dynamics simulations in photosynthesis. PHOTOSYNTHESIS RESEARCH 2020; 144:273-295. [PMID: 32297102 PMCID: PMC7203591 DOI: 10.1007/s11120-020-00741-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Photosynthesis is regulated by a dynamic interplay between proteins, enzymes, pigments, lipids, and cofactors that takes place on a large spatio-temporal scale. Molecular dynamics (MD) simulations provide a powerful toolkit to investigate dynamical processes in (bio)molecular ensembles from the (sub)picosecond to the (sub)millisecond regime and from the Å to hundreds of nm length scale. Therefore, MD is well suited to address a variety of questions arising in the field of photosynthesis research. In this review, we provide an introduction to the basic concepts of MD simulations, at atomistic and coarse-grained level of resolution. Furthermore, we discuss applications of MD simulations to model photosynthetic systems of different sizes and complexity and their connection to experimental observables. Finally, we provide a brief glance on which methods provide opportunities to capture phenomena beyond the applicability of classical MD.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Chaussavoine I, Beauvois A, Mateo T, Vasireddi R, Douri N, Priam J, Liatimi Y, Lefrançois S, Tabuteau H, Davranche M, Vantelon D, Bizien T, Chavas LMG, Lassalle-Kaiser B. The microfluidic laboratory at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:230-237. [PMID: 31868757 DOI: 10.1107/s1600577519015042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.
Collapse
Affiliation(s)
| | | | - Tiphaine Mateo
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Nadine Douri
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Jordan Priam
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Youssef Liatimi
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Hervé Tabuteau
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | | | - Thomas Bizien
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
12
|
Ogata K, Hatakeyama M, Sakamoto Y, Nakamura S. Investigation of a Pathway for Water Delivery in Photosystem II Protein by Molecular Dynamics Simulation. J Phys Chem B 2019; 123:6444-6452. [DOI: 10.1021/acs.jpcb.9b04838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Koji Ogata
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Hatakeyama
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Sakamoto
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Narzi D, Coccia E, Manzoli M, Guidoni L. Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II. Biophys Chem 2017; 229:93-98. [DOI: 10.1016/j.bpc.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
|
14
|
Triplet-triplet energy transfer in artificial and natural photosynthetic antennas. Proc Natl Acad Sci U S A 2017; 114:E5513-E5521. [PMID: 28652359 DOI: 10.1073/pnas.1614857114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.
Collapse
|
15
|
Abstract
The design of optimal light-harvesting (supra)molecular systems and materials is one of the most challenging frontiers of science. Theoretical methods and computational models play a fundamental role in this difficult task, as they allow the establishment of structural blueprints inspired by natural photosynthetic organisms that can be applied to the design of novel artificial light-harvesting devices. Among theoretical strategies, the application of quantum chemical tools represents an important reality that has already reached an evident degree of maturity, although it still has to show its real potentials. This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.
Collapse
Affiliation(s)
- Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
16
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 571.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
D'Haene SE, Sobotka R, Bučinská L, Dekker JP, Komenda J. Interaction of the PsbH subunit with a chlorophyll bound to histidine 114 of CP47 is responsible for the red 77K fluorescence of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1327-34. [PMID: 26164101 DOI: 10.1016/j.bbabio.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
A characteristic feature of the active Photosystem II (PSII) complex is a red-shifted low temperature fluorescence emission at about 693nm. The origin of this emission has been attributed to a monomeric 'red' chlorophyll molecule located in the CP47 subunit. However, the identity and function of this chlorophyll remain uncertain. In our previous work, we could not detect the red PSII emission in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking PsbH, a small transmembrane subunit bound to CP47. However, it has not been clear whether the PsbH is structurally essential for the red emission or the observed effect of mutation has been indirectly caused by compromised PSII stability and function. In the present work we performed a detailed spectroscopic characterization of PSII in cells of a mutant lacking PsbH and Photosystem I and we also characterized PSII core complexes isolated from this mutant. In addition, we purified and characterized the CP47 assembly modules containing and lacking PsbH. The results clearly confirm an essential role of PsbH in the origin of the PSII red emission and also demonstrate that PsbH stabilizes the binding of one β-carotene molecule in PSII. Crystal structures of the cyanobacterial PSII show that PsbH directly interacts with a single monomeric chlorophyll ligated by the histidine 114 residue of CP47 and we conclude that this peripheral chlorophyll hydrogen-bonded to PsbH is responsible for the red fluorescence state of CP47. Given the proximity of β-carotene this state could participate in the dissipation of excessive light energy.
Collapse
Affiliation(s)
- Sandrine E D'Haene
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Roman Sobotka
- Institute of Microbiology, Laboratory of Photosynthesis, Centre Algatech, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic
| | - Lenka Bučinská
- Institute of Microbiology, Laboratory of Photosynthesis, Centre Algatech, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic
| | - Jan P Dekker
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Josef Komenda
- Institute of Microbiology, Laboratory of Photosynthesis, Centre Algatech, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic
| |
Collapse
|
18
|
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1319-30. [PMID: 25749153 DOI: 10.1016/j.bbamem.2015.02.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Djurre H de Jong
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
19
|
Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:7366-77. [PMID: 25575266 DOI: 10.1021/jp510948e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.
Collapse
Affiliation(s)
- Muhamed Amin
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Leslie Vogt
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Witold Szejgis
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Serguei Vassiliev
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - Gary W Brudvig
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Doug Bruce
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - M R Gunner
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
20
|
Zhang L, Silva DA, Zhang H, Yue A, Yan Y, Huang X. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre. Nat Commun 2014; 5:4170. [PMID: 24954746 PMCID: PMC4083425 DOI: 10.1038/ncomms5170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 05/20/2014] [Indexed: 11/11/2022] Open
Abstract
One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is that only one of the two symmetric branches in its reaction centre is active in electron transfer. To investigate the effect of the photosystem II environment on the preferential selection of the energy transfer pathway (a prerequisite for electron transfer), we have constructed an exciton model via extensive molecular dynamics simulations and quantum mechanics/molecular mechanics calculations based on a recent X-ray structure. Our results suggest that it is essential to take into account an ensemble of protein conformations to accurately compute the site energies. We identify the cofactor CLA606 of active chain as the most probable site for the energy excitation. We further pinpoint a number of charged protein residues that collectively lower the CLA606 site energy. Our work provides insights into the understanding of molecular mechanisms of the core machinery of the green-plant photosynthesis. Cofactor-mediated energy and electron transfer in photosystem II occurs preferentially through one branch of the reaction centre, despite there being a symmetric path available. Here, the authors use computational methods to determine the influence of protein conformation on this selectivity.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Daniel-Adriano Silva
- 1] Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong [2]
| | - Houdao Zhang
- Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Alexander Yue
- Division of Biomedical Engineering, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - YiJing Yan
- 1] Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong [2] Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xuhui Huang
- 1] Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong [2] Division of Biomedical Engineering, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong [3] Centre of Systems Biology and Human Health, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
21
|
Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S. All-Atom Molecular Dynamics Simulation of Photosystem II Embedded in Thylakoid Membrane. J Am Chem Soc 2013; 135:15670-3. [DOI: 10.1021/ja404317d] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Koji Ogata
- Nakamura
Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taichi Yuki
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Makoto Hatakeyama
- Nakamura
Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Waka Uchida
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichiro Nakamura
- Nakamura
Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Vassiliev S, Zaraiskaya T, Bruce D. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1148-55. [PMID: 23816955 DOI: 10.1016/j.bbabio.2013.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Ave, St. Catharines L2S 3A1, Canada.
| | | | | |
Collapse
|
23
|
Sun B, Yang X, Ma L, Niu C, Wang F, Na N, Wen J, Ouyang J. Design and application of anthracene derivative with aggregation-induced emission charateristics for visualization and monitoring of erythropoietin unfolding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1956-1962. [PMID: 23323829 DOI: 10.1021/la3048278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Erythropoietin (EPO) is an attractive protein-unfolding/folding model because of its high degree of unfolding and folding reversibility and intermediate size. Due to its function for regulating red blood cell production by stimulating late erythroid precursor cells, EPO presents obvious values to biological research. A nonemissive anthracene derivative, that is 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene sodium salt (BSPSA), with aggregation-induced emission (AIE) charateristics shows a novel phenomenon of AIE when EPO is added. The AIE biosensor for EPO shows the limit of detection is 1 × 10(-9) M. Utilizing the AIE feature of BSPSA, the unfolding process of EPO using guanidine hydrochloride is monitored, which indicates three steps for the folding structures of EPO to transform to random coil. Computational modeling suggests that the BSPSA luminogens prefer docking in the hydrophobic cavity in the EPO folding structures, and the assembly of BSPSA in this cavity makes the AIE available, making the monitoring of unfolding of EPO possible.
Collapse
Affiliation(s)
- Binjie Sun
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mula S, McConnell MD, Ching A, Zhao N, Gordon HL, Hastings G, Redding KE, van der Est A. Introduction of a Hydrogen Bond between Phylloquinone PhQA and a Threonine Side-Chain OH Group in Photosystem I. J Phys Chem B 2012; 116:14008-16. [DOI: 10.1021/jp309410w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sam Mula
- Department of Chemistry, Brock University, St. Catharines, Ontario,
Canada
| | - Michael D. McConnell
- Department
of Chemistry
and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Amy Ching
- Department of Chemistry, Brock University, St. Catharines, Ontario,
Canada
| | - Nan Zhao
- Department of Physics
and Astronomy, Georgia State University, Atlanta, Georgia, United States
| | - Heather L. Gordon
- Department of Chemistry, Brock University, St. Catharines, Ontario,
Canada
| | - Gary Hastings
- Department of Physics
and Astronomy, Georgia State University, Atlanta, Georgia, United States
| | - Kevin E. Redding
- Department
of Chemistry
and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario,
Canada
| |
Collapse
|
25
|
Vassiliev S, Zaraiskaya T, Bruce D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1671-8. [DOI: 10.1016/j.bbabio.2012.05.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
26
|
Zhang L, Silva DA, Yan Y, Huang X. Force field development for cofactors in the photosystem II. J Comput Chem 2012; 33:1969-80. [DOI: 10.1002/jcc.23016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/05/2012] [Accepted: 04/22/2012] [Indexed: 01/03/2023]
|
27
|
Extended protein/water H-bond networks in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1177-90. [PMID: 22503827 DOI: 10.1016/j.bbabio.2012.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
28
|
Müh F, Madjet MEA, Renger T. Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 111:87-101. [PMID: 21809112 DOI: 10.1007/s11120-011-9675-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
The linear optical spectra (absorbance, linear dichroism, circular dichroism, fluorescence) of the CP43 (PsbC) antenna of the photosystem II core complex (PSIIcc) pertaining to the S(0) → S(1) (Q(Y)) transitions of the chlorophyll (Chl) a pigments are simulated by applying a combined quantum chemical/electrostatic method to obtain excitonic couplings and local transition energies (site energies) on the basis of the 2.9 Å resolution crystal structure (Guskov et al., Nat Struct Mol Biol 16:334-342, 2009). The electrostatic calculations identify three Chls with low site energies (Chls 35, 37, and 45 in the nomenclature of Loll et al. (Nature 438:1040-1044, 2005). A refined simulation of experimental spectra of isolated CP43 suggests a modified set of site energies within 143 cm(-1) of the directly calculated values (root mean square deviation: 80 cm(-1)). In the refined set, energy sinks are at Chls 37, 43, and 45 in agreement with earlier fitting results (Raszewski and Renger, J Am Chem Soc 130:4431-4446, 2008). The present structure-based simulations reveal that a large part of the redshift of Chl 37 is due to a digalactosyldiacylglycerol lipid. This finding suggests a new role for lipids in PSIIcc, namely the tuning of optical spectra and the creation of an excitation energy funnel towards the reaction center. The analysis of electrostatic pigment-protein interactions is used to identify amino acid residues that are of potential interest for an experimental approach to an assignment of site energies and energy sinks by site-directed mutagenesis.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria.
| | | | | |
Collapse
|
29
|
Jing Y, Zheng R, Li HX, Shi Q. Theoretical Study of the Electronic–Vibrational Coupling in the Qy States of the Photosynthetic Reaction Center in Purple Bacteria. J Phys Chem B 2012; 116:1164-71. [DOI: 10.1021/jp209575q] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuanyuan Jing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Renhui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Hui-Xue Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
30
|
Kitagawa Y, Matsuda K, Hasegawa JY. Theoretical study of the excited states of the photosynthetic reaction center in photosystem II: Electronic structure, interactions, and their origin. Biophys Chem 2011; 159:227-36. [DOI: 10.1016/j.bpc.2011.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022]
|
31
|
Vassiliev S, Mahboob A, Bruce D. Calculation of chromophore excited state energy shifts in response to molecular dynamics of pigment-protein complexes. PHOTOSYNTHESIS RESEARCH 2011; 110:25-38. [PMID: 21964859 DOI: 10.1007/s11120-011-9689-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 09/15/2011] [Indexed: 05/26/2023]
Abstract
The absorption and energy transfer properties of photosynthetic pigments are strongly influenced by their local environment or "site." Local electrostatic fields vary in time with protein and chromophore molecular movement and thus transiently influence the excited state transition properties of individual chromophores. Site-specific information is experimentally inaccessible in many light-harvesting pigment-proteins due to multiple chromophores with overlapping spectra. Full quantum mechanical calculations of each chromophores excited state properties are too computationally demanding to efficiently calculate the changing excitation energies along a molecular dynamics trajectory in a pigment-protein complex. A simplified calculation of electrostatic interactions with each chromophores ground to excited state transition, the so-called charge density coupling (CDC) for site energy, CDC, has previously been developed to address this problem. We compared CDC to more rigorous quantum chemical calculations to determine its accuracy in computing excited state energy shifts and their fluctuations within a molecular dynamics simulation of the bacteriochlorophyll containing light-harvesting Fenna-Mathews-Olson (FMO) protein. In most cases CDC calculations differed from quantum mechanical (QM) calculations in predicting both excited state energy and its fluctuations. The discrepancies arose from the inability of CDC to account for the differing effects of charge on ground and excited state electron orbitals. Results of our study show that QM calculations are indispensible for site energy computations and the quantification of contributions from different parts of the system to the overall site energy shift. We suggest an extension of QM/MM methodology of site energy shift calculations capable of accounting for long-range electrostatic potential contributions from the whole system, including solvent and ions.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | | | | |
Collapse
|
32
|
Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev 2011; 111:4546-98. [DOI: 10.1021/cr100234j] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B1R6 Quebec, Canada
| | - Jörg Pieper
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University of Berlin, Germany
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
33
|
Mennucci B, Curutchet C. The role of the environment in electronic energy transfer: a molecular modeling perspective. Phys Chem Chem Phys 2011; 13:11538-50. [PMID: 21597605 DOI: 10.1039/c1cp20601j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key role of the environment in electronic energy transfer has been underscored in recent experimental and theoretical studies. In this perspective, we provide an overview of novel quantum-mechanical methodologies aimed at describing environment effects in energy transfers. The techniques described include continuum dielectric and atomistic descriptions of the surroundings. We discuss the advantages and limitations of each technique, as well as the main insights that have emerged from their application to solvated dyads and photosynthetic pigment-protein complexes. We finally highlight the aspects that still need to be solved in order to provide a full theoretical route to the study of energy transfer phenomena in complex environments.
Collapse
Affiliation(s)
- Benedetta Mennucci
- Department of Chemistry, University of Pisa, via Risorgimento 35, 56126 Pisa, Italy.
| | | |
Collapse
|
34
|
Ho FM. Structural and mechanistic investigations of photosystem II through computational methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:106-20. [PMID: 21565158 DOI: 10.1016/j.bbabio.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022]
Abstract
The advent of oxygenic photosynthesis through water oxidation by photosystem II (PSII) transformed the planet, ultimately allowing the evolution of aerobic respiration and an explosion of ecological diversity. The importance of this enzyme to life on Earth has ironically been paralleled by the elusiveness of a detailed understanding of its precise catalytic mechanism. Computational investigations have in recent years provided more and more insights into the structural and mechanistic details that underlie the workings of PSII. This review will present an overview of some of these studies, focusing on those that have aimed at elucidating the mechanism of water oxidation at the CaMn₄ cluster in PSII, and those exploring the features of the structure and dynamics of this enzyme that enable it to catalyse this energetically demanding reaction. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Felix M Ho
- Deparment of Photochemistry and Molecular Sciences, Angström Laboratory, Uppsala University, Sweden.
| |
Collapse
|
35
|
Olbrich C, Kleinekathöfer U. Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. J Phys Chem B 2011; 114:12427-37. [PMID: 20809619 DOI: 10.1021/jp106542v] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aiming at a better understanding of the molecular details in light absorption during photosynthesis, spatial and temporal correlation functions as well as spectral densities have been determined. At the focus of the present study are the light-harvesting II complexes of the purple bacterium Rhodospirillum molischianum. The calculations are based on a time-dependent combination of molecular dynamics simulations and quantum chemistry methods. Using a 12 ps long trajectory, different quantum chemical methods have been compared to each other. Furthermore, several approaches to determine the couplings between the individual chromophores have been tested. Correlations between energy gap fluctuations of different individual pigments are analyzed but found to be negligible. From the energy gap fluctuations, spectral densities are extracted which serve as input for calculations of optical properties and exciton dynamics. To this end, the spectral densities are tested by determining the linear absorption of the complete two-ring system. One important difference from earlier studies is given by the severely extended length of the trajectory along which the quantum chemical calculations have been performed. Due to this extension, more accurate and reliable data have been obtained in the low frequency regime which is important in the dynamics of electronic relaxation.
Collapse
Affiliation(s)
- Carsten Olbrich
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
36
|
Ulas G, Brudvig GW. Zwitterion modulation of O(2)-evolving activity of cyanobacterial photosystem II. Biochemistry 2010; 49:8220-7. [PMID: 20707325 DOI: 10.1021/bi101027a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) is the only enzyme in nature that can catalyze the challenging catalytic photooxidation of H(2)O into four protons, four electrons, and O(2). Slowing down turnover of the O(2)-evolving complex (OEC) is a plausible approach to gain mechanistic information on the reaction. However, modulating the kinetics of the reaction without perturbing the active site is a challenge. In this study, it is shown that the steady-state activity of cyanobacterial PSII is inhibited by small zwitterions, such as glycine betaine and β-alanine. We show that the binding of zwitterions is nondenaturing, is highly reversible, and results in the decrease of the rate of catalytic turnover by ∼50% in the presence of excess zwitterion. Control measurements of photoinduced electron transfer in O(2)-inactive PSII show that the inhibition by zwitterions is the result of a specific decrease in the rate of catalytic turnover of the OEC. Recovery of activity upon addition of an exogenous proton carrier (HCO(3)(-)) provides evidence that proton-transfer pathways, thought to be essential for the relay of protons from the OEC to the lumen, are affected. Interestingly, no inhibition is observed for spinach PSII, suggesting that zwitterions act specifically by binding to the extrinsic proteins on the lumenal side of PSII, which differ significantly between plants and cyanobacteria, to slow proton transfer on the electron donor side of PSII.
Collapse
Affiliation(s)
- Gözde Ulas
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
37
|
Vassiliev S, Comte P, Mahboob A, Bruce D. Tracking the flow of water through photosystem II using molecular dynamics and streamline tracing. Biochemistry 2010; 49:1873-81. [PMID: 20121111 DOI: 10.1021/bi901900s] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CaMn(4) cluster of the oxygen-evolving complex (OEC) of photosynthesis catalyzes the light-driven splitting of water into molecular oxygen, protons, and electrons. The OEC is buried within photosystem II (PSII), a multisubunit integral membrane protein complex, and water must find its way to the CaMn(4) cluster by moving through protein. Channels for water entrance, and proton and oxygen exit, have previously been proposed following the analysis of cavities found within X-ray structures of PSII. However, these analyses do not account for the dynamic motion of proteins and cannot track the movement of water within PSII. To study water dynamics in PSII, we performed molecular dynamics simulations and developed a novel approach for the visualization of water diffusion within protein based on a streamline tracing algorithm used in fluid dynamics and diffusion tensor imaging. We identified a system of branching pathways of water diffusion in PSII leading to the OEC that connect to a number of distinct entrance points on the lumenal surface. We observed transient changes in the connections between channels and entrance points that served to moderate both the flow of water near the OEC and the exchange of water inside and outside of the protein. Water flow was significantly altered in simulations lacking the OEC which were characterized by a simpler and wider channel with only two openings, consistent with the creation of an ion channel that allows entry of Mn(2+), Ca(2+), and Cl(-) as required for construction of the CaMn(4) cluster.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| | | | | | | |
Collapse
|
38
|
The effects of light-induced reduction of the photosystem II reaction center. J Mol Model 2009; 15:923-33. [DOI: 10.1007/s00894-008-0448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
|
39
|
Ho FM. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. PHOTOSYNTHESIS RESEARCH 2008; 98:503-522. [PMID: 18798008 DOI: 10.1007/s11120-008-9358-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Even prior to the publication of the crystal structures for photosystem II (PSII), it had already been suggested that water, O(2) and H(+) channels exist in PSII to achieve directed transport of these molecules, and to avoid undesirable side reactions. Computational efforts to uncover these channels and investigate their properties are still at early stages, and have so far only been based on the static PSII structure. The rationale behind the proposals for such channels and the computer modelling studies thus far are reviewed here. The need to take the dynamic protein into account is then highlighted with reference to the specific issues and techniques applicable to the simulation of each of the three channels. In particular, lessons are drawn from simulation studies on other protein systems containing similar channels.
Collapse
Affiliation(s)
- Felix M Ho
- Department of Photochemistry and Molecular Science, The Angström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Reppert M, Zazubovich V, Dang NC, Seibert M, Jankowiak R. Low-Energy Chlorophyll States in the CP43 Antenna Protein Complex: Simulation of Various Optical Spectra. II. J Phys Chem B 2008; 112:9934-47. [DOI: 10.1021/jp8013749] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,, Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Valter Zazubovich
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,, Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Nhan C. Dang
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,, Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael Seibert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,, Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,, Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada, and National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
41
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 97:75-89. [PMID: 18443918 DOI: 10.1007/s11120-008-9303-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
42
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008. [PMID: 18443918 DOI: 10.007/s11120-008-9203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
43
|
Müh F, Renger T, Zouni A. Crystal structure of cyanobacterial photosystem II at 3.0 A resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:238-64. [PMID: 18313317 DOI: 10.1016/j.plaphy.2008.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Indexed: 05/04/2023]
Abstract
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the water splitting reaction during oxygenic photosynthesis. In the first part of this review, we describe the current state of the crystal structure at 3.0 A resolution of cyanobacterial PSII from Thermosynechococcus elongatus [B. Loll et al., Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044] with emphasis on the core antenna subunits CP43 and CP47 and the small membrane-intrinsic subunits. The second part describes first the general theory of optical spectra and excitation energy transfer and how the parameters of the theory can be obtained from the structural data. Next, structure-function relationships are discussed that were identified from stationary and time-resolved experiments and simulations of optical spectra and energy transfer processes.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
44
|
Kiang NY, Siefert J, Blankenship RE. Spectral signatures of photosynthesis. I. Review of Earth organisms. ASTROBIOLOGY 2007; 7:222-51. [PMID: 17407409 DOI: 10.1089/ast.2006.0105] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.
Collapse
Affiliation(s)
- Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York 10025, USA.
| | | | | |
Collapse
|
45
|
Balaban TS, Berova N, Drain CM, Hauschild R, Huang X, Kalt H, Lebedkin S, Lehn JM, Nifaitis F, Pescitelli G, Prokhorenko VI, Riedel G, Smeureanu G, Zeller J. Syntheses and energy transfer in multiporphyrinic arrays self-assembled with hydrogen-bonding recognition groups and comparison with covalent steroidal models. Chemistry 2007; 13:8411-27. [PMID: 17645286 PMCID: PMC6232843 DOI: 10.1002/chem.200601691] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of new porphyrins equipped with complementary triple hydrogen-bonding groups were synthesized in good yields. Self-assembly was investigated by NMR spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM). These artificial antenna systems were further characterized by stationary and time-resolved fluorescence techniques to investigate several yet unsolved questions on the mechanism of excitation energy transfer (EET) in supramolecular systems. For example, the photophysics of a simple D--U[triple chemical bond]P--A dyad was studied, in which donor D and acceptor A are ZnII- metalated and free-base porphyrins, respectively, and U (uracyl) and P (2,6-diacetamidopyridyl) are complementary hydrogen-bonding groups linked by flexible spacers. In this dyad, the EET occurs with about 20 % efficiency with a lifetime of 14 ps. Reversal of the nonsymmetric triple hydrogen-bonding groups to give a A--U[triple chemical bond]P--D construct results in an EET efficiency of about 25 % and a lifetime of 19 ps. Thus, there is a slight directionality of EET mediated by these asymmetric triple hydrogen-bonding units tethered to flexible spacers. In polymeric systems of the type P-D-P[triple chemical bond]U-A-U[triple chemical bond]P-D-P, or U-D-U[triple chemical bond]P-A-P[triple chemical bond]U-D-U, the EET efficiency doubles as each donor is flanked by two acceptors. Because doubling the probability of photon capture doubles the EET efficiency, there is no energy amplification, which is consistent with the "antenna effect". For these polymeric systems, AFM images and DLS data indicate large rodlike assemblies of a few hundred nanometers, whereas the components form much smaller aggregates under the same conditions. To understand the importance of the flexible hydrogen-bonding zipper, three different covalently bridged D-B-A molecules were synthesized in which the bridge B is a rigid steroidal system and the same ester chemistry was used to link the porphyrins to each end of the steroid. The geometry inferred from molecular modeling of D-B-A indicates geometric similarities between B and some conformations of the --P[triple chemical bond]U-- supramolecular bridge. Although the EET efficiency is a factor of two greater for the steroidal systems relative to the supramolecular dyads, the rate is 50-80 times slower, but still slightly faster than that predicted by Förster-type mechanisms. Circular dichrosim (CD) spectra provide a conformational sampling of the porphyrin groups appended on the steroidal skeleton, thus allowing an estimation of the orientation factor kappa for the transition dipole moments, which significantly affects the EET rate. We conclude that the flexible hydrogen-bonded linked systems are adaptive and have variable geometries with foldamers in which the D and A groups can approach well under 1 nm. In these folded conformations, a rapid EET process occurs, probably also involving a Dexter-type exchange mechanism, thus explaining the fast EET relative to the rigid steroidal compounds. This study predicts that it is indeed possible to build large supramolecular antennas and the component design and supramolecular dynamics are essential features that dictate EET rates and efficiencies.
Collapse
Affiliation(s)
- Teodor Silviu Balaban
- Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|