1
|
A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An overview of the biophysics activity at the Department of Physics and Chemistry Emilio Segrè of the University of Palermo is given. For forty years, the focus of the research has been on the protein structure–dynamics–function paradigm, with the aim of understanding the molecular basis of the relevant mechanisms and the key role of solvent. At least three research lines are identified; the main results obtained in collaboration with other groups in Italy and abroad are presented. This review is dedicated to the memory of Professors Massimo Ugo Palma, Maria Beatrice Palma Vittorelli, and Lorenzo Cordone, which were the founders of the Palermo School of Biophysics. We all have been, directly or indirectly, their pupils; we miss their enthusiasm for scientific research, their deep physical insights, their suggestions, their strict but always constructive criticisms, and, most of all, their friendship. This paper is dedicated also to the memory of Prof. Hans Frauenfelder, whose pioneering works on nonexponential rebinding kinetics, protein substates, and energy landscape have inspired a large part of our work in the field of protein dynamics.
Collapse
|
2
|
Olsson C, Zangana R, Swenson J. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy. Phys Chem Chem Phys 2021; 22:21197-21207. [PMID: 32930314 DOI: 10.1039/d0cp03281f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In many products proteins have become an important component, and the long-term properties of these products are directly dependent on the stability of their proteins. To enhance this stability it has become common to add disaccharides in general, and trehalose in particular. However, the mechanisms by which disaccharides stabilize proteins and other biological materials are still not fully understood, and therefore we have here used broadband dielectric spectroscopy to investigate the stabilizing effect of the disaccharides trehalose and sucrose on myoglobin, with the aim to enhance this understanding in general and to obtain specific insights into why trehalose exhibits extraordinary stabilizing properties. The results show the existence of three or four clearly observed relaxation processes, where the three common relaxations are the local (β) water relaxation below the glass transition temperature (Tg), the structural α-relaxation of the solvent, observed above Tg, and an even slower protein relaxation due to large-scale conformational protein motions. For the trehalose containing samples with less than 50 wt% myoglobin a fourth relaxation process was observed due to a β-relaxation of trehalose below Tg. This latter process, which was assigned to intramolecular rotations of the monosaccharide rings in trehalose, could not be detected for high protein concentrations or for the sucrose containing samples. Since sucrose has previously been found to form more intramolecular hydrogen bonds at the present hydration levels, it is likely that this rotation becomes too slow to be observed in the case of sucrose. However, this sugar relaxation has probably less influence on the protein stability below Tg, where the better stabilizing effect of trehalose on proteins can be explained by our observation that trehalose slows down the water relaxation more than sucrose does. Finally, we show that the α-relaxation of the solvent and the large-scale protein motions exhibit similar temperature dependences, which suggests that these protein motions are slaved by the α-relaxation. Furthermore, the α-relaxation of the trehalose solution is slower than for the corresponding sucrose solution, and thereby also the protein motions become slower in the trehalose solution, which explains the more efficient stabilizing effect of trehalose on proteins above Tg.
Collapse
Affiliation(s)
- Christoffer Olsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Rano Zangana
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
3
|
Kobayashi H, Okada K, Tokuda S, Kanao E, Masuda Y, Naito T, Takaya H, Yan M, Kubo T, Otsuka K. Separation of saccharides using fullerene-bonded silica monolithic columns via π interactions in liquid chromatography. Sci Rep 2020; 10:13850. [PMID: 32796903 PMCID: PMC7429847 DOI: 10.1038/s41598-020-70904-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
We report on a potential method to separate sugars by using the specific interaction between fullerenes and saccharides in liquid chromatography (LC). Aromatic rings with high electron density are believed to interact strongly with saccharides due to CH–π and/or OH–π interactions. In this study, the fullerene-bonded columns were used to separate saccharides by LC under aqueous conditions. As a result, 2-aminobenzamide-labeled glucose homopolymer (Glcs) was effectively separated by both C60 and C70 columns in the range of Glc-1 to Glc-20 and high blood glucose level being retained in greater quantity. Furthermore, similar separations were identified by LC–mass spectrometry with non-labeled glucose homopolymers. Theoretical study based on molecular dynamics and DFT calculation demonstrated that a supramolecular complex of saccharide–fullerene was formed through CH–π and/or OH–π interactions, and that the interactions between saccharide and fullerene increase with the increase units of the saccharide. Additionally, the C60 column retained disaccharides containing maltose, trehalose, and sucrose. In this case, it was assumed that the retention rates were determined by the difference of the dipole moment in each saccharide. These results suggest that the dipole-induced dipole interaction was dominant, and that maltose—with the higher dipole moment—was more strongly retained compared to other disaccharides having lower dipole moment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Shinwa Chemical Industries Ltd., 50-2, Kagekatsu-cho, Fushimi-ku, Kyoto, 612-8307, Japan
| | - Kazuya Okada
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Shinnosuke Tokuda
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Eisuke Kanao
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Yusuke Masuda
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Toyohiro Naito
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Hikaru Takaya
- Institute of Chemical Research, Kyoto University, Gokashou, Uji, Kyoto, 611-0011, Japan
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan.
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function. Catalysts 2019. [DOI: 10.3390/catal9121024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, unlike smaller molecules, the catalytic activity of protein catalysts depends on their structure, conformation, local environment, and dynamics, properties that can be strongly affected by the immobilization matrices, which, therefore, not only provide physical confinement, but also modulate catalysis.
Collapse
|
5
|
Sagiv L, Hirshberg B, Gerber RB. Hydrogenic Stretch Spectroscopy of Glycine–Water Complexes: Anharmonic Ab Initio Classical Separable Potential Calculations. J Phys Chem A 2019; 123:8377-8384. [DOI: 10.1021/acs.jpca.9b05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lior Sagiv
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - Barak Hirshberg
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - R. Benny Gerber
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Olsson C, Genheden S, García Sakai V, Swenson J. Mechanism of Trehalose-Induced Protein Stabilization from Neutron Scattering and Modeling. J Phys Chem B 2019; 123:3679-3687. [PMID: 30964287 DOI: 10.1021/acs.jpcb.9b01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sugar molecule trehalose has been proven to be an excellent stabilizing cosolute for the preservation of biological materials. However, the stabilizing mechanism of trehalose has been much debated during the previous decades, and it is still not fully understood, partly because it has not been completely established how trehalose molecules structure around proteins. Here, we present a molecular model of a protein-water-trehalose system, based on neutron scattering results obtained from neutron diffraction, quasielastic neutron scattering, and different computer modeling techniques. The structural data clearly show how the proteins are preferentially hydrated, and analysis of the dynamical properties show that the protein residues are slowed down because of reduced dynamics of the protein hydration shell, rather than because of direct trehalose-protein interactions. These findings, thereby, strongly support previous models related to the preferential hydration model and contradict other models based on water replacement at the protein surface. Furthermore, the results are important for understanding the specific role of trehalose in biological stabilization and, more generally, for providing a likely mechanism of how cosolutes affect the dynamics of proteins.
Collapse
Affiliation(s)
- Christoffer Olsson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Samuel Genheden
- Deparment of Chemistry and Molecular Biology , University of Gothenburg , Box 462, SE-405 30 Göteborg , Sweden
| | - Victoria García Sakai
- ISIS Facility, STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX Oxfordshire , U.K
| | - Jan Swenson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| |
Collapse
|
7
|
Weng L, Stott SL, Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu Rev Biomed Eng 2018; 21:1-31. [PMID: 30525930 DOI: 10.1146/annurev-bioeng-060418-052130] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shannon L Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| |
Collapse
|
8
|
Giuffrida S, Cordone L, Cottone G. Bioprotection Can Be Tuned with a Proper Protein/Saccharide Ratio: The Case of Solid Amorphous Matrices. J Phys Chem B 2018; 122:8642-8653. [PMID: 30149699 DOI: 10.1021/acs.jpcb.8b05098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saccharides, and in particular trehalose, are well known for their high efficiency in protecting biostructures against adverse environmental conditions. The protein dynamics is known to be highly inhibited in a low-water trehalose host medium, the inhibition being markedly dependent on the amount of residual water. Besides hydration, the protein/sugar ratio is expected to affect the properties of saccharide amorphous matrices. In this work, we report an infrared spectroscopy study in dry amorphous matrices of various sugars (the disaccharides trehalose, maltose, sucrose, and lactose, and the trisaccharide raffinose) containing myoglobin, at different protein/sugar ratios. We analyze the stretching band of the bound CO molecule and the water association band. Such bands have already been successfully exploited for the simultaneous study of thermal evolution of a matrix and embedded protein. The results show a high dependence of protein and matrix signals on the protein/sugar ratio, the system behavior evolving from situations where (i) the protein slaves the matrix to (ii) protein ↔ matrix coupling/uncoupling, then to (iii) the matrix slaving the protein, with increasing sugar concentration. This supports a mutual protein ↔ matrix structural and dynamic influence in low hydrated systems, indicating that the protein/solvent master and slave paradigm does not strictly hold, but the mutual relationship depends on the relative concentrations. Furthermore, for each sugar, an optimal protein/sugar concentration ratio can be identified, which maximizes the protein preservation; under such a condition, the water content is minimal.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| |
Collapse
|
9
|
Semeraro EF, Giuffrida S, Cottone G, Cupane A. Biopreservation of Myoglobin in Crowded Environment: A Comparison between Gelatin and Trehalose Matrixes. J Phys Chem B 2017; 121:8731-8741. [PMID: 28829129 DOI: 10.1021/acs.jpcb.7b07266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopreservation by sugar and/or polymeric matrixes is a thoroughly studied research topic with wide technological relevance. Ternary amorphous systems containing both saccharides and proteins are extensively exploited to model the in vivo biopreservation process. With the aim of disentangling the effect of saccharides and polypeptidic crowders (such as gelatin) on the preservation of a model protein, we present here a combined differential scanning calorimetry and UV-vis spectrophotometry study on samples of myoglobin embedded in amorphous gelatin and trehalose + gelatin matrixes at different hydrations, and compare them with amorphous myoglobin-only and myoglobin-trehalose samples. The results point out the different effects of gelatin, which acts mainly as a crowding agent, and trehalose, which acts mainly by direct interaction. Gelatin is able to improve effectively the protein thermal stability at very low hydration; however, it has small effects at medium to high hydration. Consistently, gelatin appears to be more effective than trehalose against massive denaturation in the long time range, while the mixed trehalose + collagen matrix is most effective in preserving protein functionality, outdoing both gelatin-only and trehalose-only matrixes.
Collapse
Affiliation(s)
- Enrico F Semeraro
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| | - Sergio Giuffrida
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy.,School of Physics, University College of Dublin , Dublin, Ireland
| | - Antonio Cupane
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| |
Collapse
|
10
|
Giuffrida S, Cottone G, Cordone L. The water association band as a marker of hydrogen bonds in trehalose amorphous matrices. Phys Chem Chem Phys 2017; 19:4251-4265. [DOI: 10.1039/c6cp06848k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The water association band is a suitable marker of residual water behavior in bioprotective trehalose matrices.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
- School of Physics
| | - Lorenzo Cordone
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
| |
Collapse
|
11
|
Malferrari M, Savitsky A, Lubitz W, Möbius K, Venturoli G. Protein Immobilization Capabilities of Sucrose and Trehalose Glasses: The Effect of Protein/Sugar Concentration Unraveled by High-Field EPR. J Phys Chem Lett 2016; 7:4871-4877. [PMID: 27934049 DOI: 10.1021/acs.jpclett.6b02449] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.
Collapse
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna , I-40126 Bologna, Italy
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim (Ruhr), Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim (Ruhr), Germany
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim (Ruhr), Germany
- Fachbereich Physik, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna , I-40126 Bologna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) , c/o Dipartimento di Fisica e Astronomia (DIFA), I-40126 Bologna, Italy
| |
Collapse
|
12
|
Navati MS, Chung W, Friedman JM. Trehalose-Based Glassy Matrices as an Effective Tool to Trap Short-Lived Intermediates in the Nitric Oxide Dioxygenation (NOD) Reaction of Hemoglobin. J Phys Chem B 2016; 120:4529-39. [DOI: 10.1021/acs.jpcb.5b12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahantesh S. Navati
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Will Chung
- Joel Friedman
Laboratory, Herricks High School, Shelter Rock Road, New Hyde Park, New York 11040, United States
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
13
|
Lima TA, Ishikawa MS, Martinho HS. Boson peak as a probe of quantum effects in a glassy state of biomolecules: the case of L-cysteine. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022715. [PMID: 25353517 DOI: 10.1103/physreve.89.022715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Indexed: 06/04/2023]
Abstract
Some physical properties of hydrated biomolecules, e.g., the occurrence of a boson peak, have been recognized to resemble those of glassy states. The present work shows that quantum fluctuations play a fundamental role in describing the glassy state of biomolecules, particularly at lower hydration levels. There is a linear relationship between the quantumness and the slope of the temperature dependence of the boson peak frequency, which is used to classify the extent of quantum contributions to the glassy state of glasses in general. Lastly, we demonstrate that the boson peak two-band spectral structure that is observed in some cases can be directly linked to the anisotropy of the elastic properties of the material. The amino acid L-cysteine is studied in detail. The findings are compared with previously reported data for other macromolecules.
Collapse
Affiliation(s)
- T A Lima
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André -SP 09210-580, Brazil
| | - M S Ishikawa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André -SP 09210-580, Brazil
| | - H S Martinho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André -SP 09210-580, Brazil
| |
Collapse
|
14
|
Malferrari M, Nalepa A, Venturoli G, Francia F, Lubitz W, Möbius K, Savitsky A. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR. Phys Chem Chem Phys 2013; 16:9831-48. [PMID: 24358471 DOI: 10.1039/c3cp54043j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a bioprotective disaccharide in some anhydrobiotic organisms.
Collapse
Affiliation(s)
- M Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abriata LA, Spiga E, Dal Peraro M. All-atom simulations of crowding effects on ubiquitin dynamics. Phys Biol 2013; 10:045006. [DOI: 10.1088/1478-3975/10/4/045006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Giuffrida S, Cottone G, Bellavia G, Cordone L. Proteins in amorphous saccharide matrices: structural and dynamical insights on bioprotection. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:79. [PMID: 23884626 DOI: 10.1140/epje/i2013-13079-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
Bioprotection by sugars, and in particular trehalose peculiarity, is a relevant topic due to the implications in several fields. The underlying mechanisms are not yet clearly elucidated, and remain the focus of current investigations. Here we revisit data obtained at our lab on binary sugar/water and ternary protein/sugar/water systems, in wide ranges of water content and temperature, in the light of the current literature. The data here discussed come from complementary techniques (Infrared Spectroscopy, Molecular Dynamics simulations, Small Angle X-ray Scattering and Calorimetry), which provided a consistent description of the bioprotection by sugars from the atomistic to the macroscopic level. We present a picture, which suggests that protein bioprotection can be explained in terms of a strong coupling of the biomolecule surface to the matrix via extended hydrogen-bond networks, whose properties are defined by all components of the systems, and are strongly dependent on water content. Furthermore, the data show how carbohydrates having similar hydrogen-bonding capabilities exhibit different efficiency in preserving biostructures.
Collapse
Affiliation(s)
- S Giuffrida
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy.
| | | | | | | |
Collapse
|
17
|
Selva C, Malferrari M, Ballardini R, Ventola A, Francia F, Venturoli G. Trehalose Preserves the Integrity of Lyophilized Phycoerythrin–AntiHuman CD8 Antibody Conjugates and Enhances their Thermal Stability in Flow Cytometric Assays. J Pharm Sci 2013; 102:649-59. [DOI: 10.1002/jps.23398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/24/2012] [Accepted: 11/07/2012] [Indexed: 11/11/2022]
|
18
|
Panzica M, Emanuele A, Cordone L. Thermal Aggregation of Bovine Serum Albumin in Trehalose and Sucrose Aqueous Solutions. J Phys Chem B 2012; 116:11829-36. [DOI: 10.1021/jp3054197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Massimo Panzica
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Antonio Emanuele
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| |
Collapse
|
19
|
Lima TA, Sato ET, Martins ET, Homem-de-Mello P, Lago AF, Coutinho-Neto MD, Ferreira FF, Giles C, Pires MOC, Martinho H. Anharmonic transitions in nearly dry L-cysteine I. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:195104. [PMID: 22499214 DOI: 10.1088/0953-8984/24/19/195104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two special dynamical transitions of universal character have recently been observed in macromolecules (lysozyme, myoglobin, bacteriorhodopsin, DNA and RNA) at T* ~100-150 K and T(D) ~180-220 K. The underlying mechanisms governing these transitions have been the subject of debate. In the present work, a survey is reported on the temperature dependence of structural, vibrational and thermodynamical properties of a nearly anhydrous amino acid (orthorhombic polymorph of the amino acid l-cysteine at a hydration level of 3.5%). The temperature dependence of x-ray powder diffraction patterns, Raman spectra and specific heat revealed these two transitions at T* = 70 K and T(D) = 230 K for this sample. The data were analyzed considering amino acid-amino acid, amino acid-water, water-water phonon-phonon interactions and molecular rotor activation. Our results indicated that the two referred temperatures define the triggering of very simple and particular events that govern all the interactions of the biomolecular: activation of CH(2) rigid rotors (T < T* ), phonon-phonon interactions between specific amino acid and water dimer vibrational modes (T* < T < T(D)), and water rotational barriers surpassing (T > T(D)).
Collapse
Affiliation(s)
- T A Lima
- Centro de Ciências Naturais e Humanas, UFABC, Rua Santa Adélia 166, Santo André, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Malferrari M, Francia F, Venturoli G. Coupling between Electron Transfer and Protein–Solvent Dynamics: FTIR and Laser-Flash Spectroscopy Studies in Photosynthetic Reaction Center Films at Different Hydration Levels. J Phys Chem B 2011; 115:14732-50. [DOI: 10.1021/jp2057767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
21
|
Murphy BM, Zhang N, Payne RW, Davis JM, Abdul-Fattah AM, Matsuura JE, Herman AC, Manning MC. Structure, stability, and mobility of a lyophilized IgG1 monoclonal antibody as determined using second-derivative infrared spectroscopy. J Pharm Sci 2011; 101:81-91. [PMID: 21918984 DOI: 10.1002/jps.22753] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/13/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
There are many aspects of stabilization of lyophilized proteins. Of these various factors, retention of native structure, having sufficient amount of stabilizer to embed the protein within an amorphous matrix, and dampening β-relaxations have been shown to be critical in optimizing protein stability during storage. In this study, an IgG1 was lyophilized with varying amounts of sucrose. In some formulations, a small amount of sorbitol was added as a plasticizer. The structure of the protein in dried state was monitored using infrared (IR) spectroscopy. The IR spectra indicated increasing retention of the native structure, which correlated with stability as indicated by size-exclusion chromatography as well as micro-flow imaging. Maximal stability was achieved with a 2:1 mass ratio of sucrose to protein, which is more than that would be expected based on earlier studies. Analysis of both high and low frequency bands associated with intramolecular β-sheet structure provides additional information on the structure of antibodies in the solid state. Finally, there is a correlation between the bandwidth of the β-sheet bands and the enthalpy of relaxation, suggesting that amide I bands can provide some indication of the degree of coupling to the sugar matrix, as well as structural heterogeneity of the protein.
Collapse
|
22
|
Giuffrida S, Panzica M, Giordano FM, Longo A. SAXS study on myoglobin embedded in amorphous saccharide matrices. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:87. [PMID: 21938613 DOI: 10.1140/epje/i2011-11087-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
We report on Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin and met-myoglobin embedded in low hydrated matrices of four different saccharides (trehalose, sucrose, maltose and lactose). Results confirm the already reported occurrence of inhomogeneities, which are not peculiar of trehalose samples, but appear also in maltose and lactose, and in some cases also sucrose, being dependent on the sample hydration and on the presence of sodium dithionite. This behaviour confirms our previous interpretation about the nature of the inhomogeneities, and prompt it as a possible general behaviour for highly concentrated sugar matrices.
Collapse
Affiliation(s)
- S Giuffrida
- Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy.
| | | | | | | |
Collapse
|
23
|
Bellavia G, Giuffrida S, Cottone G, Cupane A, Cordone L. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems. J Phys Chem B 2011; 115:6340-6. [PMID: 21488647 DOI: 10.1021/jp201378y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biopreservation by saccharides is a widely studied issue due to its scientific and technological importance; in particular, ternary amorphous protein-saccharide-water systems are extensively exploited to model the characteristics of the in vivo biopreservation process. We present here a differential scanning calorimetry (DSC) study on amorphous trehalose-water systems with embedded different proteins (myoglobin, lysozyme, BSA, hemoglobin), which differ for charge, surface, and volume properties. In our study, the protein/trehalose molar ratio is kept constant at 1/40, while the water/sugar molar ratio is varied between 2 and 300; results are compared with those obtained for binary trehalose-water systems. DSC upscans offer the possibility of investigating, in the same measurement, the thermodynamic properties of the matrix (glass transition, T(g)) and the functional properties of the encapsulated protein (thermal denaturation, T(den)). At high-to-intermediate hydration, the presence of the proteins increases the glass transition temperature of the encapsulating matrix. The effect mainly depends on size properties, and it can be ascribed to confinement exerted by the protein on the trehalose-water solvent. Conversely, at low hydration, lower T(g) values are measured in the presence of proteins: the lack of water promotes sugar-protein interactions, thus weakening the confinement effect and softening the matrix with respect to the binary system. A parallel T(den) increase is also observed; remarkably, this stabilization can reach ∼70 K at low hydration, a finding potentially of high biotechnological relevance. A linear relationship between T(g) and T(den) is also observed, in line with previous results; this finding suggests that collective water-trehalose interactions, responsible for the glass transition, also influence the protein denaturation.
Collapse
Affiliation(s)
- Giuseppe Bellavia
- Dipartimento di Fisica, Università di Palermo and CNISM,Via Archirafi 36, I-90123 Palermo, Italy
| | | | | | | | | |
Collapse
|
24
|
Giuffrida S, Troia R, Schiraldi C, D’Agostino A, De Rosa M, Cordone L. MbCO Embedded in Trehalosyldextrin Matrices: Thermal Effects and Protein–Matrix Coupling. FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9197-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Longo A, Giuffrida S, Cottone G, Cordone L. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering. Phys Chem Chem Phys 2010; 12:6852-8. [PMID: 20463993 DOI: 10.1039/b926977k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin (MbCO) embedded in low-water trehalose glasses. Results showed that, in such samples, "low-protein" trehalose-water domains are present, surrounded by a protein-trehalose-water background; such finding is supported by Infrared Spectroscopy (FTIR) measurements. These domains, which do not appear in the absence of the protein and in analogous sucrose systems, preferentially incorporate the incoming water at the onset of rehydration, and disappear following large hydration. This observation suggests that, in organisms under anhydrobiosis, analogous domains could play a buffering role against the daily variations of the atmospheric moisture. The reported results are rationalized by assuming sizably different protein-matrix coupling in trehalose with respect to sucrose, analogous to the one suggested for the photosynthetic reaction centre from Rhodobacter sphaeroides (F. Francia et al., J. Am. Chem. Soc., 2008, 130, 10240-10246).
Collapse
Affiliation(s)
- Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, I-90146, Palermo
| | | | | | | |
Collapse
|
26
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 760] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
27
|
Bellavia G, Cottone G, Giuffrida S, Cupane A, Cordone L. Thermal denaturation of myoglobin in water--disaccharide matrixes: relation with the glass transition of the system. J Phys Chem B 2009; 113:11543-9. [PMID: 19719261 DOI: 10.1021/jp9041342] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins embedded in glassy saccharide systems are protected against adverse environmental conditions [Crowe et al. Annu. Rev. Physiol. 1998, 60, 73-103]. To further characterize this process, we studied the relationship between the glass transition temperature of the protein-containing saccharide system (T(g)) and the temperature of thermal denaturation of the embedded protein (T(den)). To this end, we studied by differential scanning calorimetry the thermal denaturation of ferric myoglobin in water/disaccharide mixtures containing nonreducing (trehalose, sucrose) or reducing (maltose, lactose) disaccharides. All the samples studied are, at room temperature, liquid systems whose viscosity varies from very low to very large values, depending on the water content. At a high water/saccharide mole ratio, homogeneous glass formation does not occur; regions of glass form, whose T(g) does not vary by varying the saccharide content, and the disaccharide barely affects the myoglobin denaturation temperature. At a suitably low water/saccharide mole ratio, by lowering the temperature, the systems undergo transition to the glassy state whose T(g) is determined by the water content; the Gordon-Taylor relationship between T(g) and the water/disaccharide mole ratio is obeyed; and T(den) increases by decreasing the hydration regardless of the disaccharide, such effect being entropy-driven. The presence of the protein was found to lower the T(g). Furthermore, for nonreducing disaccharides, plots of T(den) vs T(g) give linear correlations, whereas for reducing disaccharides, data exhibit an erratic behavior below a critical water/disaccharide ratio. We ascribe this behavior to the likelihood that in the latter samples, proteins have undergone Maillard reaction before thermal denaturation.
Collapse
Affiliation(s)
- Giuseppe Bellavia
- Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo and CNISM, Via Archirafi 36, Palermo, Italy I-90123
| | | | | | | | | |
Collapse
|
28
|
Francia F, Malferrari M, Sacquin-Mora S, Venturoli G. Charge Recombination Kinetics and Protein Dynamics in Wild Type and Carotenoid-less Bacterial Reaction Centers: Studies in Trehalose Glasses. J Phys Chem B 2009; 113:10389-98. [DOI: 10.1021/jp902287y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Sophie Sacquin-Mora
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| |
Collapse
|
29
|
Hydration dynamics in a partially denatured ensemble of the globular protein human alpha-lactalbumin investigated with molecular dynamics simulations. Biophys J 2008; 95:5257-67. [PMID: 18775960 DOI: 10.1529/biophysj.108.136531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomistic molecular dynamics simulations are used to probe changes in the nature and subnanosecond dynamical behavior of solvation waters that accompany partial denaturation of the globular protein, human alpha-lactalbumin. A simulated ensemble of subcompact conformers, similar to the molten globule state of human alpha-lactalbumin, demonstrates a marginal increase in the amount of surface solvation relative to the native state. This increase is accompanied by subtle but distinct enhancement in surface water dynamics, less favorable protein-water interactions, and a marginal decrease in the anomalous behavior of solvation water dynamics. The extent of solvent influx is not proportional to the increased surface area, and the partially denatured conformers are less uniformly solvated compared to their native counterpart. The observed solvation in partially denatured conformers is lesser in extent compared to earlier experimental estimates in molten globule states, and is consistent with more recent descriptions based on nuclear magnetic relaxation dispersion studies.
Collapse
|
30
|
Yu Q, Proia M, Heikal AA. Integrated biophotonics approach for noninvasive and multiscale studies of biomolecular and cellular biophysics. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:041315. [PMID: 19021323 DOI: 10.1117/1.2952297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the crowded cellular milieu, biological processes require coordinated intermolecular interactions, conformational changes, and molecular transport that span a wide range of spatial and temporal scales. This complexity requires an integrated, noninvasive, multiscale experimental approach. Here, we develop a multimodal fluorescence microspectroscopy system, integrated on a single platform, to gain information about molecular interactions and their dynamics with high spatio-temporal resolution. To demonstrate the versatility of our experimental approach, we use rhodamine 123-labeled mitochondria in breast cancer cells (Hs578T), verified using differential interference contrast (DIC) and fluorescence (confocal and two-photon) microscopy, as a model system. We develop an assay to convert fluorescence intensity to actual concentrations in intact, individual living cells, which contrasts with conventional biochemical techniques that require cell lysates. In this assay, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) to quantify the fluorescence quantum yield variations found within individual cells. Functionally driven changes in cell environment, molecular conformation, and rotational diffusion are investigated using fluorescence polarization anisotropy imaging. Moreover, we quantify translational diffusion and chemical kinetics of large molecular assemblies using fluorescence correlation spectroscopy. Our integrated approach can be applied to a wide range of molecular and cellular processes, such as receptor-mediated signaling and metabolic activation.
Collapse
Affiliation(s)
- Qianru Yu
- Pennsylvania State University, Department of Bioengineering, 205 Hallowell Building, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
31
|
Lerbret A, Affouard F, Bordat P, Hédoux A, Guinet Y, Descamps M. Molecular dynamics simulations of lysozyme in water/sugar solutions. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
|
33
|
Cordone L, Cottone G, Giuffrida S, Librizzi F. Thermal evolution of the CO stretching band in carboxy-myoglobin in the light of neutron scattering and molecular dynamics simulations. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Hydration dependent dynamics in sol–gel encapsulated myoglobin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:543-9. [DOI: 10.1007/s00249-007-0249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/15/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
35
|
Köper I, Combet S, Petry W, Bellissent-Funel MC. Dynamics of C-phycocyanin in various deuterated trehalose/water environments measured by quasielastic and elastic neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:739-48. [PMID: 18185929 PMCID: PMC2755759 DOI: 10.1007/s00249-007-0248-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/28/2007] [Accepted: 12/06/2007] [Indexed: 11/25/2022]
Abstract
The molecular understanding of protein stabilization by the disaccharide trehalose in extreme temperature or hydration conditions is still debated. In the present study, we investigated the role of trehalose on the dynamics of the protein C-phycocyanin (C-PC) by neutron scattering. To single out the motions of C-PC hydrogen (H) atoms in various trehalose/water environments, measurements were performed in deuterated trehalose and heavy water (D2O). We report that trehalose decreases the internal C-PC dynamics, as shown by a reduced diffusion coefficient of protein H atoms. By fitting the Elastic Incoherent Structure Factor--which gives access to the "geometry" of the internal proton motions--with the model of diffusion inside a sphere, we found that the presence of trehalose induces a significantly higher proportion of immobile C-PC hydrogens. We investigated, by elastic neutron scattering, the mean square displacements (MSDs) of deuterated trehalose/D2O-embedded C-PC as a function of temperature in the range of 40-318 K. Between 40 and approximately 225 K, harmonic MSDs of C-PC are slightly smaller in samples containing trehalose. Above a transition temperature of approximately 225 K, we observed anharmonic motions in all trehalose/water-coated C-PC samples. In the hydrated samples, MSDs are not significantly changed by addition of 15% trehalose but are slightly reduced by 30% trehalose. In opposition, no dynamical transition was detected in dry trehalose-embedded C-PC, whose hydrogen motions remain harmonic up to 318 K. These results suggest that a role of trehalose would be to stabilize proteins by inhibiting some fluctuations at the origin of protein unfolding and denaturation.
Collapse
Affiliation(s)
- Ingo Köper
- Laboratoire Léon-Brillouin UMR 12 CEA/CNRS, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
- Fakultät für Physik E13, Technische Universität München, 85747 Garching, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Sophie Combet
- Laboratoire Léon-Brillouin UMR 12 CEA/CNRS, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Winfried Petry
- Fakultät für Physik E13, Technische Universität München, 85747 Garching, Germany
| | | |
Collapse
|
36
|
Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci U S A 2007; 104:18049-54. [PMID: 17986611 DOI: 10.1073/pnas.0706566104] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamical coupling between proteins and their hydration water is important for the understanding of macromolecular function in a cellular context. In the case of membrane proteins, the environment is heterogeneous, composed of lipids and hydration water, and the dynamical coupling might be more complex than in the case of the extensively studied soluble proteins. Here, we examine the dynamical coupling between a biological membrane, the purple membrane (PM), and its hydration water by a combination of elastic incoherent neutron scattering, specific deuteration, and molecular dynamics simulations. Examining completely deuterated PM, hydrated in H(2)O, allowed the direct experimental exploration of water dynamics. The study of natural abundance PM in D(2)O focused on membrane dynamics. The temperature-dependence of atomic mean-square displacements shows inflections at 120 K and 260 K for the membrane and at 200 K and 260 K for the hydration water. Because transition temperatures are different for PM and hydration water, we conclude that ps-ns hydration water dynamics are not directly coupled to membrane motions on the same time scale at temperatures <260 K. Molecular-dynamics simulations of hydrated PM in the temperature range from 100 to 296 K revealed an onset of hydration-water translational diffusion at approximately 200 K, but no transition in the PM at the same temperature. Our results suggest that, in contrast to soluble proteins, the dynamics of the membrane protein is not controlled by that of hydration water at temperatures <260 K. Lipid dynamics may have a stronger impact on membrane protein dynamics than hydration water.
Collapse
|
37
|
Pikal MJ, Rigsbee DR, Roy ML. Solid State Chemistry of Proteins: I. Glass Transition Behavior in Freeze Dried Disaccharide Formulations of Human Growth Hormone (HGH). J Pharm Sci 2007; 96:2765-76. [PMID: 17621677 DOI: 10.1002/jps.20960] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although freeze dried formulations are commonly characterized using differential scanning calorimetry (DSC), a protein-rich system behaves as a "strong glass", and the glass transition temperature, T(g), cannot be directly determined by DSC. A strong glass means a small heat capacity change at T(g), triangle upC(p), and a very broad glass transition region, or a large triangle upT(g). However, direct experimental evidence for a small triangle upC(p) and a large triangle upT(g) have been lacking. Here, we utilize extrapolation of thermal analysis data in protein:disaccharide mixtures to evaluate T(g), triangle upT(g), and triangle upC(p) for "pure" human growth hormone (hGH) from low to moderate residual water. We find that triangle upT(g) is indeed large and triangle upC(p) is very small. Also, the T(g) for pure hGH decreases from a value of about 136 degrees C when dry to around 25 degrees C at 12% water. This glass transition is not the onset of mobility within the protein molecule but rather signals onset of whole molecule rotation and translation. We also observe complex pre-T(g) thermal events in the DSC data, which are interpreted as consequences of relaxation events, largely due to the disaccharide, and are characteristic of freeze dried systems having a broad distribution of relaxing substates.
Collapse
Affiliation(s)
- Michael J Pikal
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| | | | | |
Collapse
|
38
|
Samuni U, Dantsker D, Roche C, Friedman JM. Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 2007; 398:234-48. [PMID: 17570619 PMCID: PMC1975397 DOI: 10.1016/j.gene.2007.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ligand recombination studies play a central role both for characterizing different hemeproteins and their conformational states but also for probing fundamental biophysical processes. Consequently, there is great importance to providing a foundation from which one can understand the physical processes that give rise to and modulate the large range of kinetic patterns associated with ligand recombination in myoglobins and hemoglobins. In this work, an overview of cryogenic and solution phase recombination phenomena for COMb is first reviewed and then a new paradigm is presented for analyzing the temperature and viscosity dependent features of kinetic traces in terms of multiple phases that reflect which tier(s) of solvent slaved protein dynamics is (are) operative on the photoproduct population during the time course of the measurement. This approach allows for facile inclusion of both ligand diffusion among accessible cavities and conformational relaxation effects. The concepts are illustrated using kinetic traces and MEM populations derived from the CO recombination process for wild type and mutant myoglobins either in sol-gel matrices bathed in glycerol or in trehalose-derived glassy matrices.
Collapse
Affiliation(s)
- Uri Samuni
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - David Dantsker
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - Camille Roche
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - Joel M. Friedman
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| |
Collapse
|
39
|
Lerbret A, Bordat P, Affouard F, Hédoux A, Guinet Y, Descamps M. How Do Trehalose, Maltose, and Sucrose Influence Some Structural and Dynamical Properties of Lysozyme? Insight from Molecular Dynamics Simulations. J Phys Chem B 2007; 111:9410-20. [PMID: 17629322 DOI: 10.1021/jp071946z] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of three well-known disaccharides, namely, trehalose, maltose, and sucrose, on some structural and dynamical properties of lysozyme has been investigated by means of molecular dynamics computer simulations in the 37-60 wt % concentration range. The effects of sugars on the protein conformation are found to be relatively weak, in agreement with the preferential hydration of lysozyme. Conversely, sugars seem to increase significantly the relaxation times of the protein. These effects are shown to be correlated to the fractional solvent accessibilities of lysozyme residues and further support the slaving of protein dynamics. Moreover, a significant increase in the relaxation times of lysozyme, sugars, and water molecules is observed within the studied concentration range and may result from the percolation of the hydrogen-bond network of sugar molecules. This percolation appears to be of primary importance to explain the influence of sugars on the dynamical properties of lysozyme and water.
Collapse
Affiliation(s)
- A Lerbret
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA.
| | | | | | | | | | | |
Collapse
|
40
|
D'Alfonso L, Collini M, Cannone F, Chirico G, Campanini B, Cottone G, Cordone L. GFP-mut2 proteins in trehalose-water matrixes: spatially heterogeneous protein-water-sugar structures. Biophys J 2007; 93:284-93. [PMID: 17416616 PMCID: PMC1914445 DOI: 10.1529/biophysj.106.090621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations on the properties of nanoenvironments around single-GFP-mut2 proteins in trehalose-water matrixes. Single-GFPmut2 molecules embedded in thin trehalose-water films were characterized in terms of their fluorescence brightness, bleaching dynamics, excited state lifetime, and fluorescence polarization. For each property, sets of approximately 100-150 single molecules have been investigated as a function of trehalose content and hydration. Three distinct and interconverting families of proteins have been found which differ widely in terms of bleaching dynamics, brightness, and fluorescence polarization, whose relative populations sizably depend on sample hydration. The reported results evidence the simultaneous presence of different protein-trehalose-water nanostructures whose rigidity increases by lowering the sample hydration. Such spatial inhomogeneity is in line with the well-known heterogeneous dynamics in supercooled fluids and in nonsolid carbohydrate glasses and gives a pictorial representation of the sharp, sudden reorganization of the above structures after uptake <==>release of water molecules.
Collapse
Affiliation(s)
- Laura D'Alfonso
- Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Cottone G. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation. J Phys Chem B 2007; 111:3563-9. [PMID: 17388507 DOI: 10.1021/jp0677288] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from room-temperature molecular dynamics simulation on a system containing carboxy-myoglobin, water, and maltose molecules are reported. Protein atomic fluctuations, protein-solvent and solvent-solvent hydrogen bonding have been analyzed and compared to the ones in trehalose-water and sucrose-water systems (Proteins 2005, 59, 291-302). Results help in rationalizing, at a molecular level, the effects of homologues disaccharides on protein structure/dynamics experimentally observed. Furthermore, the effectiveness of disaccharides in bioprotection in terms of peculiar protein-matrix coupling is also discussed.
Collapse
Affiliation(s)
- Grazia Cottone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università Degli Studi di Palermo and CNISM, Via Archirafi 36, I-90123 Palermo, Italy.
| |
Collapse
|