1
|
Ek-Vitorin JF, Shahidullah M, Lopez Rosales JE, Delamere NA. Patch clamp studies on TRPV4-dependent hemichannel activation in lens epithelium. Front Pharmacol 2023; 14:1101498. [PMID: 36909173 PMCID: PMC9998544 DOI: 10.3389/fphar.2023.1101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
ATP release from the lens via hemichannels has been explained as a response to TRPV4 activation when the lens is subjected to osmotic swelling. To explore the apparent linkage between TRPV4 activation and connexin hemichannel opening we performed patch-clamp recordings on cultured mouse lens epithelial cells exposed to the TRPV4 agonist GSK1016790A (GSK) in the presence or absence of the TRPV4 antagonist HC067047 (HC). GSK was found to cause a fast, variable and generally large non-selective increase of whole cell membrane conductance evident as a larger membrane current (Im) over a wide voltage range. The response was prevented by HC. The GSK-induced Im increase was proportionally larger at negative voltages and coincided with fast depolarization and the simultaneous disappearance of an outward current, likely a K+ current. The presence of this outward current in control conditions appeared to be a reliable predictor of a cell's response to GSK treatment. In some studies, recordings were obtained from single cells by combining cell-attached and whole-cell patch clamp configurations. This approach revealed events with a channel conductance 180-270 pS following GSK application through the patch pipette on the cell-attached side. The findings are consistent with TRPV4-dependent opening of Cx43 hemichannels.
Collapse
Affiliation(s)
- Jose F Ek-Vitorin
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, United States
| | | | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Jaradat R, Li X, Chen H, Stathopulos PB, Bai D. The Hydrophobic Residues in Amino Terminal Domains of Cx46 and Cx50 Are Important for Their Gap Junction Channel Ion Permeation and Gating. Int J Mol Sci 2022; 23:ijms231911605. [PMID: 36232905 PMCID: PMC9570504 DOI: 10.3390/ijms231911605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Lens gap junctions (GJs) formed by Cx46 and Cx50 are important to keep lens transparency. Functional studies on Cx46 and Cx50 GJs showed that the Vj-gating, single channel conductance (γj), gating polarity, and/or channel open stability could be modified by the charged residues in the amino terminal (NT) domain. The role of hydrophobic residues in the NT on GJ properties is not clear. Crystal and cryo-EM GJ structures have been resolved, but the NT domain structure has either not been resolved or has showed very different orientations depending on the component connexins and possibly other experimental conditions, making it difficult to understand the structural basis of the NT in Vj-gating and γj. Here, we generated missense variants in Cx46 and Cx50 NT domains and studied their properties by recombinant expression and dual whole-cell patch clamp experiments on connexin-deficient N2A cells. The NT variants (Cx46 L10I, N13E, A14V, Q15N, and Cx50 I10L, E13N, V14A, N15Q) were all able to form functional GJs with similar coupling%, except Cx46 N13E, which showed a significantly reduced coupling%. The GJs of Cx46 N13E, A14V and Cx50 E13N, N15Q showed a reduced coupling conductance. Vj-gating of all the variant GJs were similar to the corresponding wild-type GJs except Cx46 L10I. The γj of Cx46 N13E, A14V, Cx50 E13N, and N15Q GJs was reduced to 51%, 82%, 87%, and 74%, respectively, as compared to their wild-type γjs. Structural models of Cx46 L10I and A14V predicted steric clashes between these residues and the TM2 residues, which might be partially responsible for our observed changes in GJ properties. To verify the importance of hydrophobic interactions, we generated a variant, Cx50 S89T, which also shows a steric clash and failed to form a functional GJ. Our experimental results and structure models indicate that hydrophobic interactions between the NT and TM2 domain are important for their Vj-gating, γj, and channel open stability in these and possibly other GJs.
Collapse
|
3
|
Tong JJ, Khan U, Haddad BG, Minogue PJ, Beyer EC, Berthoud VM, Reichow SL, Ebihara L. Molecular mechanisms underlying enhanced hemichannel function of a cataract-associated Cx50 mutant. Biophys J 2021; 120:5644-5656. [PMID: 34762867 DOI: 10.1016/j.bpj.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Connexin-50 (Cx50) is among the most frequently mutated genes associated with congenital cataracts. Although most of these disease-linked variants cause loss of function because of misfolding or aberrant trafficking, others directly alter channel properties. The mechanistic bases for such functional defects are mostly unknown. We investigated the functional and structural properties of a cataract-linked mutant, Cx50T39R (T39R), in the Xenopus oocyte system. T39R exhibited greatly enhanced hemichannel currents with altered voltage-gating properties compared to Cx50 and induced cell death. Coexpression of mutant T39R with wild-type Cx50 (to mimic the heterozygous state) resulted in hemichannel currents whose properties were indistinguishable from those induced by T39R alone, suggesting that the mutant had a dominant effect. Furthermore, when T39R was coexpressed with Cx46, it produced hemichannels with increased activity, particularly at negative potentials, which could potentially contribute to its pathogenicity in the lens. In contrast, coexpression of wild-type Cx50 with Cx46 was associated with a marked reduction in hemichannel activity, indicating that it may have a protective effect. All-atom molecular dynamics simulations indicate that the R39 substitution can form multiple electrostatic salt-bridge interactions between neighboring subunits that could stabilize the open-state conformation of the N-terminal (NT) domain while also neutralizing the voltage-sensing residue D3 as well as residue E42, which participates in loop gating. Together, these results suggest T39R acts as a dominant gain-of-function mutation that produces leaky hemichannels that may cause cytotoxicity in the lens and lead to development of cataracts.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Umair Khan
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Bassam G Haddad
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | | | - Steve L Reichow
- Department of Chemistry, Portland State University, Portland, Oregon.
| | - Lisa Ebihara
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.
| |
Collapse
|
4
|
Yue B, Haddad BG, Khan U, Chen H, Atalla M, Zhang Z, Zuckerman DM, Reichow SL, Bai D. Connexin 46 and connexin 50 gap junction channel properties are shaped by structural and dynamic features of their N-terminal domains. J Physiol 2021; 599:3313-3335. [PMID: 33876426 PMCID: PMC8249348 DOI: 10.1113/jp281339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Gap junctions formed by different connexins are expressed throughout the body and harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies by cryo-electron microscopy have produced high-resolution models of the related but functionally distinct lens connexins (Cx50 and Cx46) captured in a stable open state, opening the door for structure-function comparison. Here, we conducted comparative molecular dynamics simulation and electrophysiology studies to dissect the isoform-specific differences in Cx46 and Cx50 intercellular channel function. We show that key determinants Cx46 and Cx50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N-terminal domains, in particular the residue at the 9th position and differences in hydrophobic anchoring sites. The results of this study establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating the mechanism of gap junction channels and the molecular basis of disease-causing variants. ABSTRACT Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long-range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor for isoform-specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46-50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free-energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj gating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra- and inter-subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract-linked connexin variants.
Collapse
Affiliation(s)
- Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Bassam G. Haddad
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Umair Khan
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Mena Atalla
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ze Zhang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Steve L. Reichow
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Rimkute L, Kraujalis T, Snipas M, Palacios-Prado N, Jotautis V, Skeberdis VA, Bukauskas FF. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions. Front Physiol 2018; 9:362. [PMID: 29706896 PMCID: PMC5906587 DOI: 10.3389/fphys.2018.00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pHi) and cytosolic magnesium ion concentration ([Mg2+]i), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pHi and [Mg2+]i affect junctional conductance (gj) in an interdependent manner; in other words, intracellular acidification cause increase or decay in gj depending on whether [Mg2+]i is high or low, respectively, and intracellular alkalization cause reduction in gj independently of [Mg2+]i. Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pHi and [Mg2+]i. Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pHi and [Mg2+]i. Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg2+]i, while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36*E8Q lost the initial increase of gj at low [Mg2+]i and double mutation lost the sensitivity to high [Mg2+]i. These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg2+ and H+ ions.
Collapse
Affiliation(s)
- Lina Rimkute
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
| | - Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Nicolas Palacios-Prado
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytenis A. Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
6
|
Chen L, Su D, Li S, Guan L, Shi C, Li D, Hu S, Ma X. The connexin 46 mutant (V44M) impairs gap junction function causing congenital cataract. J Genet 2017; 96:969-976. [PMID: 29321356 DOI: 10.1007/s12041-017-0861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Connexin 46 (Cx46) is important for gap junction channels formation which plays crucial role in the preservation of lens homeostasis and transparency. Previously, we have identified a missense mutation (p.V44M) of Cx46 in a congenital cataract family. This study aims at dissecting the potential pathogenesis of the causative mutant of cataract. Plasmids carrying wild-type (wt) and mutant (V44M) of Cx46 were constructed and expressed in Hela cells respectively.Western blotting and fluorescence microscopy were applied to analyse the expression and subcellular localization of recombinant proteins, respectively. Scrape loading dye transfer experiment was performed to detect the transfer capability of gap junction channels among cells expressed V44Mmutant. The results demonstrated that in transfected Hela cells, both wt-Cx46 and Cx46 V44M were localized abundantly in the plasma membrane. No significant difference was found between the protein expressions of the two types of Cx46. The fluorescent localization assay revealed the plaque formation, significantly reduced in the cells expressing Cx46 V44M. Immunoblotting analysis demonstrated that formation of Triton X-100 insoluble complex decreased obviously in mutant Cx46. Additionally, the scrape-loading dye-transfer experiment showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular communication activity was aberrant. Human Cx46 V44M mutant causing cataracts result in abnormally decreased formation of gap junction plaques and impaired gap junction channel function.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Ophthalmology, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol 2017; 18:3. [PMID: 28124623 PMCID: PMC5267329 DOI: 10.1186/s12860-016-0118-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background This review comes after the International Gap Junction Conference (IGJC 2015) and describes the current knowledge on the function of the specific motifs of connexins in the regulation of the formation of gap junction channels. Moreover the review is complemented by a summarized description of the distinct contribution of gap junction channels in the electrical coupling. Results Complementary biochemical and functional characterization on cell models and primary cells have improved our understanding on the oligomerization of connexins and the formation and the electrical properties of gap junction channels. Studies mostly focused cardiac connexins Cx43 and Cx40 expressed in myocytes, while Cx45 and Cx30.2 have been less investigated, for which main findings are reviewed to highlight their critical contribution in the formation of gap junction channels for ensuring the orchestrated electrical impulse propagation and coordination of atrial and ventricular contraction and heart function, whereas connexin dysfunction and remodeling are pro-arrhythmic factors. Common and specific motifs of residues identified in different domain of each type of connexin determine the connexin homo- and hetero-oligomerization and the channels formation, which leads to specific electrical properties. Conclusions These motifs and the resulting formation of gap junction channels are keys to ensure the tissue homeostasis and function in each connexin expression pattern in various tissues of multicellular organisms. Altogether, the findings to date have significantly improved our understanding on the function of the different connexin expression patterns in healthy and diseased tissues, and promise further investigations on the contribution in the different types of connexin.
Collapse
Affiliation(s)
- Thomas Desplantez
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Campus X. Arnozan, Avenue Haut Leveque, 33600, Pessac- Bordeaux, France. .,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.
| |
Collapse
|
8
|
Snipas M, Kraujalis T, Paulauskas N, Maciunas K, Bukauskas FF. Stochastic Model of Gap Junctions Exhibiting Rectification and Multiple Closed States of Slow Gates. Biophys J 2016; 110:1322-33. [PMID: 27028642 DOI: 10.1016/j.bpj.2016.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/03/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Gap-junction (GJ) channels formed from connexin (Cx) proteins provide direct pathways for electrical and metabolic cell-cell communication. Earlier, we developed a stochastic 16-state model (S16SM) of voltage gating of the GJ channel containing two pairs of fast and slow gates, each operating between open (o) and closed (c) states. However, experimental data suggest that gates may in fact contain two or more closed states. We developed a model in which the slow gate operates according to a linear reaction scheme, o↔c1↔c2, where c1 and c2 are initial-closed and deep-closed states that both close the channel fully, whereas the fast gate operates between the open state and the closed state and exhibits a residual conductance. Thus, we developed a stochastic 36-state model (S36SM) of GJ channel gating that is sensitive to transjunctional voltage (Vj). To accelerate simulation and eliminate noise in simulated junctional conductance (gj) records, we transformed an S36SM into a Markov chain 36-state model (MC36SM) of GJ channel gating. This model provides an explanation for well-established experimental data, such as delayed gj recovery after Vj gating, hysteresis of gj-Vj dependence, and the low ratio of functional channels to the total number of GJ channels clustered in junctional plaques, and it has the potential to describe chemically mediated gating, which cannot be reflected using an S16SM. The MC36SM, when combined with global optimization algorithms, can be used for automated estimation of gating parameters including probabilities of c1↔c2 transitions from experimental gj-time and gj-Vj dependencies.
Collapse
Affiliation(s)
- Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nerijus Paulauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kestutis Maciunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Feliksas F Bukauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York.
| |
Collapse
|
9
|
Pinto BI, García IE, Pupo A, Retamal MA, Martínez AD, Latorre R, González C. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins. J Biol Chem 2016; 291:15740-52. [PMID: 27143357 DOI: 10.1074/jbc.m115.709402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 12/17/2022] Open
Abstract
Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.
Collapse
Affiliation(s)
- Bernardo I Pinto
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| | - Isaac E García
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| | - Amaury Pupo
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| | - Mauricio A Retamal
- the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Agustín D Martínez
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| | - Ramón Latorre
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| | - Carlos González
- From the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102 and
| |
Collapse
|
10
|
Maciunas K, Snipas M, Paulauskas N, Bukauskas FF. Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels. ACTA ACUST UNITED AC 2016; 147:273-88. [PMID: 26880752 PMCID: PMC4772373 DOI: 10.1085/jgp.201511488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
Voltage-dependent gap junction gating contributes to reverberation in neuronal circuits. We combined Hodgkin–Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current–voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ±100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory.
Collapse
Affiliation(s)
- Kestutis Maciunas
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania Department of Mathematical Modelling, Kaunas University of Technology, 51368 Kaunas, Lithuania
| | - Nerijus Paulauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Feliksas F Bukauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
11
|
Tong JJ, Minogue PJ, Kobeszko M, Beyer EC, Berthoud VM, Ebihara L. The connexin46 mutant, Cx46T19M, causes loss of gap junction function and alters hemi-channel gating. J Membr Biol 2015; 248:145-55. [PMID: 25404239 PMCID: PMC4300453 DOI: 10.1007/s00232-014-9752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
An N-terminal mutant of connexin46 (T19M) alters a highly conserved threonine and has been linked to autosomal dominant cataracts. To study the cellular and functional consequences of substitution of this amino acid, T19M was expressed in Xenopus oocytes and in HeLa cells. Unlike wild-type Cx46, T19M did not induce intercellular conductances in Xenopus oocytes. In transfected HeLa cells, T19M was largely localized within the cytoplasm, with drastically reduced formation of gap junction plaques. Expression of rat T19M was cytotoxic, as evidenced by an almost complete loss of viable cells expressing the mutant protein by 48-72 h following transfection. When incubated in medium containing physiological concentrations of divalent cations, T19M-expressing cells showed increased uptake of DAPI as compared with cells expressing wild-type Cx46, suggesting aberrant connexin hemi-channel activity. Time-lapse and dye uptake studies suggested that T19M hemi-channels had reduced sensitivity to Ca(2+). Whole cell patch clamp studies of single transfected HeLa cells demonstrated that rat T19M formed functional hemi-channels with altered voltage-dependent gating. These data suggest that T19M causes cataracts by loss of gap junctional channel function and abnormally increased hemi-channel activity. Furthermore, they implicate this conserved threonine in both gap junction plaque formation and channel/hemi-channel gating in Cx46.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Peter J. Minogue
- Department of Pediatrics, University of Chicago, 900 E. 57th Street, Chicago, IL 60637 USA
| | - Matthew Kobeszko
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, 900 E. 57th Street, Chicago, IL 60637 USA
| | - Viviana M. Berthoud
- Department of Pediatrics, University of Chicago, 900 E. 57th Street, Chicago, IL 60637 USA
| | - Lisa Ebihara
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| |
Collapse
|
12
|
Harris AL, Contreras JE. Motifs in the permeation pathway of connexin channels mediate voltage and Ca (2+) sensing. Front Physiol 2014; 5:113. [PMID: 24744733 PMCID: PMC3978323 DOI: 10.3389/fphys.2014.00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/06/2014] [Indexed: 11/13/2022] Open
Abstract
Connexin channels mediate electrical coupling, intercellular molecular signaling, and extracellular release of signaling molecules. Connexin proteins assemble intracellularly as hexamers to form plasma membrane hemichannels. The docking of two hemichannels in apposed cells forms a gap junction channel that allows direct electrical and selective cytoplasmic communication between adjacent cells. Hemichannels and junctional channels are gated by voltage, but extracellular Ca (2+) also gates unpaired plasma membrane hemichannels. Unlike other ion channels, connexin channels do not contain discrete voltage- or Ca (2+)-sensing modules linked to a separate pore-forming module. All studies to date indicate that voltage and Ca (2+) sensing are predominantly mediated by motifs that lie within or are exposed to the pore lumen. The sensors appear to be integral components of the gates, imposing an obligatory structural linkage between sensing and gating not commonly present in other ion channels, in which the sensors are semi-independent domains distinct from the pore. Because of this, the structural and electrostatic features that define connexin channel gating also define pore permeability properties, and vice versa; analysis/mutagenesis of gating and of permeability properties are linked. This offers unique challenges and opportunities for elucidating mechanisms of ligand and voltage-driven gating.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Jorge E Contreras
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| |
Collapse
|
13
|
Abstract
The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50). In expression systems, these connexins can all induce hemichannel currents, but other lens proteins (e.g., pannexin1) can also induce similar currents. Hemichannel currents have been detected in isolated lens fiber cells. These hemichannels may make significant contributions to normal lens physiology and pathophysiology. Studies of some connexin mutants linked to congenital cataracts have implicated hemichannels with aberrant voltage-dependent gating or modulation by divalent cations in disease pathogenesis. Hemichannels may also contribute to age- and disease-related cataracts.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | |
Collapse
|
14
|
Oshima A. Structure and closure of connexin gap junction channels. FEBS Lett 2014; 588:1230-7. [PMID: 24492007 DOI: 10.1016/j.febslet.2014.01.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Connexin gap junctions comprise assembled channels penetrating two plasma membranes for which gating regulation is associated with a variety of factors, including voltage, pH, Ca(2+), and phosphorylation. Functional studies have established that various parts of the connexin peptides are related to channel closure and electrophysiology studies have provided several working models for channel gating. The corresponding structural models supporting these findings, however, are not sufficient because only small numbers of closed connexin structures have been reported. To fully understand the gating mechanisms, the channels should be visualized in both the open and closed states. Electron crystallography and X-ray crystallography studies recently revealed three-dimensional structures of connexin channels in a couple of states in which the main difference is the conformation of the N-terminal domain, which have helped to clarify the structure in regard to channel closure. Here the closure models for connexin gap junction channels inferred from structural and functional studies are described in the context of each domain of the connexin protein associated with gating modulation.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Lopez W, Gonzalez J, Liu Y, Harris AL, Contreras JE. Insights on the mechanisms of Ca(2+) regulation of connexin26 hemichannels revealed by human pathogenic mutations (D50N/Y). ACTA ACUST UNITED AC 2014; 142:23-35. [PMID: 23797420 PMCID: PMC3691447 DOI: 10.1085/jgp.201210893] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of the large size and modest selectivity of the connexin hemichannel aqueous pore, hemichannel opening must be highly regulated to maintain cell viability. At normal resting potentials, this regulation is achieved predominantly by the physiological extracellular Ca2+ concentration, which drastically reduces hemichannel activity. Here, we characterize the Ca2+ regulation of channels formed by wild-type human connexin26 (hCx26) and its human mutations, D50N/Y, that cause aberrant hemichannel opening and result in deafness and skin disorders. We found that in hCx26 wild-type channels, deactivation kinetics are accelerated as a function of Ca2+ concentration, indicating that Ca2+ facilitates transition to, and stabilizes, the closed state of the hemichannels. The D50N/Y mutant hemichannels show lower apparent affinities for Ca2+-induced closing than wild-type channels and have more rapid deactivation kinetics, which are Ca2+ insensitive. These results suggest that D50 plays a role in (a) stabilizing the open state in the absence of Ca2+, and (b) facilitating closing and stabilization of the closed state in the presence of Ca2+. To explore the role of a negatively charged residue at position 50 in regulation by Ca2+, this position was substituted with a cysteine residue, which was then modified with a negatively charged methanethiosulfonate reagent, sodium (2-sulfanoethyl) methanethiosulfonate (MTSES)−. D50C mutant hemichannels display properties similar to those of D50N/Y mutants. Recovery of the negative charge with chemical modification by MTSES− restores the wild-type Ca2+ regulation of the channels. These results confirm the essential role of a negative charge at position 50 for Ca2+ regulation. Additionally, charge-swapping mutagenesis studies suggest involvement of a salt bridge interaction between D50 and K61 in the adjacent connexin subunit in stabilizing the open state in low extracellular Ca2+. Mutant cycle analysis supports a Ca2+-sensitive interaction between these two residues in the open state of the channel. We propose that disruption of this interaction by extracellular Ca2+ destabilizes the open state and facilitates hemichannel closing. Our data provide a mechanistic understanding of how mutations at position 50 that cause human diseases are linked to dysfunction of hemichannel gating by external Ca2+.
Collapse
Affiliation(s)
- William Lopez
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
16
|
Beyer EC, Lin X, Veenstra RD. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation. Front Pharmacol 2013; 4:67. [PMID: 23734129 PMCID: PMC3659311 DOI: 10.3389/fphar.2013.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/29/2013] [Indexed: 02/05/2023] Open
Abstract
Connexin43 (Cx43) is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx), including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino-terminal (NT) domains of these connexins was assessed using pentameric connexin sequence-specific NT domain [interfering NT (iNT)] peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9–13 (Ac-KLLDK-NH2) specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional voltage (Vj)-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH) peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH) peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
17
|
Tong JJ, Sohn BCH, Lam A, Walters DE, Vertel BM, Ebihara L. Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46. Am J Physiol Cell Physiol 2013; 304:C823-32. [PMID: 23302783 PMCID: PMC3651606 DOI: 10.1152/ajpcell.00344.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 11/22/2022]
Abstract
Mutations in connexin 46 are associated with congenital cataracts. The purpose of this project was to characterize cellular and functional properties of two congenital cataract-associated mutations located in the NH2 terminus of connexin 46: Cx46D3Y and Cx46L11S, which we found localized to gap junctional plaques like wild-type Cx46 in transfected HeLa cells. Dual two-microelectrode-voltage-clamp studies of Xenopus oocyte pairs injected with wild-type or mutant rat Cx46 showed that oocyte pairs injected with D3Y or L11S cRNA failed to induce gap junctional coupling, whereas oocyte pairs injected with Cx46 showed high levels of coupling. D3Y, but not L11S, functionally paired with wild-type Cx46. To determine whether coexpression of D3Y or L11S affected the junctional conductance produced by wild-type lens connexins, we studied pairs of oocytes coinjected with equal amounts of mutant and wild-type connexin cRNA. Expression of D3Y or L11S almost completely abolished gap junctional coupling induced by Cx46. In contrast, expression of D3Y or L11S failed to inhibit junctional conductance induced by Cx50. To examine effects of the D3Y and L11S mutations on hemichannel activity, hemichannel currents were measured in connexin cRNA-injected oocytes. Oocytes expressing D3Y exhibited reduced hemichannel activity as well as alterations in voltage gating and charge selectivity while oocytes expressing L11S showed no hemichannel activity. Moreover, coexpression of mutant with wild-type Cx50 or Cx46 gave rise to hemichannels with distinct electrophysiological properties, suggesting that the mutant connexins were forming heteromeric channels with wild-type connexins. These data suggest D3Y and L11S cause cataracts by similar but not identical mechanisms.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fasciani I, Temperán A, Pérez-Atencio LF, Escudero A, Martínez-Montero P, Molano J, Gómez-Hernández JM, Paino CL, González-Nieto D, Barrio LC. Regulation of connexin hemichannel activity by membrane potential and the extracellular calcium in health and disease. Neuropharmacology 2013; 75:479-90. [PMID: 23587648 DOI: 10.1016/j.neuropharm.2013.03.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Connexins are thought to solely mediate cell-to-cell communication by forming gap junction channels composed of two membrane-spanning hemichannels positioned end-to-end. However, many if not all connexin isoforms also form functional hemichannels (i.e., the precursors of complete channels) that mediate the rapid exchange of ions, second messengers and metabolites between the cell interior and the interstitial space. Electrical and molecular signaling via connexin hemichannels is now widely recognized to be important in many physiological scenarios and pathological conditions. Indeed, mutations in connexins that alter hemichannel function have been implicated in several diseases. Here, we present a comprehensive overview of how hemichannel activity is tightly regulated by membrane potential and the external calcium concentration. In addition, we discuss the genetic mutations known to alter hemichannel function and their deleterious effects, of which a better understanding is necessary to develop novel therapeutic approaches for diseases caused by hemichannel dysfunction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Ilaria Fasciani
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain
| | - Ana Temperán
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain
| | - Leonel F Pérez-Atencio
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain
| | - Adela Escudero
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain; Unit of Molecular Genetics-INGEM, Hospital La Paz (IDIPAZ), Madrid, Spain
| | | | - Jesús Molano
- Unit of Molecular Genetics-INGEM, Hospital La Paz (IDIPAZ), Madrid, Spain
| | - Juan M Gómez-Hernández
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain
| | - Carlos L Paino
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain
| | - Daniel González-Nieto
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain; Center for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - Luis C Barrio
- Unit of Experimental Neurology-Neurobiology, "Ramón y Cajal" Hospital (IRYCIS), Madrid, Spain.
| |
Collapse
|
19
|
Kronengold J, Srinivas M, Verselis VK. The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J Membr Biol 2012; 245:453-63. [PMID: 22825713 PMCID: PMC3735448 DOI: 10.1007/s00232-012-9457-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 11/21/2022]
Abstract
Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.
Collapse
Affiliation(s)
- Jack Kronengold
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
20
|
Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L. Paracrine signaling through plasma membrane hemichannels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:35-50. [PMID: 22796188 DOI: 10.1016/j.bbamem.2012.07.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
Abstract
Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cell's interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1-2kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD(+) or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Regulation of Cx45 hemichannels mediated by extracellular and intracellular calcium. Pflugers Arch 2012; 464:249-59. [DOI: 10.1007/s00424-012-1133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/15/2022]
|
22
|
Aspartic acid residue D3 critically determines Cx50 gap junction channel transjunctional voltage-dependent gating and unitary conductance. Biophys J 2012; 102:1022-31. [PMID: 22404924 DOI: 10.1016/j.bpj.2012.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast V(j)-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. V(j)-dependent gating properties of this mutant channel were characterized by double-patch-clamp recordings in N2A cells. Macroscopically, the D3E substitution reduced the residual conductance (G(min)) to near zero and outwardly shifted the half-inactivation voltage (V(0)), which is a result of both a reduced aggregate gating charge (z) and a reduced free-energy difference between the open and closed states. Single Cx50D3E gap junction channels showed reduced unitary conductance (γ(j)) of the main open state, reduced open dwell time at ±40 mV, and absence of a long-lived substate. In contrast, a G8E substitution tested to compare the effects of the E residue at the third and eighth positions did not modify the V(j)-dependent gating profile or γ(j). In summary, this study is the first that we know of to suggest that the D3 residue plays an essential role, in addition to serving as a negative-charge provider, as a critical determinant of the V(j)-dependent gating sensitivity, open-closed stability, and unitary conductance of Cx50 gap junction channels.
Collapse
|
23
|
Regulation of Intercellular Calcium Signaling Through Calcium Interactions with Connexin-Based Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:777-94. [DOI: 10.1007/978-94-007-2888-2_34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Beyer EC, Lipkind GM, Kyle JW, Berthoud VM. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1823-30. [PMID: 22037495 DOI: 10.1016/j.bbamem.2011.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/07/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
26
|
Scemes E. Nature of plasmalemmal functional "hemichannels". BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1880-3. [PMID: 21703226 DOI: 10.1016/j.bbamem.2011.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 12/28/2022]
Abstract
The molecular identity of the protein forming "hemichannels" at non-junctional membranes is disputed. The family of gap junction proteins, innexins, connexins, and pannexins share several common features, including permeability characteristics and sensitivity to blocking agents. Such overlap in properties renders the identification of which of these protein species actually establishes the non-junctional membrane conductance and permeability quite complicated, especially because in vertebrates pannexins and connexins have largely overlapping distributions in tissues. Recently, attempts to establish criteria to identify events that are "hemichannel" mediated and those to allow the distinction between connexin- from pannexin-mediated events have been proposed. Here, I present an update on that topic and discuss the most recent findings related to the nature of functional "hemichannels" focusing on connexin43 and pannexin1. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P.Purpura Department of Neuroscience, Albert Einstein Collegeof Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Tong JJ, Minogue PJ, Guo W, Chen TL, Beyer EC, Berthoud VM, Ebihara L. Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50. Am J Physiol Cell Physiol 2011; 300:C1055-64. [PMID: 21228318 PMCID: PMC3093948 DOI: 10.1152/ajpcell.00384.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/11/2011] [Indexed: 11/22/2022]
Abstract
Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap junctional plaques when they were expressed in HeLa cells, suggesting that they trafficked to the plasma membrane properly. However, their functional properties differed. Dual two-microelectrode voltage-clamp studies showed that W45S did not form functional intercellular channels in paired Xenopus oocytes or hemichannel currents in single oocytes. When W45S was coexpressed with wild-type Cx50, the mutant acted as a dominant negative inhibitor of wild-type function. In contrast, G46V formed both functional gap junctional channels and hemichannels. G46V exhibited greatly enhanced currents compared with wild-type Cx50 in the presence of physiological calcium concentrations. This increase in hemichannel activity persisted when G46V was coexpressed with wild-type lens connexins, consistent with a dominant gain of hemichannel function for G46V. These data suggest that although these two mutations are in adjacent amino acids, they have very different effects on connexin function and cause disease by different mechanisms: W45S inhibits gap junctional channel function; G46V reduces cell viability by forming open hemichannels.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Dept. of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Maeda S, Tsukihara T. Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 2011; 68:1115-29. [PMID: 20960023 PMCID: PMC11114897 DOI: 10.1007/s00018-010-0551-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/16/2022]
Abstract
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.
Collapse
Affiliation(s)
- Shoji Maeda
- Institute for Protein Research, Osaka University, OLABB, 6-2-3 Furuedai, Suita, 565-0874 Japan
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297 Japan
- Present Address: Paul Scherrer Institut, Biology and Chemistry OFLG 101, 5232 Villigen, Switzerland
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, OLABB, 6-2-3 Furuedai, Suita, 565-0874 Japan
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297 Japan
| |
Collapse
|
29
|
Liu J, Ek Vitorin JF, Weintraub ST, Gu S, Shi Q, Burt JM, Jiang JX. Phosphorylation of connexin 50 by protein kinase A enhances gap junction and hemichannel function. J Biol Chem 2011; 286:16914-28. [PMID: 21454606 DOI: 10.1074/jbc.m111.218735] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of connexins is an important mechanism regulating gap junction channels. However, the role(s) of connexin (Cx) phosphorylation in vivo are largely unknown. Here, we showed by mass spectrometry that Ser-395 in the C terminus of chicken Cx50 was phosphorylated in the lens. Ser-395 is located within a PKA consensus site. Analyses of Cx50 phosphorylation by two-dimensional thin layer chromatography tryptic phosphopeptide profiles suggested that Ser-395 was targeted by PKA in vivo. PKA activation increased both gap junction dye coupling and hemichannel dye uptake in a manner not involving increases in total Cx50 expression or relocation to the cell surface or gap junctional plaques. Single channel recordings indicated PKA enhanced transitions between the closed and ∼200-pS open state while simultaneously reducing transitions between this open state and a ∼65-pS subconductance state. The mutation of Ser-395 to alanine significantly attenuated PKA-induced increases in dye coupling and uptake by Cx50. However, channel records indicated that phosphorylation at this site was unnecessary for enhanced transitions between the closed and ∼200-pS conductance state. Together, these results suggest that Cx50 is phosphorylated in vivo by PKA at Ser-395 and that this event, although unnecessary for PKA-induced alterations in channel conductance, promotes increased dye permeability of Cx50 channels, which plays an important role in metabolic coupling and transport in lens fibers.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis and lens development. Curr Mol Med 2010; 10:851-63. [PMID: 21091421 PMCID: PMC6263138 DOI: 10.2174/156652410793937750] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.
Collapse
Affiliation(s)
- J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
31
|
Kyle JW, Berthoud VM, Kurutz J, Minogue PJ, Greenspan M, Hanck DA, Beyer EC. The N terminus of connexin37 contains an alpha-helix that is required for channel function. J Biol Chem 2009; 284:20418-27. [PMID: 19478091 PMCID: PMC2740466 DOI: 10.1074/jbc.m109.016907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/24/2009] [Indexed: 12/11/2022] Open
Abstract
The cytoplasmic N-terminal domain of connexins has been implicated in multiple aspects of gap junction function, including connexin trafficking/assembly and channel gating. A synthetic peptide corresponding to the first 23 amino acids of human connexin37 was prepared, and circular dichroism and nuclear magnetic resonance studies showed that this N-terminal peptide was predominantly alpha-helical between glycine 5 and glutamate 16. The importance of this structure for localization of the protein at appositional membranes and channel function was tested by expression of site-directed mutants of connexin37 in which amino acids leucine 10 and glutamine 15 were replaced with prolines or alanines. Wild type connexin37 and both substitution mutants localized to appositional membranes between transfected HeLa cells. The proline mutant did not allow intercellular transfer of microinjected neurobiotin; the alanine mutant allowed transfer, but less extensively than wild type connexin37. When expressed alone in Xenopus oocytes, wild type connexin37 produced hemichannel currents, but neither of the double substitution mutants produced detectable currents. The proline mutant (but not the alanine mutant) inhibited co-expressed wild type connexin37. Taken together, our data suggest that the alpha-helical structure of the connexin37 N terminus may be dispensable for protein localization, but it is required for channel and hemichannel function.
Collapse
Affiliation(s)
- John W. Kyle
- From the Departments of Medicine (Section of Cardiology)
| | | | - Josh Kurutz
- Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
32
|
Verselis VK, Trelles MP, Rubinos C, Bargiello TA, Srinivas M. Loop gating of connexin hemichannels involves movement of pore-lining residues in the first extracellular loop domain. J Biol Chem 2008; 284:4484-93. [PMID: 19074140 DOI: 10.1074/jbc.m807430200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unapposed connexin hemichannels exhibit robust closure in response to membrane hyperpolarization and extracellular calcium. This form of gating, termed "loop gating," is largely responsible for regulating hemichannel opening, thereby preventing cell damage through excessive flux of ions and metabolites. The molecular components and structural rearrangements underlying loop gating remain unknown. Here, using cysteine mutagenesis in Cx50, we demonstrate that residues at the TM1/E1 border undergo movement during loop gating. Replacement of Phe(43) in Cx50 with a cysteine resulted in small or no appreciable membrane currents. Bath application of dithiothreitol or TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine), reagents that exhibit strong transition metal chelating activity, led to robust currents indicating that the F43C substitution impaired hemichannel function, producing "lock-up" in a closed or poorly functional state due to formation of metal bridges. In support, Cd(2+) at submicromolar concentrations (50-100 nm) enhanced lock-up of F43C hemichannels. Moreover, lock-up occurred under conditions that favored closure, indicating that the sulfhydryl groups come close enough to each other or to other residues to coordinate metal ions with high affinity. In addition to F43C, metal binding was also found for G46C, and to a lesser extent, D51C substitutions, positions found to be pore-lining in the open state using the substituted-cysteine accessibility method, but not for A40C and A41C substitutions, which were not found to reside in the open pore. These results indicate that metal ions access the cysteine side chains through the open pore and that closure of the loop gate involves movement of the TM1/E1 region that results in local narrowing of the large aqueous connexin pore.
Collapse
Affiliation(s)
- Vytas K Verselis
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
33
|
Scemes E, Spray DC, Meda P. Connexins, pannexins, innexins: novel roles of "hemi-channels". Pflugers Arch 2008; 457:1207-26. [PMID: 18853183 DOI: 10.1007/s00424-008-0591-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
34
|
Kyle JW, Minogue PJ, Thomas BC, Lopez Domowicz DA, Berthoud VM, Hanck DA, Beyer EC. An intact connexin N-terminus is required for function but not gap junction formation. J Cell Sci 2008; 121:2744-50. [PMID: 18664489 PMCID: PMC2752142 DOI: 10.1242/jcs.032482] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic N-termini of connexins have been implicated in protein trafficking, oligomerization and channel gating. To elucidate the role of the N-terminus in connexin37 (CX37), we studied mutant constructs containing partial deletions of its 23 N-terminal amino acids and a construct with a complete N-terminus in which residues 2-8 were replaced with alanines. All mutants containing nine or more N-terminal amino acids form gap junction plaques in transiently transfected HeLa cells, whereas most of the longer deletions do not. Although wild-type CX37 allowed intercellular transfer of microinjected neurobiotin in HeLa cells and formed conducting hemichannels in Xenopus oocytes, none of the mutant constructs tested show evidence of channel function. However, in coexpression experiments, N-terminal mutants that formed gap junction plaques potently inhibit hemichannel conductance of wild-type CX37 suggesting their co-oligomerization. We conclude that as much as half the length of the connexin N-terminus can be deleted without affecting formation of gap junction plaques, but an intact N-terminus is required for hemichannel gating and intercellular communication.
Collapse
Affiliation(s)
- John W. Kyle
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, IL 60637, USA
| | - Peter J. Minogue
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Bettina C. Thomas
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Denise A. Lopez Domowicz
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Viviana M. Berthoud
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Dorothy A. Hanck
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, IL 60637, USA
| | - Eric C. Beyer
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Thomas BC, Minogue PJ, Valiunas V, Kanaporis G, Brink PR, Berthoud VM, Beyer EC. Cataracts are caused by alterations of a critical N-terminal positive charge in connexin50. Invest Ophthalmol Vis Sci 2008; 49:2549-56. [PMID: 18326694 DOI: 10.1167/iovs.07-1658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To elucidate the basis of the autosomal dominant congenital nuclear cataracts caused by the connexin50 mutant, CX50R23T, by determining its cellular distribution and functional behavior and the consequences of substituting other amino acids for arginine-23. METHODS Connexin50 (CX50) mutants were generated by PCR and transfected into HeLa or N2a cells. Expressed CX50 protein was detected by immunoblot analysis and localized by immunofluorescence. Intercellular communication was assessed by microinjection of neurobiotin or by double whole-cell patch-clamp recording. RESULTS HeLa cells stably transfected with CX50R23T or wild-type CX50 produced immunoreactive CX50 bands of identical electrophoretic mobility. Whereas HeLa cells stably expressing CX50 contained abundant gap junction plaques, CX50R23T localized predominantly in the cytoplasm. HeLa cells expressing wild-type CX50 showed large gap junctional conductances and extensive transfer of neurobiotin, but those expressing CX50R23T did not show significant intercellular communication by either assay. Moreover, CX50R23T inhibited the function of coexpressed wild-type CX50. Three CX50R23 substitution mutants (CX50R23K, CX50R23L, and CX50R23W) formed gap junction plaques, whereas two mutant substitutions with negatively charged residues (CX50R23D, CX50R23E) did not form detectable plaques. Only the mutant with a positive charge substitution (CX50R23K) allowed neurobiotin transfer at levels similar to those of wild-type CX50; none of the other mutants induced transfer. CONCLUSIONS These results suggest that replacement of amino acid 23 in CX50 by any residue that is not positively charged would lead to cataract formation.
Collapse
Affiliation(s)
- Bettina C Thomas
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637-1470, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gap junction channel structure in the early 21st century: facts and fantasies. Curr Opin Cell Biol 2007; 19:521-8. [PMID: 17945477 DOI: 10.1016/j.ceb.2007.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/05/2007] [Indexed: 02/04/2023]
Abstract
Gap junction channels connect the cytoplasms of adjacent cells through the end-to-end docking of single-membrane structures called connexons, formed by a ring of six connexin monomers. Each monomer contains four transmembrane alpha-helices, for a total of 24 alpha-helices in a connexon. The fundamental structure of the connexon pore is probably similar in unpaired connexons and junctional channels, and for channels formed by different connexin isoforms. Nevertheless, variability in results from structurally focused mutagenesis and electrophysiological studies raise uncertainty about the specific assignments of the transmembrane helices. Mapping of human mutations onto a suggested C(alpha) model predicts that mutations that disrupt helix-helix packing impair channel function. An experimentally determined structure at atomic resolution will be essential to confirm and resolve these concepts.
Collapse
|
37
|
Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MVL, Sáez JC. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 2007; 218:49-63. [PMID: 17705051 DOI: 10.1007/s00232-007-9043-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 06/15/2007] [Indexed: 01/04/2023]
Abstract
In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca(2+) concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
38
|
González D, Gómez-Hernández JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: An integrative appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:66-106. [PMID: 17470374 DOI: 10.1016/j.pbiomolbio.2007.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of electrical and molecular signaling through connexin (Cx) channels is now widely recognized. The transfer of ions and other small molecules between adjacent cells is regulated by multiple stimuli, including voltage. Indeed, Cx channels typically exhibit complex voltage sensitivity. Most channels are sensitive to the voltage difference between the cell interiors (or transjunctional voltage, V(j)), while other channels are also sensitive to absolute inside-outside voltage (i.e., the membrane potential, V(m)). The first part of this review is focused on the description of the distinct forms of voltage sensitivity and the gating mechanisms that regulate hemichannel activity, both individually and as components of homotypic and heterotypic gap junctions. We then provide an up to date and precise picture of the molecular and structural aspects of how V(j) and V(m) are sensed, and how they, therefore, control channel opening and closing. Mutagenic strategies coupled with structural, biochemical and electrophysical studies are providing significant insights into how distinct forms of voltage dependence are brought about. The emerging picture indicates that Cx channels can undergo transitions between multiple conductance states driven by distinct voltage-gating mechanisms. Each hemichannel may contain a set of two V(j) gates, one fast and one slow, which mediate the transitions between the main open state to the residual state and to the fully closed state, respectively. Eventually, a V(m) gate regulates channel transitions between the open and closed states. Clusters of charged residues within separate domains of the Cx molecule have been identified as integral parts of the V(j) and V(m) sensors. The charges at the first positions of the amino terminal cytoplasmic domain determine the magnitude and polarity of the sensitivity to fast V(j)-gating, as well as contributing to the V(j)-rectifying properties of ion permeation. Additionally, important advances have been made in identifying the conformational rearrangements responsible for fast V(j)-gating transitions to the residual state in the Cx43 channel. These changes involve an intramolecular particle-receptor interaction between the carboxy terminal domain and the cytoplasmic loop.
Collapse
Affiliation(s)
- Daniel González
- Research Department, Unit of Experimental Neurology, Ramón y Cajal Hospital, Carretera de Colmenar Viejo km 9, Madrid, Spain
| | | | | |
Collapse
|