1
|
Pem B, Pišonić M, Momčilov M, Crnolatac I, Brkljača Z, Vazdar M, Bakarić D. Protonation of palmitic acid embedded in DPPC lipid bilayers obscures detection of ripple phase by FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124773. [PMID: 39002469 DOI: 10.1016/j.saa.2024.124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The transformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers from the gel (Lβ') to the fluid (Lα) phase involves an intermediate ripple (Pβ') phase forming a few degrees below the main transition temperature (Tm). While the exact cause of bilayer rippling is still debated, the presence of amphiphilic molecules, pH, and lipid bilayer architecture are all known to influence (pre)transition behavior. In particular, fatty acid chains interact with hydrophobic lipid tails, while the carboxylic groups simultaneously participate in proton transfer with interfacial water in the polar lipid region which is controlled by the pH of the surrounding aqueous medium. The molecular-level variations in the DPPC ripple phase in the presence of 2% palmitic acid (PA) were studied at pH levels 4.0, 7.3, and 9.1, where PA is fully protonated, partially protonated, or fully deprotonated. Bilayer thermotropic behavior was investigated by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy which agreed in their characterization of (pre)transition at pH of 9.1, but not at pH 4.0 and especially not at 7.3. Owing to the different insertion depths of protonated and deprotonated PA, along with the ability of protonated PA to undergo flip-flop in the bilayer, these two forms of PA show a different hydration pattern in the interfacial water layer. Finally, these results demonstrated the hitherto undiscovered potential of FTIR spectroscopy in the detection of the events occurring at the surface of lipid bilayers that obscure the low-cooperativity phase transition explored in this work.
Collapse
Affiliation(s)
- Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marina Pišonić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marina Momčilov
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Mario Vazdar
- Department of Mathematics, Informatics, and Cybernetics, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Pérez-Isidoro R, Valdez-Lara AG, Díaz-Salazar AJ, Hoeppener S, Guerrero-Sánchez C, Quintana-Owen P, Ruiz-Suárez JC, Schubert US, Ayora-Talavera G, De Jesús-Téllez MA, Saldívar-Guerra E. Biophysical investigation of liposome systems decorated with bioconjugated copolymers in the presence of amantadine. J Mater Chem B 2024; 12:5823-5837. [PMID: 38757473 DOI: 10.1039/d4tb00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Rosendo Pérez-Isidoro
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| | | | - Alma Jessica Díaz-Salazar
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Patricia Quintana-Owen
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, A.P. 73, Cordemex, 97310 Mérida, Yucatán, Mexico
| | | | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Guadalupe Ayora-Talavera
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
| | | | - Enrique Saldívar-Guerra
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| |
Collapse
|
3
|
Okayama A, Hoshino T, Wada K, Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem Phys Lipids 2024; 259:105376. [PMID: 38325710 DOI: 10.1016/j.chemphyslip.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.
Collapse
Affiliation(s)
- Ayumi Okayama
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuya Hoshino
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Kohei Wada
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|
4
|
Pašalić L, Jakas A, Pem B, Bakarić D. Adsorption/Desorption of Cationic-Hydrophobic Peptides on Zwitterionic Lipid Bilayer Is Associated with the Possibility of Proton Transfer. Antibiotics (Basel) 2023; 12:1216. [PMID: 37508312 PMCID: PMC10376034 DOI: 10.3390/antibiotics12071216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides built up from dominantly cationic and hydrophobic amino acid residues with a distinguished ability to pass through the cell membrane. Due to the possibility of linking and delivering the appropriate cargo at the desired location, CPPs are considered an economic and less invasive alternative to antibiotics. Besides knowing that their membrane passage mechanism is a complex function of CPP chemical composition, the ionic strength of the solution, and the membrane composition, all other details on how they penetrate cell membranes are rather vague. The aim of this study is to elucidate the ad(de)sorption of arginine-/lysine- and phenylalanine-rich peptides on a lipid membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipids. DSC and temperature-dependent UV-Vis measurements confirmed the impact of the adsorbed peptides on thermotropic properties of DPPC, but in an inconclusive way. On the other hand, FTIR spectra acquired at 30 °C and 50 °C (when DPPC lipids are found in the gel and fluid phase, respectively) unambiguously confirmed the proton transfer between particular titratable functional groups of R5F2/K5F2 that highly depend on their immediate surroundings (DPPC or a phosphate buffer). Molecular dynamic simulations showed that both peptides may adsorb onto the bilayer, but K5F2 desorbs more easily and favors the solvent, while R5F2 remains attached. The results obtained in this work highlight the importance of proton transfer in the design of CPPs with their desired cargo, as its charge and composition dictates the possibility of entering the cell.
Collapse
Affiliation(s)
- Lea Pašalić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Andreja Jakas
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Maleš P, Butumović M, Erceg I, Brkljača Z, Bakarić D. Influence of DPPE surface undulations on melting temperature determination: UV/Vis spectroscopic and MD study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184072. [PMID: 36216096 DOI: 10.1016/j.bbamem.2022.184072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022]
Abstract
One of the most distinguished quantities that describes lipid main phase transition, i.e. the transition from the gel (Lβ(')) to the fluid (Lα) phase, is its melting temperature (Tm). Because melting is accompanied by a large change in enthalpy the, Lβ(') → Lα transition can be monitored by various calorimetric, structural and spectroscopic techniques and Tm should be the same regardless of the metric monitored or the technique employed. However, in the case of DPPE multilamellar aggregates there is a small but systematic deviation of Tm values determined by DSC and FTIR spectroscopy. The aim of this paper is to explain this discrepancy by combined UV/Vis spectroscopic and MD computational approach. Multivariate analysis performed on temperature-dependent UV/Vis spectra of DPPE suspensions demonstrated that at 55 ± 1 °C certain phenomenon causes a small but detectable change in suspension turbidity, whereas a dominant change in the latter is registered at 63.2 ± 0.4 °C that coincides with Tm value determined from DSC curve. If this effect should be ignored, the overall data give Tm value the same as FTIR spectra data (61.0 ± 0.4 °C). As the classical MD simulations suggest that about 10° below Tm certain undulations appear at the surface of DPPE bilayers, we concluded that certain discontinuities in curvature fluctuations arise at reported temperature which are to some extent coupled with lipid melting. Ultimately, such events and the associated changes in curvature affect Tm value measured by different techniques.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marija Butumović
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ina Erceg
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
6
|
Japiassu KB, Fay F, Marengo A, Louaguenouni Y, Cailleau C, Denis S, Chapron D, Tsapis N, Nascimento TL, Lima EM, Fattal E. Interplay between mucus mobility and alveolar macrophage targeting of surface-modified liposomes. J Control Release 2022; 352:15-24. [PMID: 36209941 DOI: 10.1016/j.jconrel.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells. Unfortunately, this coating strategy may be countered by the presence on the surface of the nanoparticles of a poly(ethylene glycol) corona employed to improve nanoparticles' diffusion in the lung mucus. This study aims to measure this phenomenon by comparing the behavior in a murine lung inflammation model of three liposomal platforms designed to represent different poly(ethylene glycol) and hyaluronic acid densities (Liposome-PEG, Liposome-PEG-HA and Liposome-HA). In this work, the liposomes were obtained by a one-step ethanol injection method. Their interaction with mucin and targeting ability toward pro-inflammatory macrophages were then investigated in vitro and in vivo in a LPS model of lung inflammation. In vitro, poly(ethylene glycol) free HA-liposomes display a superior targeting efficiency toward M1 macrophages, while the addition of poly(ethylene glycol) induces better mucus mobility. Interestingly in vivo studies revealed that the three liposomes showed distinct cell specificity with alveolar macrophages demonstrating an avidity for poly(ethylene glycol) free HA-liposomes, while neutrophils favored PEGylated liposomes exempt of HA. Those results could be explained by the presence of two forces exercising a balance between mucus penetration and receptor targeting. This study corroborates the importance of considering the site of action and the targeted cells when designing nanoparticles to treat lung diseases.
Collapse
Affiliation(s)
- Kamila Bohne Japiassu
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France; Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Francois Fay
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Alessandro Marengo
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Younès Louaguenouni
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Catherine Cailleau
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Stéphanie Denis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - David Chapron
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Nicolas Tsapis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Thais Leite Nascimento
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Eliana Martins Lima
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Elias Fattal
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France.
| |
Collapse
|
7
|
Maleš P, Pem B, Petrov D, Jurašin DD, Bakarić D. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. SOFT MATTER 2022; 18:6703-6715. [PMID: 36017811 DOI: 10.1039/d2sm00878e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The elucidation of the thermal properties of phosphatidylcholine liposomes is often based on the analysis of the thermal capacity profiles of multilamellar liposomes (MLV), which may qualitatively disagree with those of unilamellar liposomes (LUV). Experiments and interpretation of LUV liposomes is further complicated by aggregation and lamellarization of lipid bilayers in a short time period, which makes it almost impossible to distinguish the signatures of the two types of bilayers. To characterize independently MLV and LUV of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the latter were prepared with the addition of small amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) which, due to the sterical hindrance and negative charge at a given pH value, cause LUV repellence and contribute to their stability. Differential scanning calorimetry curves and temperature-dependent UV/Vis spectra of the prepared MLV and LUV were measured. Multivariate analysis of spectrophotometric data determined the phase transition temperatures (pretransition at Tp and the main phase transition at Tm), and based on the changes in turbidities, the thickness of the lipid bilayer in LUV was determined. The obtained data suggested that the curvature change is a key distinguishing factor in MLV and LUV heat capacity profiles. By combining the experimental results and those obtained by MD simulations, the interfacial water layer was characterized and its contribution to the thermal properties of LUV was discussed.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Maleš P, Brkljača Z, Domazet Jurašin D, Bakarić D. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121013. [PMID: 35176647 DOI: 10.1016/j.saa.2022.121013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
One of the advantages of investigating lipid phase transitions by thermoanalytical techniques such as DSC is manifested in the proportionality of the signal strength on a DSC curve, attributed to a particular thermotropic event, and its cooperativity degree. Accordingly, the pretransition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is less noticeable than its main phase transition; as a matter of fact, when DSC measurements are performed at low heating rate, such low-cooperativity phase transition could go (almost) unnoticed. The aim of this work is to present temperature-dependent UV/Vis spectroscopy, based on a temperature-dependent change in DPPC suspension turbidity, as a technique applicable for determination of lipid phase transition temperatures. Multivariate analyzes of the acquired UV/Vis spectra show that phase transitions of the low-cooperativity degree, such as pretransitions, can be identified with the same certainty as transitions of a high-cooperativity degree.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
10
|
Civelek N, Bilge D. Investigating the Molecular Effects of Curcumin by Using Model Membranes. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Abstract
The ability of cholesterol to uncoil (i.e., condense) the acyl chains of phospholipids has been known for a century. Despite extensive studies of the interactions between cholesterol and phospholipids, a molecular-level understanding of this uncoiling phenomenon has remained elusive. Equally unclear has been whether cholesterol's two different faces (i.e., its relatively smooth α face and its relatively rough β face) contribute to its condensing power. Because cholesterol's condensing effect is believed to play a major role in controlling the fluidity, structure, and functioning of all animal cell membranes, its biological importance cannot be overstated. This Perspective focuses on experimental evidence that addresses (i) the credibility of a popular "umbrella" mechanism that has been used to account for cholesterol's condensing effect, (ii) the credibility of an alternate "template" mechanism, (iii) the importance of cholesterol two-faced character with respect to its condensing power, and (iv) the viability of a surface occupancy model.
Collapse
|
12
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
13
|
Singh AK, Singh SS, Rathore AS, Singh SP, Mishra G, Awasthi R, Mishra SK, Gautam V, Singh SK. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomater Sci Eng 2021; 7:3737-3753. [PMID: 34297529 DOI: 10.1021/acsbiomaterials.1c00514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective permeability of the blood-brain barrier limits effective treatment of neurodegenerative disorders. In the present study, brain-targeted lipid-coated mesoporous silica nanoparticles (MSNs) containing berberine (BBR) were synthesized for the effective treatment of Alzheimer's disease (AD). The study involved synthesis of Mobil Composition of Matter-41 (MCM-41) mesoporous silica nanoparticles (MSNs), BBR loading, and lipid coating of MSNs (MSNs-BBR-L) and in vitro and in vivo characterization of MSNs-BBR-L. The liposomes (for lipid coating) were prepared by the thin-film hydration method. Transmission electron microscopy (TEM) images indicated 5 nm thickness of the lipid coating. Dynamic light scattering (DLS) and TEM results confirmed that the size of synthesized MSNs-BBR-L was in the range of 80-100 nm. The X-ray diffraction (XRD) pattern demonstrated retention of the ordered structure of BBR after encapsulation and lipid coating. Fourier transform infrared (FTIR) spectrum confirmed the formation of a lipid coat over the MSN particles. MSNs-BBR-L displayed significantly (p < 0.05) higher acetylcholine esterase (AChE) inhibitory activity. The study confirmed significant (p < 0.05) amyloid fibrillation inhibition and decreased the malondialdehyde (MDA) level by MSNs-BBR-L. Pure BBR- and MSNs-BBR-L-treated AD animals showed a significant decrease in the BACE-1 level compared to scopolamine-intoxicated mice. Eight times higher area under the curve for MSNs-BBR-L (2400 ± 27.44 ng h/mL) was recorded compared to the pure BBR (295.5 ± 0.755 ng h/mL). Overall, these results highlight the utility of MSNs-BBR-L as promising drug delivery vehicles for brain delivery of drugs.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Juszkiewicz K, Sikorski AF, Czogalla A. Building Blocks to Design Liposomal Delivery Systems. Int J Mol Sci 2020; 21:E9559. [PMID: 33334048 PMCID: PMC7765547 DOI: 10.3390/ijms21249559] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The flexibility of liposomal carriers does not just simply rely on their capability to encapsulate various types of therapeutic substances, but also on the large array of components used for designing liposome-based nanoformulations. Each of their components plays a very specific role in the formulation and can be easily replaced whenever a different therapeutic effect is desired. It is tempting to describe this by an analogy to Lego blocks, since a whole set of structures, differing in their features, can be designed using a certain pool of blocks. In this review, we focus on different design strategies, where a broad variety of liposomal components facilitates the attainment of straightforward control over targeting and drug release, which leads to the design of the most promising systems for drug delivery. The key aspects of this block-based architecture became evident after its implementation in our recent works on liposomal carriers of antisense oligonucleotides and statins, which are described in the last chapter of this review.
Collapse
Affiliation(s)
- Katarzyna Juszkiewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-124 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| |
Collapse
|
15
|
Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, Van de Walle D, Rimaux T, Skirtach A, Dewettinck K. Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chem Phys Lipids 2020; 230:104912. [DOI: 10.1016/j.chemphyslip.2020.104912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|
16
|
Pérez-Isidoro R, Costas M. The effect of neuroleptic drugs on DPPC/sphingomyelin/cholesterol membranes. Chem Phys Lipids 2020; 229:104913. [PMID: 32335028 DOI: 10.1016/j.chemphyslip.2020.104913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
The hydrophobic nature of neuroleptic drugs renders that these molecules interact not only with protein receptors, but also with the lipids constituting the membrane bilayer. We present a systematic study of the effect of seven neuroleptic drugs on a biomembrane model composed of DPPC, sphingomyelin, and cholesterol. Differential scanning calorimetry (DSC) measurements were used to monitor the gel-fluid phase transition of the lipid bilayer at three pH values and also as a function of drug concentration. The implementation of a new methodology to mix lipids homogeneously allowed us to assemble bilayers completely free of organic solvents. The seven neuroleptics were: trifluoperazine, haloperidol decanoate, clozapine, quetiapine, olanzapine, aripiprazole, and amisulpride. The DSC results show that the insertion of the drug into the bilayer produces a fluidization and a disordering of the bilayer. The bilayer perturbation is qualitatively the same for all the studied drugs, but quantitatively different. The driving force for the neuroleptic drug to place itself in the lipid bilayer is entropic in nature, signaling to the importance of the size and geometry of the drugs. The drug protonated species produce stronger effects than their non-protonated forms. At high concentrations two of the neuroleptics revert the fluidization effect and another completely abolishes the gel-fluid transition. The DSC data and the associated discussion contribute to the understanding of the interactions between neuroleptic drugs and lipid membranes.
Collapse
Affiliation(s)
- R Pérez-Isidoro
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| | - M Costas
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
17
|
Nyholm TKM, Engberg O, Hautala V, Tsuchikawa H, Lin KL, Murata M, Slotte JP. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains. Biophys J 2019; 117:1577-1588. [PMID: 31610877 DOI: 10.1016/j.bpj.2019.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lateral segregation and the formation of lateral domains are well-known phenomena in ternary lipid bilayers composed of an unsaturated (low gel-to-liquid phase transition temperature (Tm)) phospholipid, a saturated (high-Tm) phospholipid, and cholesterol. The formation of lateral domains has been shown to be influenced by differences in phospholipid acyl chain unsaturation and length. Recently, we also showed that differential interactions of cholesterol with low- and high-Tm phospholipids in the bilayer can facilitate phospholipid segregation. Now, we have investigated phospholipid-cholesterol interactions and their role in lateral segregation in ternary bilayers composed of different unsaturated phosphatidylcholines (PCs) with varying acyl chain lengths, N-palmitoyl-D-erythro-sphingomyelin (PSM), and cholesterol. Using deuterium NMR spectroscopy, we determined how PSM was influenced by the acyl chain composition in surrounding PC environments and correlated this with the affinity of cholestatrienol (a fluorescent cholesterol analog) for PSM in the different PC environments. Results from a combination of time-resolved fluorescence measurements of trans-parinaric acid and Förster resonance energy transfer experiments showed that the relative affinity of cholesterol for phospholipids determined the degree to which the sterol promoted domain formation. From Förster resonance energy transfer, deuterium NMR, and differential scanning calorimetry results, it was clear that cholesterol also influenced both the thermostability of the domains and the degree of order in and outside the PSM-rich domains. The results of this study have shown that the affinity of cholesterol for both low-Tm and high-Tm phospholipids and the effects of low- and high-Tm phospholipids on each other influence both lateral structure and domain properties in complex bilayers. We envision that similar effects also contribute to lateral heterogeneity in even more complex biological membranes.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland.
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kai-Lan Lin
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| |
Collapse
|
18
|
Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, Loretz B, Lehr C. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv Healthc Mater 2019; 8:e1900564. [PMID: 31328434 DOI: 10.1002/adhm.201900564] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Indexed: 01/07/2023]
Abstract
Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
Collapse
Affiliation(s)
- Sara Menina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| | - Janina Eisenbeis
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Mohamed Ashraf M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Marcus Koch
- Institute for New MaterialsSaarland University Saarbrücken 66123 Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- School of Pharmacy and Biomolecular SciencesJohn Moores University Liverpool L3 3AF UK
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| |
Collapse
|
19
|
Vibrational spectroscopy combined with molecular dynamics simulations as a tool for studying behavior of reactive aldehydes inserted in phospholipid bilayers. Chem Phys Lipids 2019; 225:104793. [PMID: 31369738 DOI: 10.1016/j.chemphyslip.2019.104793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
Vibrational Fourier-transform infrared (FTIR) spectroscopy aided with molecular dynamics (MD) simulations is used for studying the interaction of several reactive aldehydes (RAs), nonanal (NA), 2-nonenal (NE), 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The results obtained by the combination of these two techniques, supported also by electron paramagnetic resonance (EPR) spectroscopy, show that NA has the strongest stabilization in the bilayer, followed by less stabilized NE, HNE and ONE. We also revealed that HNE readily makes hydrogen bonds to carbonyl groups of POPC (but not to phosphate groups), in contrast to other RAs which are hydrogen bond acceptors and do not make hydrogen bonds with lipids. A combination of FTIR spectroscopy and MD simulations is sensitive to small chemical changes in the structures of RAs, thus making it a valuable tool for studying the weak interactions between compounds inserted to phospholipid bilayers.
Collapse
|
20
|
Morandi MI, Sommer M, Kluzek M, Thalmann F, Schroder AP, Marques CM. DPPC Bilayers in Solutions of High Sucrose Content. Biophys J 2019; 114:2165-2173. [PMID: 29742409 DOI: 10.1016/j.bpj.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022] Open
Abstract
The properties of lipid bilayers in sucrose solutions have been intensely scrutinized over recent decades because of the importance of sugars in the field of biopreservation. However, a consensus has not yet been formed on the mechanisms of sugar-lipid interaction. Here, we present a study on the effect of sucrose on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers that combines calorimetry, spectral fluorimetry, and optical microscopy. Intriguingly, our results show a significant decrease in the transition enthalpy but only a minor shift in the transition temperature. Our observations can be quantitatively accounted for by a thermodynamic model that assumes partial delayed melting induced by sucrose adsorption at the membrane interface.
Collapse
Affiliation(s)
- Mattia I Morandi
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France
| | - Mathieu Sommer
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France
| | - Monika Kluzek
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France
| | - Fabrice Thalmann
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France
| | - André P Schroder
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France
| | - Carlos M Marques
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, Strasbourg Cedex, France.
| |
Collapse
|
21
|
Almeida PF. How to Determine Lipid Interactions in Membranes from Experiment Through the Ising Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:21-40. [PMID: 30589556 DOI: 10.1021/acs.langmuir.8b03054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The determination and the meaning of interactions in lipid bilayers are discussed and interpreted through the Ising model. Originally developed to understand phase transitions in ferromagnetic systems, the Ising model applies equally well to lipid bilayers. In the case of a membrane, the essence of the Ising model is that each lipid is represented by a site on a lattice and that the interaction of each site with its nearest neighbors is represented by an energy parameter ω. To calculate the thermodynamic properties of the system, such as the enthalpy, the Gibbs energy, and the heat capacity, the partition function is derived. The calculation of the configurational entropy factor in the partition function, however, requires approximations or the use of Monte Carlo (MC) simulations. Those approximations are described. Ultimately, MC simulations are used in combination with experiment to determine the interaction parameters ω in lipid bilayers. Several experimental approaches are described, which can be used to obtain interaction parameters. They include nearest-neighbor recognition, differential scanning calorimetry, and Förster resonance energy transfer. Those approaches are most powerful when used in combination of MC simulations of Ising models. Lipid membranes of different compositions are discussed, which have been studied with these approaches. They include mixtures of cholesterol, saturated (ordered) phospholipids, and unsaturated (disordered) phospholipids. The interactions between those lipid species are examined as a function of molecular properties such as the degree of unsaturation and the acyl chain length. The general rule that emerges is that interactions between different lipids are usually unfavorable. The exception is that cholesterol interacts favorably with saturated (ordered) phospholipids. However, the interaction of cholesterol with unsaturated phospholipids becomes extremely unfavorable as the degree of unsaturation increases.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| |
Collapse
|
22
|
Corrales Chahar F, Díaz S, Ben Altabef A, Gervasi C, Alvarez P. Interactions of valproic acid with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Chem Phys Lipids 2019; 218:125-135. [DOI: 10.1016/j.chemphyslip.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
|
23
|
Almeida PF, Carter FE, Kilgour KM, Raymonda MH, Tejada E. Heat Capacity of DPPC/Cholesterol Mixtures: Comparison of Single Bilayers with Multibilayers and Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9798-9809. [PMID: 30088940 DOI: 10.1021/acs.langmuir.8b01774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The excess heat capacity (Δ C p) of mixtures of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) is examined in detail in large unilamellar vesicles (LUVs), both experimentally, using differential scanning calorimetry (DSC), and theoretically, using a three-state Ising model. The model postulates that DPPC can access three conformational states: gel, liquid-disordered (Ld), and liquid-ordered (Lo). The Lo state, however, is only available if coupled with interaction with an adjacent Chol. Δ C p was calculated using Monte Carlo simulations on a lattice and compared to experiment. The DSC results in LUVs are compared with literature data on multilamellar vesicles (MLVs). The enthalpy change of the complete phase transition from gel to Ld is identical in LUVs and MLVs, and the melting temperatures ( Tm) are similar. However, the DSC curves in LUVs are significantly broader, and the maxima of Δ C p are accordingly smaller. The parameters in the Ising model were chosen to match the DSC curves in LUVs and the nearest-neighbor recognition (NNR) data. The model reproduces the NNR data very well. It also reproduces the phase transition in DPPC, the freezing point depression induced by Chol, and the broad component of Δ C p in DPPC/Chol LUVs. However, there is a sharp component, between 5 and 15 mol % Chol, that the model does not reproduce. The broad component of Δ C p becomes dominant as Chol concentration increases, indicating that it involves melting of the Lo phase. Because the simulations reproduce this component, the conclusions regarding the nature of the phase transition at high Chol concentrations and the structure of the Lo phase are important: there is no true phase separation in DPPC/Chol LUVs. There are large domains of gel and Lo phase coexisting below Tm of DPPC, but above Tm the three states of DPPC are mixed with Chol, although clusters persist.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Faith E Carter
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Katie M Kilgour
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Matthew H Raymonda
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| | - Emmanuel Tejada
- Department of Chemistry and Biochemistry , University of North Carolina Wilmington , Wilmington , North Carolina 28403 , United States
| |
Collapse
|
24
|
Kafle A, Misono T, Bhadani A, Akamatsu M, Sakai K, Kaise C, Kaneko T, Sakai H. Effects of β-Sitosteryl Sulfate on the Phase Behavior and Hydration Properties of Distearoylphosphatidylcholine: a Comparison with Dipalmitoylphosphatidylcholine. J Oleo Sci 2018. [DOI: 10.5650/jos.ess17182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ananda Kafle
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Takeshi Misono
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Avinash Bhadani
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | | | | | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
25
|
Effects of sodium β-sitosteryl sulfate on the phase behavior of dipalmitoylphosphatidylcholine. Colloids Surf B Biointerfaces 2018; 161:59-66. [DOI: 10.1016/j.colsurfb.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
26
|
Chang WH, Chuang YT, Yu CY, Chang CH, Yang YM. Effects of Sterol-Like Additives on Phase Transition Behavior of Ion-Pair Amphiphile Bilayers. J Oleo Sci 2017; 66:1229-1238. [PMID: 29021491 DOI: 10.5650/jos.ess17086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incorporation of additive in lipid bilayers is one of the ordinary approaches for modulating their properties. Additive effect on phase transition of ion-pair amphiphile (IPA) bilayers, however, is not known. In this work, four double-chained IPAs with different hydrocarbon chain lengths and symmetry were designed and synthesized from single-chained cationic and anionic surfactants by the precipitation method. By using differential scanning calorimetry (DSC), the thermotropic transition behavior from gel phase (Lβ) through rippled phase (Pβ') if any to liquid-crystalline phase (Lα) was studied for bilayers of these lipid-like IPAs in excess water. The effects of three sterol-like additives (cholesterol, α-tocopherol, and α-tocopheryl acetate) in IPA bilayers on thermal phase behavior were then systematically investigated. The experimental results revealed that with increasing concentration of additive, the phase transition temperatures were unaffected on the one hand and the enthalpies of phase transition were decreased on the other hand. When the addition of additive exceeded a specific amount, the phase transition disappeared. More hasty disappearance of phase transition was found for IPAs with lower total number of carbon atoms in the hydrocarbon chains. For IPAs with the same total number of carbon atoms in the hydrocarbon chains, the disappearance of phase transition is more hasty for the asymmetric one than for the symmetric one. Similar effects on thermal phase behavior of four IPA bilayers were exhibited by the three additives with similar chemical structures. Possible mechanism of additive effects on phase transition of IPA bilayers was then proposed in line with that of lipid bilayers.
Collapse
Affiliation(s)
- Wei-Han Chang
- Department of Chemical Engineering, National Cheng Kung University
| | - Yun-Ting Chuang
- Department of Chemical Engineering, National Cheng Kung University
| | - Cheng-Yeh Yu
- Department of Chemical Engineering, National Cheng Kung University
| | | | - Yu-Min Yang
- Department of Chemical Engineering, National Cheng Kung University
| |
Collapse
|
27
|
Boccalini G, Conti L, Montis C, Bani D, Bencini A, Berti D, Giorgi C, Mengoni A, Valtancoli B. Methylene blue-containing liposomes as new photodynamic anti-bacterial agents. J Mater Chem B 2017; 5:2788-2797. [DOI: 10.1039/c6tb03367a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel cationic liposomes containing the photo-activatable drug methylene blue (MB) strongly enhance the antibacterial activity of MB towards Gram-negative bacteria and improve biofilm penetration.
Collapse
Affiliation(s)
- Giulia Boccalini
- Department of Experimental & Clinical Medicine
- Research Unit of Histology & Embryology
- University of Florence
- Italy
| | - Luca Conti
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Costanza Montis
- Department of Chemistry Ugo Schiff and CSGI
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine
- Research Unit of Histology & Embryology
- University of Florence
- Italy
| | - Andrea Bencini
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Debora Berti
- Department of Chemistry Ugo Schiff and CSGI
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Claudia Giorgi
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Alessio Mengoni
- Department of Biology
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Barbara Valtancoli
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| |
Collapse
|
28
|
Ricci M, Oliva R, Del Vecchio P, Paolantoni M, Morresi A, Sassi P. DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3024-3031. [DOI: 10.1016/j.bbamem.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
|
29
|
Bui TT, Suga K, Umakoshi H. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6176-84. [PMID: 27158923 DOI: 10.1021/acs.langmuir.5b04343] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.
Collapse
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
30
|
A calorimetric and spectroscopic comparison of the effects of cholesterol and its sulfur-containing analogs thiocholesterol and cholesterol sulfate on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:168-80. [DOI: 10.1016/j.bbamem.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
|
31
|
Li Y, Guan L, Lu T, Li H, Li Z, Li F. Interactions of the N-terminal domain of human islet amyloid polypeptide with lipid membranes: the effect of cholesterol. RSC Adv 2016. [DOI: 10.1039/c6ra19714k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholesterol facilitates the insertion and aggregation of hIAPP1–19 in membrane and the CARC motif mediates the peptide–cholesterol interaction.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Liping Guan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Haichao Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
32
|
Benesch MGK, McElhaney RN. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 195:21-33. [PMID: 26620814 DOI: 10.1016/j.chemphyslip.2015.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023]
Abstract
We have carried out a comparative differential scanning calorimetric (DSC) study of the effects of cholesterol (C) and the eight most physiologically relevant oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes. The structures of these oxysterols differ from that of C by the presence of additional hydroxyl, keto or epoxy groups on the steroid ring system or by the presence of a hydroxyl group in the alkyl side chain. In general, the progressive incorporation of these oxysterols reduces the temperature, cooperativity and enthalpy of the pretransition of DPPC to a greater extent than C, indicating that their presence thermally destabilizes and disorders the gel states of DPPC bilayers to a greater extent than C. Similarly, the incorporation of these oxysterols either increases the temperature of the broad component of the main phase transition to a smaller extent than C or actually decreases it. Again, this indicates that the presence of these compounds is less effective at thermally stabilizing and ordering the sterol-rich domains of DPPC bilayers than is C itself. Moreover, the incorporation of these oxysterols decrease the cooperativity and enthalpy of the main phase transition of DPPC to a smaller extent than C, indicating that they are somewhat less miscible in fluid DPPC bilayers than is C. Particularly notable in this regard is 25-hydroxycholesterol, which exhibits a markedly reduced miscibility in both gel and fluid DPPC bilayers compared to C itself. In general, the effectiveness of these oxysterols in stabilizing and ordering DPPC bilayers decreases as their rate of interbilayer exchange and the polarity of the oxysterol increases. We close by providing a tentative molecular explanation for the results of our DSC studies and of those of previous biophysical studies of the effects of various oxysterol on lipid bilayer model membranes.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Ronald N McElhaney
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
33
|
Benesch MG, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 191:123-35. [DOI: 10.1016/j.chemphyslip.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
34
|
Mannock DA, Benesch MG, Lewis RN, McElhaney RN. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1629-38. [DOI: 10.1016/j.bbamem.2015.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
|
35
|
Altunayar C, Sahin I, Kazanci N. A comparative study of the effects of cholesterol and desmosterol on zwitterionic DPPC model membranes. Chem Phys Lipids 2015; 188:37-45. [DOI: 10.1016/j.chemphyslip.2015.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
|
36
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
37
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
38
|
Oliva R, Del Vecchio P, Stellato MI, D'Ursi AM, D'Errico G, Paduano L, Petraccone L. A thermodynamic signature of lipid segregation in biomembranes induced by a short peptide derived from glycoprotein gp36 of feline immunodeficiency virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:510-7. [PMID: 25450811 DOI: 10.1016/j.bbamem.2014.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022]
Abstract
The interactions between proteins/peptides and lipid bilayers are fundamental in a variety of key biological processes, and among these, the membrane fusion process operated by viral glycoproteins is one of the most important, being a fundamental step of the infectious event. In the case of the feline immunodeficiency virus (FIV), a small region of the membrane proximal external region (MPER) of the glycoprotein gp36 has been demonstrated to be necessary for the infection to occur, being able to destabilize the membranes to be fused. In this study, we report a physicochemical characterization of the interaction process between an eight-residue peptide, named C8, modeled on that gp36 region and some biological membrane models (liposomes) by using calorimetric and spectroscopic measurements. CD studies have shown that the peptide conformation changes upon binding to the liposomes. Interestingly, the peptide folds from a disordered structure (in the absence of liposomes) to a more ordered structure with a low but significant helix content. Isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) results show that C8 binds with high affinity the lipid bilayers and induces a significant perturbation/reorganization of the lipid membrane structure. The type and the extent of such membrane reorganization depend on the membrane composition. These findings provide interesting insights into the role of this short peptide fragment in the mechanism of virus-cell fusion, demonstrating its ability to induce lipid segregation in biomembranes.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Anna Maria D'Ursi
- Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
39
|
Krause M, Wang M, Mydock-McGrane L, Covey DF, Tejada E, Almeida PF, Regen SL. Eliminating the roughness in cholesterol's β-face: does it matter? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12114-12118. [PMID: 25290635 PMCID: PMC4204922 DOI: 10.1021/la503075e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/06/2014] [Indexed: 06/03/2023]
Abstract
One of the long-standing issues surrounding cholesterol (Chol) relates to its two-faced character. In particular, the consequences of its having a rough β-face and a smooth α-face on its structural influence in cell membranes has remained elusive. In this study, direct comparisons have been made between cholesterol and a "smoothened" analog, DChol (i.e., 18,19-dinorcholesterol) using model membranes and a combination of nearest-neighbor recognition, differential scanning calorimetry, fluorescence, and monolayer measurements. Taken together, these results indicate that subtle differences exist between the interaction of these two sterols with the different states of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Chol has a greater condensing power than DChol, but only slightly so, i.e., on the order of a few tens of calories per mole.
Collapse
Affiliation(s)
- Martin
R. Krause
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Minghui Wang
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Laurel Mydock-McGrane
- Department
of Developmental Biology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Douglas F. Covey
- Department
of Developmental Biology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Departments
of Anesthesiology and Psychiatry and the Taylor Family Institute for
Innovative Psychiatric Research, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Emmanuel Tejada
- Department
of Chemistry and Biochemistry, University
of North Carolina at Wilmington, Wilmington, North Carolina 28403, United States
| | - Paulo F. Almeida
- Department
of Chemistry and Biochemistry, University
of North Carolina at Wilmington, Wilmington, North Carolina 28403, United States
| | - Steven L. Regen
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
40
|
Yoneda JS, Rigos CF, de Lourenço TFA, Sebinelli HG, Ciancaglini P. Na,K-ATPase reconstituted in ternary liposome: the presence of cholesterol affects protein activity and thermal stability. Arch Biochem Biophys 2014; 564:136-41. [PMID: 25286376 DOI: 10.1016/j.abb.2014.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 01/27/2023]
Abstract
Differential scanning calorimetry (DSC) was applied to investigate the effect of cholesterol on the thermotropic properties of the lipid membrane (DPPC and DPPE). The thermostability and unfolding of solubilized and reconstituted Na,K-ATPase in DPPC:DPPE:cholesterol-liposomes was also studied to gain insight into the role of cholesterol in the Na,K-ATPase modulation of enzyme function and activity. The tertiary system (DPPC:DPPE:cholesterol) (molar ratio DPPC:DPPE equal 1:1) when cholesterol content was increased from 0% up to 40% results in a slight decrease in the temperature of transition and enthalpy, and an increase in width. We observed that, without heating treatment, at 37°C, the activity was higher for 20mol% cholesterol. However, thermal inactivation experiments showed that the enzyme activity loss time depends on the cholesterol membrane content. The unfolding of the enzyme incorporated to liposomes of DPPC:DPPE (1:1mol) with different cholesterol contents, ranging from 0% to 40% mol was also studied by DSC. Some differences between the thermograms indicate that the presence of lipids promotes a conformational change in protein structure and this change is enough to change the way Na,K-ATPase thermally unfolds.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP-USP, Depto. Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carolina Fortes Rigos
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP-USP, Depto. Química, 14040-901 Ribeirão Preto, SP, Brazil
| | | | - Heitor Gobbi Sebinelli
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP-USP, Depto. Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP-USP, Depto. Química, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Yonar D, Sünnetçioğlu MM. Spectroscopic and calorimetric studies on trazodone hydrochloride–phosphatidylcholine liposome interactions in the presence and absence of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2369-79. [DOI: 10.1016/j.bbamem.2014.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
42
|
Benesch MG, Lewis RN, Mannock DA, McElhaney RN. A DSC and FTIR spectroscopic study of the effects of the epimeric 4,6-cholestadien-3-ols and 4,6-cholestadien-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2014; 183:142-58. [DOI: 10.1016/j.chemphyslip.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
43
|
A detailed analysis of partial molecular volumes in DPPC/cholesterol binary bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3069-77. [PMID: 25151597 DOI: 10.1016/j.bbamem.2014.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2022]
Abstract
We examined the volumetric behavior of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol binary bilayer system with high accuracy and more cholesterol concentrations to reveal the detailed molecular states in the liquid-disordered (Ld) phase, the liquid-ordered (Lo) phase and the gel phase. We measured the average specific volume of the binary bilayer at several temperatures by the neutral flotation method and calculated the average volume per molecule to estimate the partial molecular volumes of DPPC and cholesterol in each phase. As a result, we found that the region with intermediate cholesterol concentrations showed a more complicated behavior than expected from simple coexistence of Ld and Lo domains. We also measured fluorescence decay of trans-parinaric acid (tPA) added into the binary bilayer with more cholesterol concentrations to get further insight into the cholesterol-induced formation of the Lo phase. On the basis of these results we discuss the molecular interaction between DPPC and cholesterol molecule in the Lo phase and the manner of Ld/Lo phase coexistence.
Collapse
|
44
|
Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2798-806. [PMID: 25091390 DOI: 10.1016/j.bbamem.2014.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
Depression is one of the most common psychiatric diseases in the population. Agomelatine is a novel antidepressant drug with melatonin receptor agonistic and serotonin 5-HT2C antagonistic properties. Furthermore, being a melatonergic drug, agomelatine has the potential of being used in therapeutic applications like melatonin as an antioxidant, anti-inflammatory and antiapoptotic drug. The action mechanism of agomelatine on the membrane structure has not been clarified yet. In the present study, we aimed to investigate the interaction of agomelatine with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylgylcerol (DPPG) by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). We found that agomelatine interacts with the head group in such a manner that it destabilizes the membrane architecture to a large extent. Thus, agomelatine causes alterations in the order, packing and dynamics of the DPPC and DPPG model membranes. Our results suggest that agomelatine strongly interacts with zwitterionic and charged membrane phospholipids. Because lipid structure and dynamics may have influence on the structure of membrane bound proteins and affect the signal transduction systems of membranes, these effects of agomelatine may be important in its action mechanism.
Collapse
|
45
|
Khvedelidze M, Mdzinarashvili T, Shekiladze E, Schneider M, Moersdorf D, Bernhardt I. Structure of drug delivery DPPA and DPPC liposomes with ligands and their permeability through cells. J Liposome Res 2014; 25:20-31. [PMID: 24766638 DOI: 10.3109/08982104.2014.911316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dipalmitoylphosphatidylcholine (DPPC) and 1,2-palmitoyl-phosphatidic acid (DPPA) liposomes, prepared by conventional rotary evaporation method, have similar structural organization, though they have significant differences. The similarity is that both types of lipids create standard bilayer liposomes with strong hydrophobic forces between lipids tails and with homogeneous bonds of hydrogen and electrostatic nature between hydrophilic lipids heads. By the calorimetric method, it has been shown that hydrophobic bonds break but liposomes' destruction does not occur by heating till 150 °C. As for bonds between lipid heads in liposomes, their cooperative destruction takes place at 41 °C for DPPC and 66 °C for DPPA liposomes. In the case of thermal distraction of DPPC liposomes, two so-called pre transitions peaks were observed before the main transition peak, which indicates that DPPC liposomes' structure is multilamellar. DPPA liposomes have one cooperative heat absorption peak, which points to a unilamellar structure of such liposomes. Substances of hydrophobic/hydrophilic nature, incorporated into the liposomes, are placed in hydrophobic or hydrophilic parts of liposomes, which lead to a change in calorimetric peak shapes and thermodynamic parameters. It has been shown that gold nanoparticles, incorporated into the DPPC liposomes, are able to enter Caco-2 cells. In contrast, these nanoparticles do not enter red blood cells.
Collapse
Affiliation(s)
- Mariam Khvedelidze
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University , Tbilisi , Georgia
| | | | | | | | | | | |
Collapse
|
46
|
A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1941-9. [PMID: 24704414 DOI: 10.1016/j.bbamem.2014.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
Abstract
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.
Collapse
|
47
|
A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2014; 177:71-90. [DOI: 10.1016/j.chemphyslip.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
|
48
|
Tamai N, Izumikawa T, Fukui S, Uemura M, Goto M, Matsuki H, Kaneshina S. How does acyl chain length affect thermotropic phase behavior of saturated diacylphosphatidylcholine-cholesterol binary bilayers? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2513-23. [PMID: 23791704 DOI: 10.1016/j.bbamem.2013.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
Abstract
Thermotropic phase behavior of diacylphosphatidylcholine (CnPC)-cholesterol binary bilayers (n=14-16) was examined by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry. The former technique can detect structural changes of the bilayer in response to the changes in polarity around Prodan molecules partitioned in a relatively hydrophilic region of the bilayer, while the latter is sensitive to the conformational changes of the acyl chains. On the basis of the data from both techniques, we propose possible temperature T-cholesterol composition Xch phase diagrams for these binary bilayers. A notable feature of our phase diagrams, including our previous results for diheptadecanoylphosphatidylcholine (C17PC) and distearoylphosphatidylcholine (C18PC), is that there is a peritectic-like point around Xch=0.15, which can be interpreted as indicating the formation of a 1:6-complex of cholesterol and CnPCs within the binary bilayer irrespective of the acyl chain length. We could give a reasonable explanation for such complex formation using the modified superlattice view. Our results also showed that the Xch value of the abolition of the main transition is almost constant for n=14-17 (ca. 0.33), while it increases to ca. 0.50 for n=18. By contrast, a biphasic n-dependence of Xch was observed for the abolition of the pretransition, suggesting that there are at least two antagonistic n-dependent factors. We speculate that this could be explained by the enhancement of the van der Waals interaction with increases in n and the weakening of the repulsion between the neighboring headgroups with decreases in n.
Collapse
Affiliation(s)
- Nobutake Tamai
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Dainese E, Sabatucci A, Angelucci CB, Barsacchi D, Chiarini M, Maccarrone M. Impact of embedded endocannabinoids and their oxygenation by lipoxygenase on membrane properties. ACS Chem Neurosci 2012; 3:386-92. [PMID: 22860207 PMCID: PMC3386857 DOI: 10.1021/cn300016c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/24/2012] [Indexed: 12/19/2022] Open
Abstract
N-Arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol are the best characterized endocannabinoids. Their biological activity is subjected to metabolic control whereby a dynamic equilibrium among biosynthetic, catabolic, and oxidative pathways drives their intracellular concentrations. In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within cells. The in vivo interaction between lipoxygenases and endocannabinoids is likely to occur within cell membranes; thus, we sought to ascertain whether a prototypical enzyme like soybean (Glycine max) 15-lipoxygenase-1 is able to oxygenate endocannabinoids embedded in synthetic vesicles and how these substances could affect the binding ability of the enzyme to different lipid bilayers. We show that (i) embedded endocannabinoids increase membrane fluidity; (ii) 15-lipoxygenase-1 preferentially binds to endocannabinoid-containing bilayers; and that (iii) 15-lipoxygenase-1 oxidizes embedded endocannabinoids and thus reduces fluidity and local hydration of membrane lipids. Together, the present findings reveal further complexity in the regulation of endocannabinoid signaling within the central nervous system, disclosing novel control by oxidative pathways.
Collapse
Affiliation(s)
- Enrico Dainese
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
- European Center
for Brain Research (CERC)/Santa Lucia Foundation, Rome,
Italy
| | | | | | - Daniela Barsacchi
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Marco Chiarini
- Department of Food
Science, University of Teramo, Teramo,
Italy
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
- European Center
for Brain Research (CERC)/Santa Lucia Foundation, Rome,
Italy
| |
Collapse
|
50
|
HUTH CHRISTOPHER, SHI DONGLU, WANG FENG, CARRAHAR DONALD, LIAN JIE, LU FENGYUAN, ZHANG JIAMING, EWING RODNEYC, PAULETTI GIOVANNIM. PHOSPHOLIPID ASSEMBLY ON SUPERPARAMAGNETIC NANOPARTICLES FOR THERMORESPONSIVE DRUG DELIVERY APPLICATIONS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984410000237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thermoresponsive nanocomposites were prepared by immobilizing a 2–3 nm thick phospholipid layer on the surface of superparamagnetic Fe3O4 nanoparticles via high-affinity avidin/biotin interactions. Morphological and physicochemical surface properties were assessed using transmission electron microscopy, confocal laser scanning microscopy, differential scanning calorimetry, and attenuated total reflectance Fourier transform infrared spectroscopy. The zeta potential of Fe3O4 colloids in phosphate buffered saline (PBS) decreased from -23.6 to -5.0 mV as a consequence of phospholipid immobilization. Nevertheless, heating properties of these superparamagnetic nanoparticles within an alternating magnetic field were not significantly affected. Hyperthermia-relevant temperatures > 40°C were achieved within 10–15 min using a 7-mT magnetic field alternating at a frequency of 1 MHz. Loading of the surface-associated phospholipid layer with the hydrophobic dye dansylcadaverine was accomplished at an efficiency of 479 ng/mg Fe3O4 . Release of this drug surrogate was temperature-dependent, resulting in a 2.5-fold greater release rate when nanoparticles were exposed to a temperature above the experimentally determined melting temperature of 39.7°C. These data underline the feasibility of preparing novel, stimulus-induced drug delivery systems where payload release from a colloid-immobilized phospholipid assembly is triggered by hyperthermia.
Collapse
Affiliation(s)
- CHRISTOPHER HUTH
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - DONGLU SHI
- The Institute for Advanced Materials and Nano Biomedicine, Tongji University, Shanghai 200092, P. R. China
- School of Electronic and Computing Systems, University of Cincinnati, 493 Rhodes Hall, Cincinnati, OH 45221-0012, USA
| | - FENG WANG
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - DONALD CARRAHAR
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - JIE LIAN
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - FENGYUAN LU
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - JIAMING ZHANG
- Departments of Geological Sciences, Nuclear Engineering and Radiological Sciences and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - RODNEY C. EWING
- Departments of Geological Sciences, Nuclear Engineering and Radiological Sciences and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - GIOVANNI M. PAULETTI
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|