1
|
Qu Z, Yan D, Song Z. Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges. Biomolecules 2022; 12:1686. [PMID: 36421700 PMCID: PMC9687412 DOI: 10.3390/biom12111686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular calcium (Ca) cycling in the heart plays key roles in excitation-contraction coupling and arrhythmogenesis. In cardiac myocytes, the Ca release channels, i.e., the ryanodine receptors (RyRs), are clustered in the sarcoplasmic reticulum membrane, forming Ca release units (CRUs). The RyRs in a CRU act collectively to give rise to discrete Ca release events, called Ca sparks. A cell contains hundreds to thousands of CRUs, diffusively coupled via Ca to form a CRU network. A rich spectrum of spatiotemporal Ca dynamics is observed in cardiac myocytes, including Ca sparks, spark clusters, mini-waves, persistent whole-cell waves, and oscillations. Models of different temporal and spatial scales have been developed to investigate these dynamics. Due to the complexities of the CRU network and the spatiotemporal Ca dynamics, it is challenging to model the Ca cycling dynamics in the cardiac system, particularly at the tissue sales. In this article, we review the progress of modeling of Ca cycling in cardiac systems from single RyRs to the tissue scale, the pros and cons of the current models and different modeling approaches, and the challenges to be tackled in the future.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dasen Yan
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen 518066, China
| |
Collapse
|
2
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Chaanine AH. Metabolic Remodeling and Implicated Calcium and Signal Transduction Pathways in the Pathogenesis of Heart Failure. Int J Mol Sci 2021; 22:ijms221910579. [PMID: 34638917 PMCID: PMC8508915 DOI: 10.3390/ijms221910579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The heart is an organ with high-energy demands in which the mitochondria are most abundant. They are considered the powerhouse of the cell and occupy a central role in cellular metabolism. The intermyofibrillar mitochondria constitute the majority of the three-mitochondrial subpopulations in the heart. They are also considered to be the most important in terms of their ability to participate in calcium and cellular signaling, which are critical for the regulation of mitochondrial function and adenosine triphosphate (ATP) production. This is because they are located in very close proximity with the endoplasmic reticulum (ER), and for the presence of tethering complexes enabling interorganelle crosstalk via calcium signaling. Calcium is an important second messenger that regulates mitochondrial function. It promotes ATP production and cellular survival under physiological changes in cardiac energetic demand. This is accomplished in concert with signaling pathways that regulate both calcium cycling and mitochondrial function. Perturbations in mitochondrial homeostasis and metabolic remodeling occupy a central role in the pathogenesis of heart failure. In this review we will discuss perturbations in ER-mitochondrial crosstalk and touch on important signaling pathways and molecular mechanisms involved in the dysregulation of calcium homeostasis and mitochondrial function in heart failure.
Collapse
Affiliation(s)
- Antoine H. Chaanine
- Department of Medicine, Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; ; Tel.: +1-(504)-988-1612
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Iaparov BI, Zahradnik I, Moskvin AS, Zahradníková A. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J Gen Physiol 2021; 153:211900. [PMID: 33735373 PMCID: PMC7980188 DOI: 10.1085/jgp.202012685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
The dyads of cardiac myocytes contain ryanodine receptors (RYRs) that generate calcium sparks upon activation. To test how geometric factors of RYR distribution contribute to the formation of calcium sparks, which cannot be addressed experimentally, we performed in silico simulations on a large set of models of calcium release sites (CRSs). Our models covered the observed range of RYR number, density, and spatial arrangement. The calcium release function of CRSs was modeled by RYR openings, with an open probability dependent on concentrations of free Ca2+ and Mg2+ ions, in a rapidly buffered system, with a constant open RYR calcium current. We found that simulations of spontaneous sparks by repeatedly opening one of the RYRs in a CRS produced three different types of calcium release events (CREs) in any of the models. Transformation of simulated CREs into fluorescence signals yielded calcium sparks with characteristics close to the observed ones. CRE occurrence varied broadly with the spatial distribution of RYRs in the CRS but did not consistently correlate with RYR number, surface density, or calcium current. However, it correlated with RYR coupling strength, defined as the weighted product of RYR vicinity and calcium current, so that CRE characteristics of all models followed the same state-response function. This finding revealed the synergy between structure and function of CRSs in shaping dyad function. Lastly, rearrangements of RYRs simulating hypothetical experiments on splitting and compaction of a dyad revealed an increased propensity to generate spontaneous sparks and an overall increase in calcium release in smaller and more compact dyads, thus underlying the importance and physiological role of RYR arrangement in cardiac myocytes.
Collapse
Affiliation(s)
- Bogdan I Iaparov
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Ivan Zahradnik
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander S Moskvin
- Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Peng Z, Resnick A, Young YN. Primary cilium: a paradigm for integrating mathematical modeling with experiments and numerical simulations in mechanobiology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1215-1237. [PMID: 33757184 PMCID: PMC8552149 DOI: 10.3934/mbe.2021066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Primary cilia are non-motile, solitary (one per cell) microtubule-based organelles that emerge from the mother centriole after cells have exited the mitotic cycle. Identified as a mechanosensing organelle that responds to both mechanical and chemical stimuli, the primary cilium provides a fertile ground for integrative investigations of mathematical modeling, numerical simulations, and experiments. Recent experimental findings revealed considerable complexity to the underlying mechanosensory mechanisms that transmit extracellular stimuli to intracellular signaling many of which include primary cilia. In this invited review, we provide a brief survey of experimental findings on primary cilia and how these results lead to various mathematical models of the mechanics of the primary cilium bent under an external forcing such as a fluid flow or a trap. Mathematical modeling of the primary cilium as a fluid-structure interaction problem highlights the importance of basal anchorage and the anisotropic moduli of the microtubules. As theoretical modeling and numerical simulations progress, along with improved state-of-the-art experiments on primary cilia, we hope that details of ciliary regulated mechano-chemical signaling dynamics in cellular physiology will be understood in the near future.
Collapse
Affiliation(s)
- Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
| | - Andrew Resnick
- Department of Physics, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Y.-N. Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
6
|
From Local to Global Modeling for Characterizing Calcium Dynamics and Their Effects on Electrical Activity and Exocytosis in Excitable Cells. Int J Mol Sci 2019; 20:ijms20236057. [PMID: 31801305 PMCID: PMC6928823 DOI: 10.3390/ijms20236057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
Electrical activity in neurons and other excitable cells is a result of complex interactions between the system of ion channels, involving both global coupling (e.g., via voltage or bulk cytosolic Ca2+ concentration) of the channels, and local coupling in ion channel complexes (e.g., via local Ca2+ concentration surrounding Ca2+ channels (CaVs), the so-called Ca2+ nanodomains). We recently devised a model of large-conductance BKCa potassium currents, and hence BKCa–CaV complexes controlled locally by CaVs via Ca2+ nanodomains. We showed how different CaV types and BKCa–CaV stoichiometries affect whole-cell electrical behavior. Ca2+ nanodomains are also important for triggering exocytosis of hormone-containing granules, and in this regard, we implemented a strategy to characterize the local interactions between granules and CaVs. In this study, we coupled electrical and exocytosis models respecting the local effects via Ca2+ nanodomains. By simulating scenarios with BKCa–CaV complexes with different stoichiometries in pituitary cells, we achieved two main electrophysiological responses (continuous spiking or bursting) and investigated their effects on the downstream exocytosis process. By varying the number and distance of CaVs coupled with the granules, we found that bursting promotes exocytosis with faster rates than spiking. However, by normalizing to Ca2+ influx, we found that bursting is only slightly more efficient than spiking when CaVs are far away from granules, whereas no difference in efficiency between bursting and spiking is observed with close granule-CaV coupling.
Collapse
|
7
|
Tveito A, Maleckar MM, Lines GT. Computing Optimal Properties of Drugs Using Mathematical Models of Single Channel Dynamics. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2018. [DOI: 10.1515/cmb-2018-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractSingle channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.
Collapse
Affiliation(s)
- Aslak Tveito
- 1Simula Research Laboratory, Norway and Department of Informatics, The University of Oslo,Oslo, Norway
| | | | | |
Collapse
|
8
|
Concise Whole-Cell Modeling of BK Ca-CaV Activity Controlled by Local Coupling and Stoichiometry. Biophys J 2017; 112:2387-2396. [PMID: 28591611 DOI: 10.1016/j.bpj.2017.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
Large-conductance Ca2+-dependent K+ (BKCa) channels are important regulators of electrical activity. These channels colocalize and form ion channel complexes with voltage-dependent Ca2+ (CaV) channels. Recent stochastic simulations of the BKCa-CaV complex with 1:1 stoichiometry have given important insight into the local control of BKCa channels by fluctuating nanodomains of Ca2+. However, such Monte Carlo simulations are computationally expensive, and are therefore not suitable for large-scale simulations of cellular electrical activity. In this work we extend the stochastic model to more realistic BKCa-CaV complexes with 1:n stoichiometry, and analyze the single-complex model with Markov chain theory. From the description of a single BKCa-CaV complex, using arguments based on timescale analysis, we derive a concise model of whole-cell BKCa currents, which can readily be analyzed and inserted into models of cellular electrical activity. We illustrate the usefulness of our results by inserting our BKCa description into previously published whole-cell models, and perform simulations of electrical activity in various cell types, which show that BKCa-CaV stoichiometry can affect whole-cell behavior substantially. Our work provides a simple formulation for the whole-cell BKCa current that respects local interactions in BKCa-CaV complexes, and indicates how local-global coupling of ion channels may affect cell behavior.
Collapse
|
9
|
Maleckar MM, Edwards AG, Louch WE, Lines GT. Studying dyadic structure-function relationships: a review of current modeling approaches and new insights into Ca 2+ (mis)handling. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698602. [PMID: 28469494 PMCID: PMC5392018 DOI: 10.1177/1179546817698602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Excitation–contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation–contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells’ calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation–contraction coupling have been increasingly employed to probe these structure–function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| | - Andrew G Edwards
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway.,University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Glenn T Lines
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| |
Collapse
|
10
|
Himeno Y, Asakura K, Cha CY, Memida H, Powell T, Amano A, Noma A. A human ventricular myocyte model with a refined representation of excitation-contraction coupling. Biophys J 2016. [PMID: 26200878 DOI: 10.1016/j.bpj.2015.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac Ca(2+)-induced Ca(2+) release (CICR) occurs by a regenerative activation of ryanodine receptors (RyRs) within each Ca(2+)-releasing unit, triggered by the activation of L-type Ca(2+) channels (LCCs). CICR is then terminated, most probably by depletion of Ca(2+) in the junctional sarcoplasmic reticulum (SR). Hinch et al. previously developed a tightly coupled LCC-RyR mathematical model, known as the Hinch model, that enables simulations to deal with a variety of functional states of whole-cell populations of a Ca(2+)-releasing unit using a personal computer. In this study, we developed a membrane excitation-contraction model of the human ventricular myocyte, which we call the human ventricular cell (HuVEC) model. This model is a hybrid of the most recent HuVEC models and the Hinch model. We modified the Hinch model to reproduce the regenerative activation and termination of CICR. In particular, we removed the inactivated RyR state and separated the single step of RyR activation by LCCs into triggering and regenerative steps. More importantly, we included the experimental measurement of a transient rise in Ca(2+) concentrations ([Ca(2+)], 10-15 μM) during CICR in the vicinity of Ca(2+)-releasing sites, and thereby calculated the effects of the local Ca(2+) gradient on CICR as well as membrane excitation. This HuVEC model successfully reconstructed both membrane excitation and key properties of CICR. The time course of CICR evoked by an action potential was accounted for by autonomous changes in an instantaneous equilibrium open probability of couplons. This autonomous time course was driven by a core feedback loop including the pivotal local [Ca(2+)], influenced by a time-dependent decay in the SR Ca(2+) content during CICR.
Collapse
Affiliation(s)
- Yukiko Himeno
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Keiichi Asakura
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Chae Young Cha
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Hiraku Memida
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Trevor Powell
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Akira Amano
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akinori Noma
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
11
|
Wang X, Hardcastle K, Weinberg SH, Smith GD. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels. Acta Biotheor 2016; 64:11-32. [PMID: 26424585 DOI: 10.1007/s10441-015-9271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022]
Abstract
We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text]]. Next, we find that when channel permeability is held constant, [Formula: see text]-mediated inactivation of L-type channels increases as the domain time constant increases, because a slow domain collapse rate leads to increased mean domain [[Formula: see text]] near open channels; conversely, when the maximum domain [[Formula: see text]] is held constant, inactivation decreases as the domain time constant increases. Comparison of simulation results using population densities and moment equations confirms the computational efficiency of the moment-based approach, and enables the validation of two distinct methods of truncating and closing the open system of moment equations. In general, a slow domain time constant requires higher order moment truncation for agreement between moment-based and population density simulations.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Applied Science, The College of William & Mary, McGlothlin-Street Hall, Rm 305, Williamsburg, VA, 23187, USA
| | - Kiah Hardcastle
- Department of Applied Science, The College of William & Mary, McGlothlin-Street Hall, Rm 305, Williamsburg, VA, 23187, USA
| | - Seth H Weinberg
- Department of Applied Science, The College of William & Mary, McGlothlin-Street Hall, Rm 305, Williamsburg, VA, 23187, USA
| | - Gregory D Smith
- Department of Applied Science, The College of William & Mary, McGlothlin-Street Hall, Rm 305, Williamsburg, VA, 23187, USA.
| |
Collapse
|
12
|
Wescott AP, Jafri MS, Lederer WJ, Williams GSB. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol 2016; 92:82-92. [PMID: 26827896 PMCID: PMC4807626 DOI: 10.1016/j.yjmcc.2016.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Abstract
Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for stable Ca(2+) handling within the cell and this novel mechanistic model provides insight into the molecular signaling characteristics that help maintain overall Ca(2+) stability even under the conditions of high SR Ca(2+) leak during CPVT. Finally, this model should provide tools for investigators to examine normal and pathological Ca(2+) signaling characteristics in the heart.
Collapse
Affiliation(s)
- Andrew P Wescott
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - M Saleet Jafri
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States; Molecular Neuroscience Department, George Mason University, Fairfax, VA, United States
| | - W J Lederer
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George S B Williams
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States.
| |
Collapse
|
13
|
Huang Y, Rüdiger S, Shuai J. Accurate Langevin approaches to simulate Markovian channel dynamics. Phys Biol 2015; 12:061001. [PMID: 26403205 DOI: 10.1088/1478-3975/12/6/061001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The stochasticity of ion-channels dynamic is significant for physiological processes on neuronal cell membranes. Microscopic simulations of the ion-channel gating with Markov chains can be considered to be an accurate standard. However, such Markovian simulations are computationally demanding for membrane areas of physiologically relevant sizes, which makes the noise-approximating or Langevin equation methods advantageous in many cases. In this review, we discuss the Langevin-like approaches, including the channel-based and simplified subunit-based stochastic differential equations proposed by Fox and Lu, and the effective Langevin approaches in which colored noise is added to deterministic differential equations. In the framework of Fox and Lu's classical models, several variants of numerical algorithms, which have been recently developed to improve accuracy as well as efficiency, are also discussed. Through the comparison of different simulation algorithms of ion-channel noise with the standard Markovian simulation, we aim to reveal the extent to which the existing Langevin-like methods approximate results using Markovian methods. Open questions for future studies are also discussed.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
14
|
Thul R, Rietdorf K, Bootman MD, Coombes S. Unifying principles of calcium wave propagation - Insights from a three-dimensional model for atrial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2131-43. [PMID: 25746480 DOI: 10.1016/j.bbamcr.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
Atrial myocytes in a number of species lack transverse tubules. As a consequence the intracellular calcium signals occurring during each heartbeat exhibit complex spatio-temporal dynamics. These calcium patterns arise from saltatory calcium waves that propagate via successive rounds of diffusion and calcium-induced calcium release. The many parameters that impinge on calcium-induced calcium release and calcium signal propagation make it difficult to know a priori whether calcium waves will successfully travel, or be extinguished. In this study, we describe in detail a mathematical model of calcium signalling that allows the effect of such parameters to be independently assessed. A key aspect of the model is to follow the triggering and evolution of calcium signals within a realistic three-dimensional cellular volume of an atrial myocyte, but with low computational costs. This is achieved by solving the linear transport equation for calcium analytically between calcium release events and by expressing the onset of calcium liberation as a threshold process. The model makes non-intuitive predictions about calcium signal propagation. For example, our modelling illustrates that the boundary of a cell produces a wave-guiding effect that enables calcium ions to propagate further and for longer, and can subtly alter the pattern of calcium wave movement. The high spatial resolution of the modelling framework allows the study of any arrangement of calcium release sites. We demonstrate that even small variations in randomly positioned release sites cause highly heterogeneous cellular responses. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- R Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - K Rietdorf
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - M D Bootman
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
15
|
Wang X, Weinberg SH, Hao Y, Sobie EA, Smith GD. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release. Am J Physiol Heart Circ Physiol 2015; 308:H510-23. [DOI: 10.1152/ajpheart.00296.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population density approaches to modeling local control of Ca2+-induced Ca2+ release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca2+ signals. Unfortunately, the computational complexity of such “local/global” whole cell models scales with the number of Ca2+ release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca2+ concentration ([Ca2+]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca2+ homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca2+] promotes elevated network sarcoplasmic reticulum (SR) [Ca2+] via SR Ca2+-ATPase-mediated Ca2+ uptake. However, elevated myoplasmic [Ca2+] may also activate RyRs and promote stochastic SR Ca2+ release, which can in turn decrease SR [Ca2+]. Increasing myoplasmic [Ca2+] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca2+] depending on whether myoplasmic [Ca2+] is low or high. In the later case, spontaneous release decreases SR [Ca2+] in a manner that maintains robust Ca2+ sparks.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Seth H. Weinberg
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| | - Yan Hao
- Department of Mathematics and Computer Science, The Hobart and William Smith Colleges, Geneva, New York; and
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Gregory D. Smith
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia
| |
Collapse
|
16
|
Discrete-state stochastic models of calcium-regulated calcium influx and subspace dynamics are not well-approximated by ODEs that neglect concentration fluctuations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:897371. [PMID: 23509597 PMCID: PMC3594940 DOI: 10.1155/2012/897371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
Abstract
Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted "domains" associated with calcium influx are small enough (e.g., 10(-17) liters) that local signaling may involve 1-100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers.
Collapse
|
17
|
Lee YS, Liu OZ, Sobie EA. Decoding myocardial Ca²⁺ signals across multiple spatial scales: a role for sensitivity analysis. J Mol Cell Cardiol 2012; 58:92-9. [PMID: 23026728 DOI: 10.1016/j.yjmcc.2012.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Numerous studies have employed mathematical modeling to quantitatively understand release of Ca(2+) from the sarcoplasmic reticulum (SR) in the heart. Models have been used to investigate physiologically important phenomena such as triggering of SR Ca(2+) release by Ca(2+) entry across the cell membrane and spontaneous leak of Ca(2+) from the SR in quiescent heart cells. In this review we summarize studies that have modeled myocardial Ca(2+) at different spatial scales: the sub-cellular level, the cellular level, and the multicellular level. We discuss each category of models from the standpoint of parameter sensitivity analysis, a common simulation procedure that can generate quantitative, comprehensive predictions about how changes in conditions influence model output. We propose that this is a useful perspective for conceptualizing models, in part because a sensitivity analysis requires the investigator to define the relevant parameters and model outputs. This procedure therefore helps to illustrate the capabilities and limitations of each model. We further suggest that in future studies, sensitivity analyses will aid in simplifying complex models and in suggesting experiments to differentiate between competing models built with different assumptions. We conclude with a discussion of unresolved questions that are likely to be addressed over the next several years.
Collapse
Affiliation(s)
- Young-Seon Lee
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
18
|
Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M. Timescales of IP(3)-evoked Ca(2+) spikes emerge from Ca(2+) puffs only at the cellular level. Biophys J 2012; 101:2638-44. [PMID: 22261051 DOI: 10.1016/j.bpj.2011.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 10/14/2022] Open
Abstract
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.
Collapse
Affiliation(s)
- Kevin Thurley
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Calcium Oscillations and Waves in Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:521-9. [DOI: 10.1007/978-94-007-2888-2_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
21
|
Schendel T, Thul R, Sneyd J, Falcke M. How does the ryanodine receptor in the ventricular myocyte wake up: by a single or by multiple open L-type Ca2+ channels? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:27-39. [DOI: 10.1007/s00249-011-0755-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 02/07/2023]
|
22
|
Williams GSB, Chikando AC, Tuan HTM, Sobie EA, Lederer WJ, Jafri MS. Dynamics of calcium sparks and calcium leak in the heart. Biophys J 2011; 101:1287-96. [PMID: 21943409 DOI: 10.1016/j.bpj.2011.07.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022] Open
Abstract
We present what we believe to be a new mathematical model of Ca(2+) leak from the sarcoplasmic reticulum (SR) in the heart. To our knowledge, it is the first to incorporate a realistic number of Ca(2+)-release units, each containing a cluster of stochastically gating Ca(2+) channels (RyRs), whose biophysical properties (e.g., Ca(2+) sensitivity and allosteric interactions) are informed by the latest molecular investigations. This realistic model allows for the detailed characterization of RyR Ca(2+)-release properties, and shows how this balances reuptake by the SR Ca(2+) pump. Simulations reveal that SR Ca(2+) leak consists of brief but frequent single RyR openings (~3000 cell(-1) s(-1)) that are likely to be experimentally undetectable, and are, therefore, "invisible". We also observe that these single RyR openings can recruit additional RyRs to open, due to elevated local (Ca(2+)), and occasionally lead to the generation of Ca(2+) sparks (~130 cell(-1) s(-1)). Furthermore, this physiological formulation of "invisible" leak allows for the removal of the ad hoc, non-RyR mediated Ca(2+) leak terms present in prior models. Finally, our model shows how Ca(2+) sparks can be robustly triggered and terminated under both normal and pathological conditions. Together, these discoveries profoundly influence how we interpret and understand diverse experimental and clinical results from both normal and diseased hearts.
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
23
|
LaMar MD, Kemper P, Smith GD. Reduction of calcium release site models via moment fitting of phase-type distributions. Phys Biol 2011; 8:026015. [PMID: 21471635 DOI: 10.1088/1478-3975/8/2/026015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Models of calcium (Ca(2 +)) release sites derived from continuous-time Markov chain (CTMC) models of intracellular Ca(2 +) channels exhibit collective gating reminiscent of the experimentally observed phenomenon of Ca(2 +) puffs and sparks. In order to overcome the state-space explosion that occurs in compositionally defined Ca(2 +) release site models, we have implemented an automated procedure for model reduction that replaces aggregated states of the full release site model with much simpler CTMCs that have similar within-group phase-type sojourn times and inter-group transitions. Error analysis based on comparison of full and reduced models validates the method when applied to release site models composed of 20 three-state channels that are both activated and inactivated by Ca(2 +). Although inspired by existing techniques for fitting moments of phase-type distributions, the automated reduction method for compositional Ca(2 +) release site models is unique in several respects and novel in this biophysical context.
Collapse
Affiliation(s)
- M Drew LaMar
- Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187, USA.
| | | | | |
Collapse
|
24
|
Abstract
Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.
Collapse
Affiliation(s)
- Joseph L Greenstein
- Center for Cardiovascular Bioinformatics and Modeling, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
25
|
Huertas MA, Smith GD, Györke S. Ca2+ alternans in a cardiac myocyte model that uses moment equations to represent heterogeneous junctional SR Ca2+. Biophys J 2010; 99:377-87. [PMID: 20643055 DOI: 10.1016/j.bpj.2010.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022] Open
Abstract
Multiscale whole-cell models that accurately represent local control of Ca2+-induced Ca2+ release in cardiac myocytes can reproduce high-gain Ca2+ release that is graded with changes in membrane potential. Using a recently introduced formalism that represents heterogeneous local Ca2+ using moment equations, we present a model of cardiac myocyte Ca2+ cycling that exhibits alternating sarcoplasmic reticulum (SR) Ca2+ release when periodically stimulated by depolarizing voltage pulses. The model predicts that the distribution of junctional SR [Ca2+] across a large population of Ca2+ release units is distinct on alternating cycles. Load-release and release-uptake functions computed from this model give insight into how Ca2+ fluxes and stimulation frequency combine to determine the presence or absence of Ca2+ alternans. Our results show that the conditions for the onset of Ca2+ alternans cannot be explained solely by the steepness of the load-release function, but that changes in the release-uptake process also play an important role. We analyze the effect of the junctional SR refilling time constant on Ca2+ alternans and conclude that physiologically realistic models of defective Ca2+ cycling must represent the dynamics of heterogeneous junctional SR [Ca2+] without assuming rapid equilibration of junctional and network SR [Ca2+].
Collapse
Affiliation(s)
- Marco A Huertas
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia, USA.
| | | | | |
Collapse
|
26
|
Hartman JM, Sobie EA, Smith GD. Spontaneous Ca2+ sparks and Ca2+ homeostasis in a minimal model of permeabilized ventricular myocytes. Am J Physiol Heart Circ Physiol 2010; 299:H1996-2008. [PMID: 20852058 DOI: 10.1152/ajpheart.00293.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many issues remain unresolved concerning how local, subcellular Ca(2+) signals interact with bulk cellular concentrations to maintain homeostasis in health and disease. To aid in the interpretation of data obtained in quiescent ventricular myocytes, we present here a minimal whole cell model that accounts for both localized (subcellular) and global (cellular) aspects of Ca(2+) signaling. Using a minimal formulation of the distribution of local [Ca(2+)] associated with a large number of Ca(2+)-release sites, the model simulates both random spontaneous Ca(2+) sparks and the changes in myoplasmic and sarcoplasmic reticulum (SR) [Ca(2+)] that result from the balance between stochastic release and reuptake into the SR. Ca(2+)-release sites are composed of clusters of two-state ryanodine receptors (RyRs) that exhibit activation by local cytosolic [Ca(2+)] but no inactivation or regulation by luminal Ca(2+). Decreasing RyR open probability in the model causes a decrease in aggregate release flux and an increase in SR [Ca(2+)], regardless of whether RyR inhibition is mediated by a decrease in RyR open dwell time or an increase in RyR closed dwell time. The same balance of stochastic release and reuptake can be achieved, however, by either high-frequency/short-duration or low-frequency/long-duration Ca(2+) sparks. The results are well correlated with recent experimental observations using pharmacological RyR inhibitors and clarify those aspects of the release-reuptake balance that are inherent to the coupling between local and global Ca(2+) signals and those aspects that depend on molecular-level details. The model of Ca(2+) sparks and homeostasis presented here can be a useful tool for understanding changes in cardiac Ca(2+ )release resulting from drugs, mutations, or acquired diseases.
Collapse
Affiliation(s)
- Jana M Hartman
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | |
Collapse
|
27
|
Tania N, Keener JP. Calsequestrin mediates changes in spontaneous calcium release profiles. J Theor Biol 2010; 265:359-76. [PMID: 20648970 DOI: 10.1016/j.jtbi.2010.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.
Collapse
Affiliation(s)
- Nessy Tania
- Department of Mathematics, University of Utah, 155 S. 1400 E. Room 233, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
28
|
Williams GSB, Smith GD, Sobie EA, Jafri MS. Models of cardiac excitation-contraction coupling in ventricular myocytes. Math Biosci 2010; 226:1-15. [PMID: 20346962 PMCID: PMC5499386 DOI: 10.1016/j.mbs.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 01/27/2023]
Abstract
Mathematical and computational modeling of cardiac excitation-contraction coupling has produced considerable insights into how the heart muscle contracts. With the increase in biophysical and physiological data available, the modeling has become more sophisticated with investigations spanning in scale from molecular components to whole cells. These modeling efforts have provided insight into cardiac excitation-contraction coupling that advanced and complemented experimental studies. One goal is to extend these detailed cellular models to model the whole heart. While this has been done with mechanical and electrophysiological models, the complexity and fast time course of calcium dynamics have made inclusion of detailed calcium dynamics in whole heart models impractical. Novel methods such as the probability density approach and moment closure technique which increase computational efficiency might make this tractable.
Collapse
Affiliation(s)
- George S B Williams
- The Department of Bionformatics and Computational Biology, George Mason University, VA, USA.
| | | | | | | |
Collapse
|
29
|
Bazil JN, Buzzard GT, Rundell AE. A bioenergetic model of the mitochondrial population undergoing permeability transition. J Theor Biol 2010; 265:672-90. [PMID: 20538008 DOI: 10.1016/j.jtbi.2010.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/11/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022]
Abstract
Mitochondrial permeability transition (MPT) is a highly regulated complex phenomenon that is a type of ischemia/reperfusion injury that can lead to cell death and ultimately organ dysfunction. A novel population transition and detailed permeability transition pore regulation model were integrated with an existing bioenergetics model to describe MPT induction under a variety of conditions. The framework of the MPT induction model includes the potential states of the mitochondria (aggregated, orthodox and post-transition), their transitions from one state to another as well as their interaction with the extra-mitochondrial environment. The model encodes the three basic necessary conditions for MPT: a high calcium load, alkaline matrix pH and circumstances which favor de-energization. The MPT induction model was able to reproduce the expected bioenergetic trends observed in a population of mitochondria subjected to conditions that favor MPT. The model was corroborated and used to predict that MPT in an acidic environment is mitigated by an increase in activity of the mitochondrial potassium/hydrogen exchanger. The model was also used to present the beneficial impact of reducing the duration mitochondria spend in the orthodox state on preserving the extra-mitochondrial ATP levels. The model serves as a tool for investigators to use to understand the MPT induction phenomenon, explore alternative hypotheses for PTP regulation, as well as identify endogenous pharmacological targets and evaluate potential therapeutics for MPT mitigation.
Collapse
Affiliation(s)
- Jason N Bazil
- Purdue University, Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA.
| | | | | |
Collapse
|
30
|
Skupin A, Falcke M. From puffs to global Ca2+ signals: how molecular properties shape global signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037111. [PMID: 19792036 DOI: 10.1063/1.3184537] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The universality of Ca(2+) as second messenger in living cells is achieved by a rich spectrum of spatiotemporal cellular concentration dynamics. Ca(2+) release from internal storage compartments plays a key role in shaping cytosolic Ca(2+) signals. Deciphering this signaling mechanism is essential for a deeper understanding of its physiological function and general concepts of cell signaling. Here, we review recent experimental findings demonstrating the stochasticity of Ca(2+) oscillations and its relevance for modeling Ca(2+) dynamics. The stochasticity arises by the hierarchical signal structure that carries molecular fluctuations of single channels onto the level of the cell leading to a stochastic medium as theoretically predicted. The result contradicts the current opinion of Ca(2+) being a cellular oscillator. We demonstrate that cells use array enhanced coherence resonance to form rather regular spiking signals and that the "oscillations" carry information despite the involved stochasticity. The knowledge on the underlying mechanism also allows for determination of intrinsic properties from global observations. In the second part of the paper, we briefly survey different modeling approaches with regard to the experimental results. We focus on the dependence of the standard deviation on the mean period of the oscillations. It shows that limit cycle oscillations cannot describe the experimental data and that generic models have to include the spatial aspects of Ca(2+) signaling.
Collapse
Affiliation(s)
- Alexander Skupin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
31
|
Hao Y, Kemper P, Smith GD. Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation. CHAOS (WOODBURY, N.Y.) 2009; 19:037107. [PMID: 19792032 DOI: 10.1063/1.3223663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. In order to overcome the state-space explosion that occurs in such compositionally defined calcium release site models, we have implemented several automated procedures for model reduction using fast/slow analysis. After categorizing rate constants in the single channel model as either fast or slow, groups of states in the expanded release site model that are connected by fast transitions are lumped, and transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. For small problems these conditional probability distributions can be numerically calculated from the full model without approximation. For large problems the conditional probability distributions can be approximated without the construction of the full model by assuming rapid mixing of states connected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the effectiveness of automated calcium release site reduction utilizing the Koury-McAllister-Stewart method.
Collapse
Affiliation(s)
- Yan Hao
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | |
Collapse
|
32
|
|
33
|
Cooper Z, Greenwood M, Mazzag B. A computational analysis of localized Ca2+-dynamics generated by heterogeneous release sites. Bull Math Biol 2009; 71:1543-79. [PMID: 19440797 DOI: 10.1007/s11538-009-9413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 02/10/2009] [Indexed: 11/30/2022]
Abstract
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656-662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613-28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575-583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451-461, 1998; Fissore et al. in Biol. Reprod. 60(1):49-57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979-3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750-13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506-510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660-2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73-86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393-432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393-432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation ("four-state channels") and channels with Ca2+-activation only ("two-state channels") and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.
Collapse
Affiliation(s)
- Zachary Cooper
- Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA
| | | | | |
Collapse
|
34
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
35
|
Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors. J Theor Biol 2008; 253:170-88. [DOI: 10.1016/j.jtbi.2008.02.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 11/23/2022]
|
36
|
Moment closure for local control models of calcium-induced calcium release in cardiac myocytes. Biophys J 2008; 95:1689-703. [PMID: 18487291 DOI: 10.1529/biophysj.107.125948] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In prior work, we introduced a probability density approach to modeling local control of Ca2+-induced Ca2+ release in cardiac myocytes, where we derived coupled advection-reaction equations for the time-dependent bivariate probability density of subsarcolemmal subspace and junctional sarcoplasmic reticulum (SR) [Ca2+] conditioned on Ca2+ release unit (CaRU) state. When coupled to ordinary differential equations (ODEs) for the bulk myoplasmic and network SR [Ca2+], a realistic but minimal model of cardiac excitation-contraction coupling was produced that avoids the computationally demanding task of resolving spatial aspects of global Ca2+ signaling, while accurately representing heterogeneous local Ca2+ signals in a population of diadic subspaces and junctional SR depletion domains. Here we introduce a computationally efficient method for simulating such whole cell models when the dynamics of subspace [Ca2+] are much faster than those of junctional SR [Ca2+]. The method begins with the derivation of a system of ODEs describing the time-evolution of the moments of the univariate probability density functions for junctional SR [Ca2+] jointly distributed with CaRU state. This open system of ODEs is then closed using an algebraic relationship that expresses the third moment of junctional SR [Ca2+] in terms of the first and second moments. In simulated voltage-clamp protocols using 12-state CaRUs that respond to the dynamics of both subspace and junctional SR [Ca2+], this moment-closure approach to simulating local control of excitation-contraction coupling produces high-gain Ca2+ release that is graded with changes in membrane potential, a phenomenon not exhibited by common pool models. Benchmark simulations indicate that the moment-closure approach is nearly 10,000-times more computationally efficient than corresponding Monte Carlo simulations while leading to nearly identical results. We conclude by applying the moment-closure approach to study the restitution of Ca2+-induced Ca2+ release during simulated two-pulse voltage-clamp protocols.
Collapse
|
37
|
Abstract
Puffs and sparks are localized intracellular Ca(2+) elevations that arise from the cooperative activity of Ca(2+)-regulated inositol 1,4,5-trisphosphate receptors and ryanodine receptors clustered at Ca(2+) release sites on the surface of the endoplasmic reticulum or the sarcoplasmic reticulum. While the synchronous gating of Ca(2+)-regulated Ca(2+) channels can be mediated entirely though the buffered diffusion of intracellular Ca(2+), interprotein allosteric interactions also contribute to the dynamics of ryanodine receptor (RyR) gating and Ca(2+) sparks. In this article, Markov chain models of Ca(2+) release sites are used to investigate how the statistics of Ca(2+) spark generation and termination are related to the coupling of RyRs via local [Ca(2+)] changes and allosteric interactions. Allosteric interactions are included in a manner that promotes the synchronous gating of channels by stabilizing neighboring closed-closed and/or open-open channel pairs. When the strength of Ca(2+)-mediated channel coupling is systematically varied (e.g., by changing the Ca(2+) buffer concentration), simulations that include synchronizing allosteric interactions often exhibit more robust Ca(2+) sparks; however, for some Ca(2+) coupling strengths the sparks are less robust. We find no evidence that the distribution of spark durations can be used to distinguish between allosteric interactions that stabilize closed channel pairs, open channel pairs, or both in a balanced fashion. On the other hand, the changes in spark duration, interspark interval, and frequency observed when allosteric interactions that stabilize closed channel pairs are gradually removed from simulations are qualitatively different than the changes observed when open or both closed and open channel pairs are stabilized. Thus, our simulations clarify how changes in spark statistics due to pharmacological washout of the accessory proteins mediating allosteric coupling may indicate the type of synchronizing allosteric interactions exhibited by physically coupled RyRs. We also investigate the validity of a mean-field reduction applicable to the dynamics of a ryanodine receptor cluster coupled via local [Ca(2+)] and allosteric interactions. In addition to facilitating parameter studies of the effect of allosteric coupling on spark statistics, the derivation of the mean-field model establishes the correct functional form for cooperativity factors representing the coupled gating of RyRs. This mean-field formulation is well suited for use in computationally efficient whole cell simulations of excitation-contraction coupling.
Collapse
|
38
|
The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:377-98. [DOI: 10.1016/j.pbiomolbio.2007.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Huertas MA, Smith GD. The dynamics of luminal depletion and the stochastic gating of Ca2+-activated Ca2+ channels and release sites. J Theor Biol 2007; 246:332-54. [PMID: 17286986 DOI: 10.1016/j.jtbi.2007.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/08/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Single channel models of intracellular calcium (Ca(2+)) channels such as the 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by constant background cytosolic [Ca(2+)]. This assumption neglects the fact that Ca(2+) released by open channels may influence subsequent gating through the processes of Ca(2+)-activation or inactivation. Similarly, the influence of the dynamics of luminal depletion on the stochastic gating of intracellular Ca(2+) channels is often neglected, in spite of the fact that the sarco/endoplasmic reticulum [Ca(2+)] near the luminal face of intracellular Ca(2+) channels influences the driving force for Ca(2+), the rate of Ca(2+) release, and the magnitude and time course of the consequent increase in cytosolic domain [Ca(2+)]. Here we analyze how the steady-state open probability of several minimal Ca(2+)-regulated Ca(2+) channel models depends on the conductance of the channel and the time constants for the relaxation of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] to the bulk [Ca(2+)] of both compartments. Our approach includes Monte Carlo simulation as well as numerical solution of a system of advection-reaction equations for the multivariate probability density of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] conditioned on each state of the stochastically gating channel. Both methods are subsequently used to study the role of luminal depletion in the dynamics of Ca(2+) puff/spark termination in release sites composed of Ca(2+) channels that are activated, but not inactivated, by cytosolic Ca(2+). The probability density approach shows that such minimal Ca(2+) release site models may exhibit puff/spark-like dynamics in either of two distinct parameter regimes. In one case, puffs/spark termination is due to the process of stochastic attrition and facilitated by rapid Ca(2+) domain collapse [cf. DeRemigio, H., Smith, G., 2005. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. Cell Calcium 38, 73-86]. In the second case, puff/spark termination is promoted by the local depletion of luminal Ca(2+).
Collapse
Affiliation(s)
- Marco A Huertas
- Department of Applied Science, College of William and Mary, Williamsburg, VA 23187, USA
| | | |
Collapse
|