1
|
Gonzalez-Garcia M, Bertrand B, Martell-Huguet EM, Espinosa-Romero JF, Vázquez RF, Morales-Vicente F, Rosenau F, Standker LH, Franco OL, Otero-Gonzalez AJ, Muñoz-Garay C. Cm-p5, a molluscan-derived antifungal peptide exerts its activity by a membrane surface covering in a non-penetrating mode. Peptides 2024; 182:171313. [PMID: 39490744 DOI: 10.1016/j.peptides.2024.171313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Amidst the health crisis caused by the rise of multi-resistant pathogenic microorganisms, Antimicrobial Peptides (AMPs) have emerged as a potential alternative to traditional antibiotics. In this sense, Cm-p5 is an AMP with fungistatic activity against the yeast Candida albicans. Its antimicrobial activity and selectivity have been well characterized; however, the mechanism of action is still unknown. This study used biophysical approaches to gain insight into how this peptide exerts its activity. Stability and fluidity of lipid membrane were explored by liposome leakage and Laurdan generalized polarization (GP) respectively, suggesting that Cm-p5 does not perturb lipid membranes even at very high concentrations (≥100 µm.L-1). Likewise, no depolarizing action was observed using 3,3'-propil-2,2'-thyodicarbocianine, a potential membrane fluorescent reporter, with C. albicans cells or the corresponding liposome models. Changes in liposome size were analyzed by Dynamic Light Scattering (DLS) data, indicating that Cm-p5 covers the vesicular surface slightly increasing liposome hydrodynamic size, without liposome rupture. These results were further corroborated with Langmuir monolayer isotherms, where no significant changes in lateral pressure or area per lipid were detected, indicating little or no insertion. Finally, data obtained from molecular dynamics simulations aligned with in vitro observations, whereby Cm-p5 slightly interacted with the fungal membrane model surface without causing significant perturbation. These results suggest Cm-p5 is not a pore-forming anti-fungal peptide and that other mechanisms of action on the membrane as some limitation of fungal nutrition or receptor-dependent transduction for depressing growth development should be explored.
Collapse
Affiliation(s)
- M Gonzalez-Garcia
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - B Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México
| | - E M Martell-Huguet
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - J F Espinosa-Romero
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México
| | - R F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - F Morales-Vicente
- Centro de Ingeniería Genética y Biotecnología, Avenida 31 No, La Habana 15802, Cuba
| | - F Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm 89081, Germany
| | - L H Standker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm 89081, Germany
| | - O L Franco
- Centro de Análises Proteômicas e Bioquímica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - A J Otero-Gonzalez
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - C Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
2
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
3
|
Wyżga B, Skóra M, Olechowska K, Broniatowski M, Wydro P, Hąc-Wydro K. Searching for the role of membrane lipids in the mechanism of antibacterial effect of hinokitiol. Arch Biochem Biophys 2024; 761:110178. [PMID: 39393661 DOI: 10.1016/j.abb.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The aim of this work was to investigate the effect of monoterpenoid hinokitiol (β-thujaplicin) on the monolayers and bilayers composed of lipids typical for bacteria membranes and gain insight into the potential role of the lipids in antibacterial activity and selectivity of this compound. To explore this issue, the in vitro studies were performed on different bacterial strains to verify antibacterial potency of hinokitiol. Then, the experiments on E. coli and S. aureus bacteria membrane models (i.e. multicomponent lipid monolayers and bilayers) were done. Finally, the effect of hinokitiol on one component lipid monolayers was investigated. The lipids used in the experiments included Phosphatidylethanolamines (PEs), Phosphatidylglycerols (PGs) and Cardiolipins differing in the structure of the polar head and/or the hydrophobic chains. This choice allowed the analysis of correlations between the lipid structure and the effect of hinokitiol. In vitro tests confirmed the antimicrobial activity of hinokitiol against most of the strains tested. In addition, the in vitro tests showed that E. coli bacteria were more sensitive to hinokitiol than S. aureus bacteria. Interestingly, the studies on model systems evidenced that hinokitiol molecules are of stronger effect on E.coli film and they are able to insert into these systems even at membrane-related surface pressures. Moreover, the structure of the lipid and its content in the model system correlated with the effect exerted by hinokitiol on the monolayer properties. It was found that hinokitiol differs in the affinity to particular lipids and additionally hinokitiol/lipid interactions may occur according to different mechanisms. Namely, depending on the lipid structure, hinokitiol may incorporate into the lipid film (Cardiolipins and PEs) or interact preferentially with the lipid polar head (PGs) and form hydrogen bonds. The effect of hinokitiol on the lipids was determined by the charge and size of the polar head as well as by the spatial size of the lipid molecule. Moreover, comparing the lipids of the same polar heads, hinokitiol caused stronger expansion of the film formed from the lipid having unsaturated chains. The results obtained may explain the difference in the effect of hinokitiol on particular bacterial strains. In conclusions, it can be suggested that the lipids should be considered as the bacteria membrane structural elements of a possible role in the mechanism of action of hinokitiol.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Magdalena Skóra
- Jagiellonian University Medical College, Chair of Microbiology, Department of Infections Control and Mycology, Czysta 18, 31-121, Kraków, Poland
| | - Karolina Olechowska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Marcin Broniatowski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Paweł Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Ben Boubaker R, Henrion D, Chabbert M. Mechanical stress and anionic lipids synergistically stabilize an atypical structure of the angiotensin II type 1 receptor (AT1). PLoS Comput Biol 2024; 20:e1012559. [PMID: 39536064 PMCID: PMC11560033 DOI: 10.1371/journal.pcbi.1012559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental factors, including mechanical stress and surrounding lipids, can influence the response of GPCRs, such as the mechanosensitive angiotensin II type 1 receptor (AT1). To investigate the impact of these factors on AT1 activation, we developed a steered molecular dynamics simulations protocol based on quaternion formalism. In this protocol, a pulling force was applied to the N-terminus of transmembrane helix 6 (TM6) to induce the TM6 opening characteristic of activation. Subsequently, the simulations were continued without constraints to allow the receptor to relax around the novel TM6 conformation under different conditions. We analyzed the responses of AT1 to membrane stretching, modeled by applying surface tension, in different bilayers. In phosphocholine bilayers without surface tension, we could observe a transient atypical structure of AT1, with an outward TM7 conformation, at the beginning of the activation process. This atypical structure then evolved toward a pre-active structure with outward TM6 and inward TM7. Strikingly, the presence of anionic phosphoglycerol lipids and application of surface tension synergistically favored the atypical structure, which led to an increase in the cross-section area of the receptor intracellular domain. Lipid internalization and H-bonds between lipid heads and the receptor C-terminus increased in phosphoglycerol vs phosphocholine bilayers, but did not depend on surface tension. The difference in the cross-section area of the atypical and pre-active conformations makes the conformational transition sensitive to lateral pressure, and favors the atypical conformation upon surface tension. Anionic lipids act as allosteric modulators of the conformational transition, by stabilizing the atypical conformation. These findings contribute to decipher the mechanisms underlying AT1 activation, highlighting the influence of environmental factors on GPCR responses. Moreover, our results reveal the existence of intermediary conformations that depend on receptor environment and could be targeted in drug design efforts.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| |
Collapse
|
5
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
Crowley J, Hilpert C, Monticelli L. Predicting lipid sorting in curved membranes. Methods Enzymol 2024; 701:287-307. [PMID: 39025574 DOI: 10.1016/bs.mie.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Most biological membranes are curved, and both lipids and proteins play a role in generating curvature. For any given membrane shape and composition, it is not trivial to determine whether lipids are laterally distributed in a homogeneous or inhomogeneous way, and whether the inter-leaflet distribution is symmetric or not. Here we present a simple computational tool that allows to predict the preference of any lipid type for membranes with positive vs. negative curvature, for any given value of curvature. The tool is based on molecular dynamics simulations of tubular membranes with hydrophilic pores. The pores allow spontaneous, barrierless flip-flop of most lipids, while also preventing differences in pressure between the inner and outer water compartments and minimizing membrane asymmetric stresses. Specifically, we provide scripts to build and analyze the simulations. We test the tool by performing simulations on simple binary lipid mixtures, and we show that, as expected, lipids with negative intrinsic curvature distribute to the tubule inner leaflet, the more so when the radius of the tubular membrane is small. Compared to other existing computational methods, relying on membrane buckles and tethers, our method is based on spontaneous inter-leaflet transport of lipids, and therefore allows to explore lipid distribution in asymmetric membranes. The method can easily be adapted to work with any molecular dynamics code and any force field.
Collapse
Affiliation(s)
- Jackson Crowley
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, Lyon, France
| | - Cécile Hilpert
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, Lyon, France
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, Lyon, France; Institut National de la Santé et de la Recherche Médicale, Lyon, France.
| |
Collapse
|
7
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
8
|
Nehls C, Schröder M, Haubenthal T, Haas A, Gutsmann T. The mechanistic basis of the membrane-permeabilizing activities of the virulence-associated protein A (VapA) from Rhodococcus equi. Mol Microbiol 2024; 121:578-592. [PMID: 38308564 DOI: 10.1111/mmi.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.
Collapse
Affiliation(s)
- Christian Nehls
- Division of Biophysics, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Marcel Schröder
- Division of Biophysics, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | | | - Albert Haas
- Cell Biology Institute, University of Bonn, Bonn, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Chiduza GN, Garza-Garcia A, Almacellas E, De Tito S, Pye VE, van Vliet AR, Cherepanov P, Tooze SA. ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A. Autophagy 2024; 20:557-576. [PMID: 37938170 PMCID: PMC10936676 DOI: 10.1080/15548627.2023.2275905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental aspect of eukaryotic biology, and the autophagy-related protein ATG9A is part of the core machinery facilitating this process. In addition to ATG9A vertebrates encode ATG9B, a poorly characterized paralog expressed in a subset of tissues. Herein, we characterize the structure of human ATG9B revealing the conserved homotrimeric quaternary structure and explore the conformational dynamics of the protein. Consistent with the experimental structure and computational chemistry, we establish that ATG9B is a functional lipid scramblase. We show that ATG9B can compensate for the absence of ATG9A in starvation-induced autophagy displaying similar subcellular trafficking and steady-state localization. Finally, we demonstrate that ATG9B can form a heteromeric complex with ATG2A. By establishing the molecular structure and function of ATG9B, our results inform the exploration of niche roles for autophagy machinery in more complex eukaryotes and reveal insights relevant across species.Abbreviation: ATG: autophagy related; CHS: cholesteryl hemisuccinate; cryo-EM: single-particle cryogenic electron microscopy; CTF: contrast transfer function: CTH: C- terminal α helix; FSC: fourier shell correlation; HDIR: HORMA domain interacting region; LMNG: lauryl maltose neopentyl glycol; MD: molecular dynamics simulations; MSA: multiple sequence alignment; NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl ammonium salt); POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RBG: repeating beta groove domain; RMSD: root mean square deviation; SEC: size-exclusion chromatography; TMH: transmembrane helix.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
10
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Dynarowicz-Latka P, Wnętrzak A, Chachaj-Brekiesz A. Advantages of the classical thermodynamic analysis of single-and multi-component Langmuir monolayers from molecules of biomedical importance-theory and applications. J R Soc Interface 2024; 21:20230559. [PMID: 38196377 PMCID: PMC10777166 DOI: 10.1098/rsif.2023.0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The Langmuir monolayer technique has been successfully used for decades to model biological membranes and processes occurring at their interfaces. Classically, this method involves surface pressure measurements to study interactions within membrane components as well as between external bioactive molecules (e.g. drugs) and the membrane. In recent years, surface-sensitive techniques were developed to investigate monolayers in situ; however, the obtained results are in many cases insufficient for a full characterization of biomolecule-membrane interactions. As result, description of systems using parameters such as mixing or excess thermodynamic functions is still relevant, valuable and irreplaceable in biophysical research. This review article summarizes the theory of thermodynamics of single- and multi-component Langmuir monolayers. In addition, recent applications of this approach to characterize surface behaviour and interactions (e.g. orientation of bipolar molecules, drug-membrane affinity, lateral membrane heterogeneity) are presented.
Collapse
Affiliation(s)
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Balleza D. Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins. J Membr Biol 2023; 256:317-330. [PMID: 37097306 DOI: 10.1007/s00232-023-00286-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Using a flexibility prediction algorithm and in silico structural modeling, we have calculated the intrinsic flexibility of several magainin derivatives. In the case of magainin-2 (Mag-2) and magainin H2 (MAG-H2) we have found that MAG-2 is more flexible than its hydrophobic analog, Mag-H2. This affects the degree of bending of both peptides, with a kink around two central residues (R10, R11), whereas, in Mag-H2, W10 stiffens the peptide. Moreover, this increases the hydrophobic moment of Mag-H2, which could explain its propensity to form pores in POPC model membranes, which exhibit near-to-zero spontaneous curvatures. Likewise, the protective effect described in DOPC membranes for this peptide regarding its facilitation in pore formation would be related to the propensity of this lipid to form membranes with negative spontaneous curvature. The flexibility of another magainin analog (MSI-78) is even greater than that of Mag-2. This facilitates the peptide to present a kind of hinge around the central F12 as well as a C-terminal end prone to be disordered. Such characteristics are key to understanding the broad-spectrum antimicrobial actions exhibited by this peptide. These data reinforce the hypothesis on the determinant role of spontaneous membrane curvature, intrinsic peptide flexibility, and specific hydrophobic moment in assessing the bioactivity of membrane-active antimicrobial peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico.
| |
Collapse
|
13
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Poudel B, Rajeshwar T R, Vanegas JM. Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor. Nat Commun 2023; 14:4690. [PMID: 37542033 PMCID: PMC10403497 DOI: 10.1038/s41467-023-40433-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
The Angiotensin II Type 1 (AT1) receptor is one of the most widely studied GPCRs within the context of biased signaling. While the AT1 receptor is activated by agonists such as the peptide AngII, it can also be activated by mechanical stimuli such as membrane stretch or shear in the absence of a ligand. Despite the importance of mechanical activation of the AT1 receptor in biological processes such as vasoconstriction, little is known about the structural changes induced by external physical stimuli mediated by the surrounding lipid membrane. Here, we present a systematic simulation study that characterizes the activation of the AT1 receptor under various membrane environments and mechanical stimuli. We show that stability of the active state is highly sensitive to membrane thickness and tension. Structural comparison of membrane-mediated vs. agonist-induced activation shows that the AT1 receptor has distinct active conformations. This is supported by multi-microsecond free energy calculations that show unique landscapes for the inactive and various active states. Our modeling results provide structural insights into the mechanical activation of the AT1 receptor and how it may produce different functional outcomes within the framework of biased agonism.
Collapse
Affiliation(s)
- Bharat Poudel
- Materials Science Graduate Program, The University of Vermont, Burlington, VT, 05405, USA
| | - Rajitha Rajeshwar T
- Department of Physics, The University of Vermont, Burlington, VT, 05405, USA
| | - Juan M Vanegas
- Materials Science Graduate Program, The University of Vermont, Burlington, VT, 05405, USA.
- Department of Physics, The University of Vermont, Burlington, VT, 05405, USA.
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97330, USA.
| |
Collapse
|
15
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
16
|
Piller P, Semeraro EF, Rechberger GN, Keller S, Pabst G. Allosteric modulation of integral protein activity by differential stress in asymmetric membranes. PNAS NEXUS 2023; 2:pgad126. [PMID: 37143864 PMCID: PMC10153742 DOI: 10.1093/pnasnexus/pgad126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets. Upon reconstituting OmpLA into synthetic, chemically well-defined phospholipid bilayers exhibiting different lateral pressure profiles, we indeed observed a substantial decrease in the enzyme's hydrolytic activity with increasing membrane asymmetry. No such effects were observed in symmetric mixtures of the same lipids. To quantitatively rationalize how the differential stress in asymmetric lipid bilayers inhibits OmpLA, we developed a simple allosteric model within the lateral pressure framework. Thus, we find that membrane asymmetry can serve as the dominant factor in controlling membrane-protein activity, even in the absence of specific, chemical cues or other physical membrane determinants such as hydrophobic mismatch.
Collapse
Affiliation(s)
- Paulina Piller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | - Gerald N Rechberger
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
- Biochemistry, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Omics Center Graz, BioTechMed Graz, Graz 8010, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed Graz, Graz 8010, Austria
- Field of Excellence BioHealth—University of Graz, Graz 8010, Austria
| | | |
Collapse
|
17
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Bariås E, Jakubec M, Førsund E, Hjørnevik LV, Lewis AE, Halskau Ø. Contrasting the phospholipid profiles of two neoplastic cell lines reveal a high PC:PE ratio for SH-SY5Y cells relative to A431 cells. Biochem Biophys Res Commun 2023; 656:23-29. [PMID: 36947963 DOI: 10.1016/j.bbrc.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Lipids have been implicated in Parkinson's Disease (PD). We therefore studied the lipid profile of the neuroblastoma SH-SY5Y cell line, which is used extensively in PD research and compared it to that of the A431 epithelial cancer cell line. We have isolated whole cell extracts (WC) and plasma membrane (PM) fractions of both cell lines. The isolates were analyzed with 31P NMR. We observed a significant higher abundance of phosphatidylcholine (PC) for SH-SY5Y cells for both WC (55 ± 4.1%) and PM (63.3 ± 3.1%) compared to WC (40.5 ± 2.2%) and PM (43.4 ± 1.3%) of A431. Moreover, a higher abundance of phosphatidylethanolamine was detected for the WC of A431 compared to the SH-SY5Y. Using LC-MS/MS, we also determined the relative abundance of fatty acid (FA) moieties for each phospholipid class, finding that SH-SY5Y had high polyunsaturated FA levels, including arachidonic acid compared to A431 cells. When comparing our results to reported compositions of brain and neural tissues, we note the much higher PC levels, as well as very low levels of docosahexaenoic acid. However, relative levels of arachidonic acid and other polyunsaturated fatty acids were elevated, in line with what is desirable for a neural model system.
Collapse
Affiliation(s)
- Espen Bariås
- Department of Biological Sciences, University of Bergen, Norway
| | - Martin Jakubec
- Department of Biological Sciences, University of Bergen, Norway; Department of Chemistry, University of Tromsø, Norway
| | - Elise Førsund
- Department of Biological Sciences, University of Bergen, Norway
| | | | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, Norway.
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway.
| |
Collapse
|
19
|
Chevelkov V, Lange S, Sawczyc H, Lange A. Accurate Determination of Motional Amplitudes in Biomolecules by Solid-State NMR. ACS PHYSICAL CHEMISTRY AU 2023; 3:199-206. [PMID: 36968444 PMCID: PMC10037497 DOI: 10.1021/acsphyschemau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Protein dynamics are an intrinsically important factor when considering a protein's biological function. Understanding these motions is often limited through the use of static structure determination methods, namely, X-ray crystallography and cryo-EM. Molecular simulations have allowed for the prediction of global and local motions of proteins from these static structures. Nevertheless, determining local dynamics at residue-specific resolution through direct measurement remains crucial. Solid-state nuclear magnetic resonance (NMR) is a powerful tool for studying dynamics in rigid or membrane-bound biomolecules without prior structural knowledge with the help of relaxation parameters such as T 1 and T 1ρ. However, these provide only a combined result of amplitude and correlation times in the nanosecond-millisecond frequency range. Thus, direct and independent determination of the amplitude of motions might considerably improve the accuracy of dynamics studies. In an ideal situation, the use of cross-polarization would be the optimal method for measuring the dipolar couplings between chemically bound heterologous nuclei. This would unambiguously provide the amplitude of motion per residue. In practice, however, the inhomogeneity of the applied radio-frequency fields across the sample leads to significant errors. Here, we present a novel method to eliminate this issue through including the radio-frequency distribution map in the analysis. This allows for direct and accurate measurement of residue-specific amplitudes of motion. Our approach has been applied to the cytoskeletal protein BacA in filamentous form, as well as to the intramembrane protease GlpG in lipid bilayers.
Collapse
Affiliation(s)
- Veniamin Chevelkov
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125Berlin, Germany
| | - Henry Sawczyc
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115Berlin, Germany
| |
Collapse
|
20
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
21
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
22
|
Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants (Basel) 2022; 11:antiox11122314. [PMID: 36552523 PMCID: PMC9774536 DOI: 10.3390/antiox11122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
Collapse
|
23
|
Anticarcinogenic Trimethoxybenzoate of Catechin Stabilizes the Liquid Crystalline Bilayer Phase in Phosphatidylethanolamine Membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Bozelli JC, Yune J, Aulakh SS, Cao Z, Fernandes A, Seitova A, Tong Y, Schreier S, Epand RM. Human Diacylglycerol Kinase ε N-Terminal Segment Regulates the Phosphatidylinositol Cycle, Controlling the Rate but Not the Acyl Chain Composition of Its Lipid Intermediates. ACS Chem Biol 2022; 17:2495-2506. [PMID: 35767833 DOI: 10.1021/acschembio.2c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diacylglycerol kinase ε (DGKε), an enzyme of the phosphatidylinositol (PI) cycle, bears a highly conserved hydrophobic N-terminal segment, which was proposed to anchor the enzyme into the membrane. However, the importance of this segment to the DGKε function remains to be determined. To address this question, it is here reported an in silico and in vitro combined research strategy. Capitalizing on the AlphaFold 2.0 predicted structure of human DGKε, it is shown that its hydrophobic N-terminal segment anchors it into the membrane via a transmembrane α-helix. Coarse-grained based elastic network model studies showed that a conformational change in the hydrophobic N-terminal segment determines the proximity between the active site of DGKε and the membrane-water interface, likely regulating its kinase activity. In vitro studies with a purified DGKε construct lacking the hydrophobic N-terminal segment (His-SUMO*-Δ50-DGKε) corroborated the role of the N-terminus in regulating DGKε enzymatic properties. The comparison between the enzymatic properties of DGKε and His-SUMO*-Δ50-DGKε showed that the conserved N-terminal segment markedly inhibits the enzyme activity and its sensitivity to membrane intrinsic negative curvature, while also playing a role in the modulation of the enzyme by phosphatidylserine. On the other hand, this segment did not strongly affect its diacylglycerol acyl chain specificity, the modulation of the enzyme by membrane morphological changes, or the activation by phosphatidic acid-rich lipid domains. Hence, these results suggest that the conservation of the hydrophobic N-terminal segment of DGKε throughout evolution guaranteed not only membrane anchorage but also an efficient and elegant manner to regulate the rate of the PI cycle.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| | - Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| | - Zihao Cao
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| | - Alexia Fernandes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON N5G 1L7, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 3L8, Canada
| |
Collapse
|
25
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
26
|
Sharma GP, Meyer AC, Habeeb S, Karbach M, Müller G. Free-energy landscapes and insertion pathways for peptides in membrane environment. Phys Rev E 2022; 106:014404. [PMID: 35974613 DOI: 10.1103/physreve.106.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Free-energy landscapes for short peptides-specifically for variants of the pH low insertion peptide (pHLIP)-in the heterogeneous environment of a lipid bilayer or cell membrane are constructed, taking into account a set of dominant interactions and the conformational preferences of the peptide backbone. Our methodology interprets broken internal H-bonds along the backbone of a polypeptide as statistically interacting quasiparticles, activated from the helix reference state. The favored conformation depends on the local environment (ranging from polar to nonpolar), specifically on the availability of external H-bonds (with H_{2}O molecules or lipid headgroups) to replace internal H-bonds. The dominant side-chain contribution is accounted for by residue-specific transfer free energies between polar and nonpolar environments. The free-energy landscape is sensitive to the level of pH in the aqueous environment surrounding the membrane. For high pH, we identify pathways of descending free energy that suggest a coexistence of membrane-adsorbed peptides with peptides in solution. A drop in pH raises the degree of protonation of negatively charged residues and thus increases the hydrophobicity of peptide segments near the C terminus. For low pH, we identify insertion pathways between the membrane-adsorbed state and a stable trans-membrane state with the C terminus having crossed the membrane.
Collapse
Affiliation(s)
- Ganga P Sharma
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Aaron C Meyer
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Suhail Habeeb
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Michael Karbach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Gerhard Müller
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
27
|
Kergomard J, Carrière F, Paboeuf G, Artzner F, Barouh N, Bourlieu C, Vié V. Interfacial organization and phase behavior of mixed galactolipid-DPPC-phytosterol assemblies at the air-water interface and in hydrated mesophases. Colloids Surf B Biointerfaces 2022; 217:112646. [PMID: 35763897 DOI: 10.1016/j.colsurfb.2022.112646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
The structural behavior of model assemblies composed of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two main galactolipids found in plants, was investigated at the air/water interface and in aqueous dispersion. To approach the composition of the natural photosynthetic membranes, tunable Langmuir model membrane of galactolipids (GL) were used, and were complexified to form either heterogenous binary or ternary assemblies of GL, phospholipids (PL), and phytosterols (pS). The impact of pS, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or both on the structural properties of GL membrane was studied. The nature of the interactions between the different molecules was investigated using biophysical characterizations (ellipsometry, tensiometry, atomic force microscopy). In addition, the phase behavior was determined by SAXS analysis on the model assemblies in aqueous dispersions. Results revealed the good interfacial stability of these specific plant membrane lipids. The morphology of the GL film was characteristic of a fluid phase, with an interfacial roughness induced by the intercalation of monogalactosyl and digalactosyl polar heads of MGDG and DGDG, respectively. A phase heterogeneity in the monolayer was induced by the addition of DPPC and/or pS, which resulted in the modification of galactolipid organization and headgroup interactions. These structural changes were confirmed by SAXS analysis, showing more favorable interactions between MGDG and DPPC than between DGDG and DPPC in aqueous dispersion. This phenomenon was exacerbated in the presence of pS.
Collapse
Affiliation(s)
- Jeanne Kergomard
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, France; INRAE/CIRAD/UM/Institut Agro Montpellier UMR 1208 IATE, France
| | - Frédéric Carrière
- Aix-Marseille Université, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, France
| | - Franck Artzner
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, France
| | - Nathalie Barouh
- CIRAD, UMR QUALISUD, F34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu
- INRAE/CIRAD/UM/Institut Agro Montpellier UMR 1208 IATE, France
| | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, France; Univ Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Renne, France.
| |
Collapse
|
28
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
29
|
Probing and Manipulating the Lateral Pressure Profile in Lipid Bilayers Using Membrane-Active Peptides-A Solid-State 19F NMR Study. Int J Mol Sci 2022; 23:ijms23094544. [PMID: 35562938 PMCID: PMC9101910 DOI: 10.3390/ijms23094544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The lateral pressure profile constitutes an important physical property of lipid bilayers, influencing the binding, insertion, and function of membrane-active peptides, such as antimicrobial peptides. In this study, we demonstrate that the lateral pressure profile can be manipulated using the peptides residing in different regions of the bilayer. A 19F-labeled analogue of the amphiphilic peptide PGLa was used to probe the lateral pressure at different depths in the membrane. To evaluate the lateral pressure profile, we measured the orientation of this helical peptide with respect to the membrane using solid-state 19F-NMR, which is indicative of its degree of insertion into the bilayer. Using this experimental approach, we observed that the depth of insertion of the probe peptide changed in the presence of additional peptides and, furthermore, correlated with their location in the membrane. In this way, we obtained a tool to manipulate, as well as to probe, the lateral pressure profile in membranes.
Collapse
|
30
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
31
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
32
|
Chorlay A, Forêt L, Thiam AR. Origin of gradients in lipid density and surface tension between connected lipid droplet and bilayer. Biophys J 2021; 120:5491-5503. [PMID: 34808099 DOI: 10.1016/j.bpj.2021.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022] Open
Abstract
We combined theory and experiments to depict physical parameters modulating the phospholipid (PL) density and tension equilibrium between a bilayer and an oil droplet in contiguity. This situation is encountered during a neutral lipid (NL) droplet formation in the endoplasmic reticulum. We set up macroscopic and microscopic models to uncover free parameters and the origin of molecular interactions controlling the PL densities of the droplet monolayer and the bilayer. The established physical laws and predictions agreed with experiments performed with droplet-embedded vesicles. We found that the droplet monolayer is always by a few percent (∼10%) less packed with PLs than the bilayer. Such a density gradient arises from PL-NL interactions on the droplet, which are lower than PL-PL trans interactions in the bilayer, i.e., interactions between PLs belonging to different leaflets of the bilayer. Finally, despite the pseudo-surface tension for the water/PL acyl chains in the bilayer being higher than the water/NL surface tension, the droplet monolayer always has a higher surface tension than the bilayer because of its lower PL density. Thus, a PL density gradient is mandatory to maintain the mechanical and thermodynamic equilibrium of the droplet-bilayer continuity. Our study sheds light on the origin of the molecular interactions responsible for the unique surface properties of lipid droplets compared with cellular bilayer membranes.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Lionel Forêt
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
33
|
Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Scattering versus fluorescence self-quenching: more than a question of faith for the quantification of water flux in large unilamellar vesicles? NANOSCALE ADVANCES 2021; 4:58-76. [PMID: 35028506 PMCID: PMC8691418 DOI: 10.1039/d1na00577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The endeavors to understand the determinants of water permeation through membrane channels, the effect of the lipid or polymer membrane on channel function, the development of specific water flow inhibitors, the design of artificial water channels and aquaporins for the use in industrial water filtration applications all rely on accurate ways to quantify water permeabilities (P f). A commonly used method is to reconstitute membrane channels into large unilamellar vesicles (LUVs) and to subject these vesicles to an osmotic gradient in a stopped-flow device. Fast recordings of either scattered light intensity or fluorescence self-quenching signals are taken as a readout for vesicle volume change, which in turn can be recalculated to accurate P f values. By means of computational and experimental data, we discuss the pros and cons of using scattering versus self-quenching experiments or subjecting vesicles to hypo- or hyperosmotic conditions. In addition, we explicate for the first time the influence of the LUVs size distribution, channel distribution between vesicles and remaining detergent after protein reconstitution on P f values. We point out that results such as the single channel water permeability (p f) depend on the membrane matrix or on the direction of the applied osmotic gradient may be direct results of the measurement and analysis procedure.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | | | - Armin Speletz
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Anna Eckerstorfer
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| |
Collapse
|
34
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
35
|
Ward AV, Anderson SM, Sartorius CA. Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. J Mammary Gland Biol Neoplasia 2021; 26:399-417. [PMID: 34914014 PMCID: PMC8883833 DOI: 10.1007/s10911-021-09505-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss current lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow informed development of diagnostics and novel targeted therapies.
Collapse
Affiliation(s)
- Ashley V Ward
- Cancer Biology Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
36
|
The Unfolded Protein Response as a Guardian of the Secretory Pathway. Cells 2021; 10:cells10112965. [PMID: 34831188 PMCID: PMC8616143 DOI: 10.3390/cells10112965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the major site of membrane biogenesis in most eukaryotic cells. As the entry point to the secretory pathway, it handles more than 10,000 different secretory and membrane proteins. The insertion of proteins into the membrane, their folding, and ER exit are affected by the lipid composition of the ER membrane and its collective membrane stiffness. The ER is also a hotspot of lipid biosynthesis including sterols, glycerophospholipids, ceramides and neural storage lipids. The unfolded protein response (UPR) bears an evolutionary conserved, dual sensitivity to both protein-folding imbalances in the ER lumen and aberrant compositions of the ER membrane, referred to as lipid bilayer stress (LBS). Through transcriptional and non-transcriptional mechanisms, the UPR upregulates the protein folding capacity of the ER and balances the production of proteins and lipids to maintain a functional secretory pathway. In this review, we discuss how UPR transducers sense unfolded proteins and LBS with a particular focus on their role as guardians of the secretory pathway.
Collapse
|
37
|
The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer. Int J Mol Sci 2021; 22:ijms222011099. [PMID: 34681757 PMCID: PMC8540289 DOI: 10.3390/ijms222011099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular details of the passive water flux across the hydrophobic membrane interior are still a matter of debate. One of the postulated mechanisms is the spontaneous, water-filled pore opening, which facilitates the hydrophilic connection between aqueous phases separated by the membrane. In the paper, we provide experimental evidence showing that the spontaneous lipid pore formation correlates with the membrane mechanics; hence, it depends on the composition of the lipid bilayer and the concentration of the osmotically active compound. Using liposomes as an experimental membrane model, osmotically induced water efflux was measured with the stopped-flow technique. Shapes of kinetic curves obtained at low osmotic pressure differences are interpreted in terms of two events: the lipid pore opening and water flow across the aqueous channel. The biological significance of the dependence of the lipid pore formation on the concentration difference of an osmotically active compound was illustrated by the demonstration that osmotically driven water flow can be accompanied by the dissipation of the pH gradient. The application of the Helfrich model to describe the probability of lipid pore opening was validated by demonstrating that the probability of pore opening correlates with the membrane bending rigidity. The correlation was determined by experimentally derived bending rigidity coefficients and probabilities of lipid pores opening.
Collapse
|
38
|
Pfeffermann J, Eicher B, Boytsov D, Hannesschlaeger C, Galimzyanov TR, Glasnov TN, Pabst G, Akimov SA, Pohl P. Photoswitching of model ion channels in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112320. [PMID: 34600201 DOI: 10.1016/j.jphotobiol.2021.112320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Membrane proteins can be regulated by alterations in material properties intrinsic to the hosting lipid bilayer. Here, we investigated whether the reversible photoisomerization of bilayer-embedded diacylglycerols (OptoDArG) with two azobenzene-containing acyl chains may trigger such regulatory events. We observed an augmented open probability of the mechanosensitive model channel gramicidin A (gA) upon photoisomerizing OptoDArG's acyl chains from trans to cis: integral planar bilayer conductance brought forth by hundreds of simultaneously conducting gA dimers increased by typically >50% - in good agreement with the observed increase in single-channel lifetime. Further, (i) increments in the electrical capacitance of planar lipid bilayers and protrusion length of aspirated giant unilamellar vesicles into suction pipettes, as well as (ii) changes of small-angle X-ray scattering of multilamellar vesicles indicated that spontaneous curvature, hydrophobic thickness, and bending elasticity decreased upon switching from trans- to cis-OptoDArG. Our bilayer elasticity model for gA supports the causal relationship between changes in gA activity and bilayer material properties upon photoisomerization. Thus, we conclude that photolipids are deployable for converting bilayers of potentially diverse origins into light-gated actuators for mechanosensitive proteins.
Collapse
Affiliation(s)
- Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria
| | - Barbara Eicher
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed Graz, Austria
| | - Danila Boytsov
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria
| | | | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy prospekt, Moscow 119071, Russia
| | - Toma N Glasnov
- University of Graz, Institute of Chemistry, NAWI Graz, Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed Graz, Austria
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy prospekt, Moscow 119071, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria.
| |
Collapse
|
39
|
Tharushi Perera PG, Todorova N, Vilagosh Z, Bazaka O, Nguyen THP, Bazaka K, Crawford RJ, Croft RJ, Yarovsky I, Ivanova EP. Translocation of silica nanospheres through giant unilamellar vesicles (GUVs) induced by a high frequency electromagnetic field. RSC Adv 2021; 11:31408-31420. [PMID: 35496859 PMCID: PMC9041541 DOI: 10.1039/d1ra05459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023] Open
Abstract
Membrane model systems capable of mimicking live cell membranes were used for the first time in studying the effects arising from electromagnetic fields (EMFs) of 18 GHz where membrane permeability was observed following exposure. A present lack of understanding of the mechanisms that drive such a rapid change in membrane permeabilization as well as any structural or dynamic changes imparted on biomolecules affected by high-frequency electromagnetic irradiation limits the use of 18 GHz EMFs in biomedical applications. A phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) labelled with a fluorescent marker 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (rhodamine-DOPE) was used in constructing the giant unilamellar vesicles (GUVs). After three cycles of exposure, enhanced membrane permeability was observed by the internalisation of hydrophilic silica nanospheres of 23.5 nm and their clusters. All-atom molecular dynamics simulations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes exposed to high frequency electric fields of different field strengths showed that within the simulation timeframe only extremely high strength fields were able to cause an increase in the interfacial water dynamics characterized by water dipole realignments. However, a lower strength, high frequency EMF induced changes of the water hydrogen bond network, which may contribute to the mechanisms that facilitate membrane permeabilization in a longer timeframe.
Collapse
Affiliation(s)
- Palalle G Tharushi Perera
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
- Faculty Science, Engineering and Technology, Swinburne University of Technology PO Box 218 Hawthorn VIC 3122 Australia
| | - Nevena Todorova
- School of Engineering, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Zoltan Vilagosh
- Faculty Science, Engineering and Technology, Swinburne University of Technology PO Box 218 Hawthorn VIC 3122 Australia
| | - Olha Bazaka
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | | | - Kateryna Bazaka
- School of Engineering, College of Engineering and Computer Science, The Australian National University Canberra ACT 2600 Australia
| | - Russell J Crawford
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Rodney J Croft
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong Wollongong NSW 2522 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| |
Collapse
|
40
|
Grage SL, Culetto A, Ulrich AS, Weinschenk S. Membrane-Mediated Activity of Local Anesthetics. Mol Pharmacol 2021; 100:502-512. [PMID: 34475108 DOI: 10.1124/molpharm.121.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anke Culetto
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Stefan Weinschenk
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| |
Collapse
|
41
|
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Sci Rep 2021; 11:17333. [PMID: 34462478 PMCID: PMC8405694 DOI: 10.1038/s41598-021-96757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.
Collapse
|
42
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
43
|
Bozelli JC, Yune J, Takahashi D, Sakane F, Epand RM. Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB J 2021; 35:e21602. [PMID: 33977628 DOI: 10.1096/fj.202100264r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
44
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
45
|
Dymond MK. Lipid monolayer spontaneous curvatures: A collection of published values. Chem Phys Lipids 2021; 239:105117. [PMID: 34265278 DOI: 10.1016/j.chemphyslip.2021.105117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Lipid monolayer spontaneous curvatures (or lipid intrinsic curvatures) are one of several material properties of lipids that enable the stored curvature elastic energy in a lipid aggregate to be determined. Stored curvature elastic energy is important since it can modulate the function of membrane proteins and plays a role in the regulatory pathways of phospholipid homeostasis. Due to the large number of different lipid molecules that might theoretically exist in nature, very few lipid spontaneous curvatures have been determined. Herein the values of lipid spontaneous curvatures that exist in the literature are collected, alongside key experimental details. Where possible, trends in the data are discussed and finally, obvious gaps in the knowledge are signposted.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, BN2 4GL, United Kingdom.
| |
Collapse
|
46
|
Bartkowiak A, Matyszewska D, Krzak A, Zaborowska M, Broniatowski M, Bilewicz R. Incorporation of simvastatin into lipid membranes: Why deliver a statin in form of inclusion complex with hydrophilic cyclodextrin. Colloids Surf B Biointerfaces 2021; 204:111784. [PMID: 33984617 DOI: 10.1016/j.colsurfb.2021.111784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
In this work, the effects of simvastatin (SIM), (2-hydroxypropyl)-β-cyclodextrin (HPβCD) and their complex (SIM:HPβCD) on the structure and properties of lipid membranes were investigated for the first time by Langmuir technique combined with PM-IRRAS spectroscopy. An improved understanding of the differences of the interactions between free SIM, and SIM in the form of an inclusion complex with HPβCD with the lipid membrane will improve the development of preparation methods for in vivo applications. Monolayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol (Chol) and their mixture DMPC:Chol (7:3) served as simple models of one leaflet of the cell membrane. The penetration of well-organized lipid layers by simvastatin lead to their fluidization but the extent of this unwanted effect was smaller when the drug was delivered in the form of the SIM:HPβCD complex. Surface pressure vs. time dependencies showed that the drug encapsulated with cyclodextrin dissociated from the complex upon contact with the lipid layer and the weak interactions between the exterior polar part of the HPβCD and the polar headgroups of the lipid layer facilitated smooth incorporation of the released lipophilic drug into the membrane. At a longer time-scale, the HPβCD ligand released from the complex removed some cholesterol, but not DMPC, from the lipid layer, hence, similarly to the enzyme inhibiting action of statins - it lead to the decrease of the amount of cholesterol in the membrane. Delivery of simvastatin in the form of an inclusion complex with HPβCD is proposed as an approach improving its bioavailability in the cholesterol-lowering therapies.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Agata Krzak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
47
|
Bozelli JC, Aulakh SS, Epand RM. Membrane shape as determinant of protein properties. Biophys Chem 2021; 273:106587. [PMID: 33865153 DOI: 10.1016/j.bpc.2021.106587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Membrane lipids play a role in the modulation of a variety of biological processes. This is often achieved through fine-tuned changes in membrane physical and chemical properties. While some membrane physical properties (e.g., curvature, lipid domains, fluidity) have received increased scientific attention over the years, only recently has membrane shape emerged as an active modulator of protein properties. Biological membranes are mostly found organized into a lipid bilayer arrangement, in which the spontaneous shape is an intrinsically flat, planar morphology (in relation to the size of proteins). However, it is known that many cells and organelles have non-planar morphologies. In addition, perturbations in membrane morphology occur in a variety of biological processes. Recent studies have shown that membrane shape can modulate a variety of biological processes by determining protein properties. While membrane shape generation modulates proteins via changes in membrane mechanical properties, membrane shape recognition regulates proteins by providing the optimal surface for interaction. Hence, membranes have evolved an elegant mechanism to couple mesoscopic perturbations to molecular properties and vice-versa. In this review, the regulation of the enzymatic properties of two isoforms of mammalian diacylglycerol kinase, which play important roles in cellular signal transductions, will be used to exemplify the recent advancements in the field of membrane shape recognition, as well as future challenges and perspectives.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| | - Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
48
|
Kobierski J, Wnętrzak A, Chachaj-Brekiesz A, Filiczkowska A, Petelska AD, Dynarowicz-Latka P. How the replacement of cholesterol by 25-hydroxycholesterol affects the interactions with sphingolipids: The Langmuir Monolayer Study complemented with theoretical calculations. J R Soc Interface 2021; 18:20210050. [PMID: 33726539 DOI: 10.1098/rsif.2021.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this paper, a representative of chain-oxidized sterols, 25-hydroxycholesterol (25-OH), has been studied in Langmuir monolayers mixed with the sphingolipids sphingomyelin (SM) and ganglioside (GM1) to build lipid rafts. A classical Langmuir monolayer approach based on thermodynamic analysis of interactions was complemented with microscopic visualization of films (Brewster angle microscopy), surface-sensitive spectroscopy (polarization modulation-infrared reflection-absorption spectroscopy) and theoretical calculations (density functional theory modelling and molecular dynamics simulations). Strong interactions between 25-OH and both investigated sphingolipids enabled the formation of surface complexes. As known from previous studies, 25-OH in pure monolayers can be anchored to the water surface with a hydroxyl group at either C(3) or C(25). In this study, we investigated how the presence of additional strong interactions with sphingolipids modifies the surface arrangement of 25-OH. Results have shown that, in the 25-OH/GM1 system, there are no preferences regarding the orientation of the 25-OH molecule in surface complexes and two types of complexes are formed. On the other hand, SM enforces one specific orientation of 25-OH: being anchored with the C(3)-OH group to the water. The strength of interactions between the studied sphingolipids and 25-OH versus cholesterol is similar, which indicates that cholesterol may well be replaced by oxysterol in the lipid raft system. In this way, the composition of lipid rafts can be modified, changing their rheological properties and, as a consequence, influencing their proper functioning.
Collapse
Affiliation(s)
- Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Filiczkowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1 K, 15-425 Bialystok, Poland
| | | |
Collapse
|
49
|
Marx L, Semeraro EF, Mandl J, Kremser J, Frewein MP, Malanovic N, Lohner K, Pabst G. Bridging the Antimicrobial Activity of Two Lactoferricin Derivatives in E. coli and Lipid-Only Membranes. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:625975. [PMID: 35047906 PMCID: PMC8757871 DOI: 10.3389/fmedt.2021.625975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
We coupled the antimicrobial activity of two well-studied lactoferricin derivatives, LF11-215 and LF11-324, in Escherichia coli and different lipid-only mimics of its cytoplasmic membrane using a common thermodynamic framework for peptide partitioning. In particular, we combined an improved analysis of microdilution assays with ζ-potential measurements, which allowed us to discriminate between the maximum number of surface-adsorbed peptides and peptides fully partitioned into the bacteria. At the same time, we measured the partitioning of the peptides into vesicles composed of phosphatidylethanolamine (PE), phosphatidylgylcerol (PG), and cardiolipin (CL) mixtures using tryptophan fluorescence and determined their membrane activity using a dye leakage assay and small-angle X-ray scattering. We found that the vast majority of LF11-215 and LF11-324 readily enter inner bacterial compartments, whereas only 1-5% remain surface bound. We observed comparable membrane binding of both peptides in membrane mimics containing PE and different molar ratios of PG and CL. The peptides' activity caused a concentration-dependent dye leakage in all studied membrane mimics; however, it also led to the formation of large aggregates, part of which contained collapsed multibilayers with sandwiched peptides in the interstitial space between membranes. This effect was least pronounced in pure PG vesicles, requiring also the highest peptide concentration to induce membrane permeabilization. In PE-containing systems, we additionally observed an effective shielding of the fluorescent dyes from leakage even at highest peptide concentrations, suggesting a coupling of the peptide activity to vesicle fusion, being mediated by the intrinsic lipid curvatures of PE and CL. Our results thus show that LF11-215 and LF11-324 effectively target inner bacterial components, while the stored elastic stress makes membranes more vulnerable to peptide translocation.
Collapse
Affiliation(s)
- Lisa Marx
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Enrico F. Semeraro
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Mandl
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Kremser
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Moritz P. Frewein
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
- Soft Matter Science and Support Group, Institut Laue-Langevin, Grenoble, France
| | - Nermina Malanovic
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Karl Lohner
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Georg Pabst
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| |
Collapse
|
50
|
Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. eLife 2021; 10:e62886. [PMID: 33522484 PMCID: PMC7895522 DOI: 10.7554/elife.62886] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.
Collapse
Affiliation(s)
- Valeria Zoni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Rasha Khaddaj
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Pablo Campomanes
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Roger Schneiter
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Stefano Vanni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| |
Collapse
|