1
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
2
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
DiFranco M, Cannon S. Voltage-Dependent Ca 2+ Release Is Impaired in Hypokalemic Periodic Paralysis Caused by Ca V1.1-R528H but not by Na V1.4-R669H. Am J Physiol Cell Physiol 2022; 323:C478-C485. [PMID: 35759432 PMCID: PMC9359662 DOI: 10.1152/ajpcell.00209.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypokalemic periodic paralysis (HypoPP) is a channelopathy of skeletal muscle caused by missense mutations in the voltage sensor domains (usually at an arginine of the S4 segment) of the CaV1.1 calcium channel or of the NaV1.4 sodium channel. The primary clinical manifestation is recurrent attacks of weakness, resulting from impaired excitability of anomalously depolarized fibers containing leaky mutant channels. While the ictal loss of fiber excitability is sufficient to explain the acute episodes of weakness, a deleterious change in voltage sensor function for CaV1.1 mutant channels may also compromise excitation-contraction coupling (EC-coupling). We used the low-affinity Ca2+ indicator OGN-5 to assess voltage-dependent Ca2+-release as a measure of EC-coupling for our knock-in mutant mouse models of HypoPP. The peak in fibers isolated from CaV1.1-R528H mice was about two-thirds of the amplitude observed in WT mice; whereas in HypoPP fibers from NaV1.4-R669H mice the was indistinguishable from WT. No difference in the voltage dependence of from WT was observed for fibers from either HypoPP mouse model. Because late-onset permanent muscle weakness is more severe for CaV1.1-associated HypoPP than for NaV1.4, we propose the reduced Ca2+-release for CaV1.1-R528H mutant channels may increase the susceptibility to fixed myopathic weakness. In contrast the episodes of transient weakness are similar for CaV1.1- and NaV1.4-associated HypoPP, consistent with the notion that acute attacks of weakness are primarily caused by leaky channels and are not a consequence of reduced Ca2+-release.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA United States
| | - Steve Cannon
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA United States.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
5
|
Momb BA, Patino E, Akchurin OM, Miller MS. Iron Supplementation Improves Skeletal Muscle Contractile Properties in Mice with CKD. KIDNEY360 2022; 3:843-858. [PMID: 36128477 PMCID: PMC9438424 DOI: 10.34067/kid.0004412021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Background Patients with chronic kidney disease (CKD) frequently have compromised physical performance, which increases their mortality; however, their skeletal muscle dysfunction has not been characterized at the single-fiber and molecular levels. Notably, interventions to mitigate CKD myopathy are scarce. Methods The effect of CKD in the absence and presence of iron supplementation on the contractile function of individual skeletal muscle fibers from the soleus and extensor digitorum longus muscles was evaluated in 16-week-old mice. CKD was induced by the adenine diet, and iron supplementation was by weekly iron dextran injections. Results Maximally activated and fatigued fiber force production was decreased 24%-52% in untreated CKD, independent of size, by reducing strongly bound myosin/actin cross-bridges and/or decreasing myofilament stiffness in myosin heavy chain (MHC) I, IIA, and IIB fibers. Additionally, myosin/actin interactions in untreated CKD were slower for MHC I and IIA fibers and unchanged or faster in MHC IIB fibers. Iron supplementation improved anemia and did not change overall muscle mass in CKD mice. Iron supplementation ameliorated CKD-induced myopathy by increasing strongly bound cross-bridges, leading to improved specific tension, and/or returning the rate of myosin/actin interactions toward or equivalent to control values in MHC IIA and IIB fibers. Conclusions Skeletal muscle force production was significantly reduced in untreated CKD, independent of fiber size, indicating that compromised physical function in patients is not solely due to muscle mass loss. Iron supplementation improved multiple aspects of CKD-induced myopathy, suggesting that timely correction of iron imbalance may aid in ameliorating contractile deficits in CKD patients.
Collapse
Affiliation(s)
- Brent A. Momb
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Edwin Patino
- Joan and Sanford I. Weill Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, New York
| | - Oleh M. Akchurin
- Department of Pediatrics, Division of Pediatric Nephrology, Weill Cornell Medicine, New York, New York,New York-Presbyterian Hospital, New York, New York
| | - Mark S. Miller
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
6
|
Bejaoui Y, Razzaq A, Yousri NA, Oshima J, Megarbane A, Qannan A, Potabattula R, Alam T, Martin G, Horn HF, Haaf T, Horvath S, El Hajj N. DNA methylation signatures in Blood DNA of Hutchinson-Gilford Progeria syndrome. Aging Cell 2022; 21:e13555. [PMID: 35045206 PMCID: PMC8844112 DOI: 10.1111/acel.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder caused by mutations in the LMNA gene and characterized by premature and accelerated aging beginning in childhood. In this study, we performed the first genome-wide methylation analysis on blood DNA of 15 patients with progeroid laminopathies using Infinium Methylation EPIC arrays including 8 patients with classical HGPS. We could observe DNA methylation alterations at 61 CpG sites as well as 32 significant regions following a 5 Kb tiling analysis. Differentially methylated probes were enriched for phosphatidylinositol biosynthetic process, phospholipid biosynthetic process, sarcoplasm, sarcoplasmic reticulum, phosphatase regulator activity, glycerolipid biosynthetic process, glycerophospholipid biosynthetic process, and phosphatidylinositol metabolic process. Differential methylation analysis at the level of promoters and CpG islands revealed no significant methylation changes in blood DNA of progeroid laminopathy patients. Nevertheless, we could observe significant methylation differences in classic HGPS when specifically looking at probes overlapping solo-WCGW partially methylated domains. Comparing aberrantly methylated sites in progeroid laminopathies, classic Werner syndrome, and Down syndrome revealed a common significantly hypermethylated region in close vicinity to the transcription start site of a long non-coding RNA located anti-sense to the Catenin Beta Interacting Protein 1 gene (CTNNBIP1). By characterizing epigenetically altered sites, we identify possible pathways/mechanisms that might have a role in the accelerated aging of progeroid laminopathies.
Collapse
Affiliation(s)
- Yosra Bejaoui
- College of Health and Life SciencesQatar FoundationHamad Bin Khalifa UniversityDohaQatar
| | - Aleem Razzaq
- College of Health and Life SciencesQatar FoundationHamad Bin Khalifa UniversityDohaQatar
| | | | - Junko Oshima
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of Clinical Cell Biology and MedicineGraduate School of MedicineChiba UniversityChibaJapan
| | - Andre Megarbane
- Department of Human GeneticsGilbert and Rose‐Marie Ghagoury School of MedicineLebanese American UniversityByblosLebanon
- Institut Jérôme LejeuneParisFrance
| | - Abeer Qannan
- College of Health and Life SciencesQatar FoundationHamad Bin Khalifa UniversityDohaQatar
| | - Ramya Potabattula
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Tanvir Alam
- College of Science and EngineeringHamad Bin Khalifa UniversityDohaQatar
| | - George M. Martin
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Henning F. Horn
- College of Health and Life SciencesQatar FoundationHamad Bin Khalifa UniversityDohaQatar
| | - Thomas Haaf
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Steve Horvath
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Nady El Hajj
- College of Health and Life SciencesQatar FoundationHamad Bin Khalifa UniversityDohaQatar
| |
Collapse
|
7
|
Assessing the Potential of Nutraceuticals as Geroprotectors on Muscle Performance and Cognition in Aging Mice. Antioxidants (Basel) 2021; 10:antiox10091415. [PMID: 34573047 PMCID: PMC8472831 DOI: 10.3390/antiox10091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Aging and frailty are associated with a decline in muscle force generation, which is a direct consequence of reduced muscle quantity and quality. Among the leading contributors to aging is the generation of reactive oxygen species, the byproducts of terminal oxidation. Their negative effects can be moderated via antioxidant supplementation. Krill oil and astaxanthin (AX) are nutraceuticals with a variety of health promoting, geroprotective, anti-inflammatory, anti-diabetic and anti-fatigue effects. In this work, we examined the functional effects of these two nutraceutical agents supplemented via pelleted chow in aging mice by examining in vivo and in vitro skeletal muscle function, along with aspects of intracellular and mitochondrial calcium homeostasis, as well as cognition and spatial memory. AX diet regimen limited weight gain compared to the control group; however, this phenomenon was not accompanied by muscle tissue mass decline. On the other hand, both AX and krill oil supplementation increased force production without altering calcium homeostasis during excitation-contraction coupling mechanism or mitochondrial calcium uptake processes. We also provide evidence of improved spatial memory and learning ability in aging mice because of krill oil supplementation. Taken together, our data favors the application of antioxidant nutraceuticals as geroprotectors to improve cognition and healthy aging by virtue of improved skeletal muscle force production.
Collapse
|
8
|
The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 2021; 67:101305. [PMID: 33610815 DOI: 10.1016/j.arr.2021.101305] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?
Collapse
|
9
|
Fitzgerald LF, Ryan MM, Bartlett MF, Miehm JD, Kent JA. Muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. PLoS One 2020; 15:e0234217. [PMID: 33141870 PMCID: PMC7608879 DOI: 10.1371/journal.pone.0234217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Although high-velocity contractions elicit greater muscle fatigue in older than young adults, the cause of this difference is unclear. We examined the potential roles of resting muscle architecture and baseline contractile properties, as well as changes in voluntary activation and low-frequency fatigue in response to high-velocity knee extensor work. Vastus lateralis muscle architecture was determined in quiescent muscle by ultrasonography in 8 young (23.4±1.8 yrs) and 8 older women (69.6±1.1). Maximal voluntary dynamic (MVDC) and isometric (MVIC), and stimulated (80Hz and 10Hz, 500ms) isometric contractions were performed before and immediately after 120 MVDCs (240°.s-1, one every 2s). Architecture variables did not differ between groups (p≥0.209), but the half-time of torque relaxation (T1/2) was longer in older than young women at baseline (151.9±6.0 vs. 118.8±4.4 ms, respectively, p = 0.001). Older women fatigued more than young (to 33.6±4.7% vs. 55.2±4.2% initial torque, respectively; p = 0.004), with no evidence of voluntary activation failure (ΔMVIC:80Hz torque) in either group (p≥0.317). Low-frequency fatigue (Δ10:80Hz torque) occurred in both groups (p<0.001), as did slowing of T1/2 (p = 0.001), with no differences between groups. Baseline T1/2 was inversely associated with fatigue in older (r2 = 0.584, p = 0.045), but not young women (r2 = 0.147, p = 0.348). These results indicate that differences in muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. The inverse association between baseline T1/2 and fatigue in older women suggests that factors related to slower muscle contractile properties may be protective against fatigue during fast, repetitive contractions in aging.
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Margaret M. Ryan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Miles F. Bartlett
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jules D. Miehm
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
10
|
Delrio-Lorenzo A, Rojo-Ruiz J, Alonso MT, García-Sancho J. Sarcoplasmic reticulum Ca 2+ decreases with age and correlates with the decline in muscle function in Drosophila. J Cell Sci 2020; 133:jcs240879. [PMID: 32005702 DOI: 10.1242/jcs.240879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown. Here we explore the hypothesis that a reduction in sarcoplasmic reticulum (SR) Ca2+ concentration ([Ca2+]SR) is at the origin of this loss of Ca2+ homeostasis. We engineered Drosophila melanogaster to express the Ca2+ indicator GAP3 targeted to muscle SR, and we developed a new method to calibrate the signal into [Ca2+]SRin vivo [Ca2+]SR fell with age from ∼600 µM to 50 µM in close correlation with muscle function, which declined monotonically when [Ca2+]SR was <400 µM. [Ca2+]SR results from the pump-leak steady state at the SR membrane. However, changes in expression of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump and of the ryanodine receptor leak were too modest to explain the large changes seen in [Ca2+]SR Instead, these changes are compatible with increased leakiness through the ryanodine receptor as the main determinant of the [Ca2+]SR decline in aging muscle. In contrast, there were no changes in endoplasmic reticulum [Ca2+] with age in brain neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alba Delrio-Lorenzo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|
11
|
Del Campo A, Contreras-Hernández I, Castro-Sepúlveda M, Campos CA, Figueroa R, Tevy MF, Eisner V, Casas M, Jaimovich E. Muscle function decline and mitochondria changes in middle age precede sarcopenia in mice. Aging (Albany NY) 2019; 10:34-55. [PMID: 29302020 PMCID: PMC5811241 DOI: 10.18632/aging.101358] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/30/2017] [Indexed: 01/02/2023]
Abstract
Sarcopenia is the degenerative loss of muscle mass and strength with aging. Although a role of mitochondrial metabolism in muscle function and in the development of many diseases has been described, the role of mitochondrial topology and dynamics in the process of muscle aging is not fully understood. This work shows a time line of changes in both mitochondrial distribution and skeletal muscle function during mice lifespan. We isolated muscle fibers from flexor digitorum brevis of mice of different ages. A fusion-like phenotype of mitochondria, together with a change in orientation perpendicular to the fiber axis was evident in the Adult group compared to Juvenile and Older groups. Moreover, an increase in the contact area between sarcoplasmic reticulum and mitochondria was evident in the same group. Together with the morphological changes, mitochondrial Ca2+ resting levels were reduced at age 10-14 months and significantly increased in the Older group. This was consistent with a reduced number of mitochondria-to-jSR pairs in the Older group compared to the Juvenile. Our results support the idea of several age-dependent changes in mitochondria that are accentuated in midlife prior to a complete sarcopenic phenotype.
Collapse
Affiliation(s)
- Andrea Del Campo
- Center for Exercise, Metabolism and Cancer, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ignacio Contreras-Hernández
- Center for Exercise, Metabolism and Cancer, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Campos
- Center for Exercise, Metabolism and Cancer, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Center for Genomics and Bioinformatics, Universidad Mayor de Chile, Santiago, Chile
| | - María Florencia Tevy
- Center for Genomics and Bioinformatics, Universidad Mayor de Chile, Santiago, Chile
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Casas
- Center for Exercise, Metabolism and Cancer, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Pierantozzi E, Szentesi P, Al-Gaadi D, Oláh T, Dienes B, Sztretye M, Rossi D, Sorrentino V, Csernoch L. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. Int J Mol Sci 2019; 20:ijms20133361. [PMID: 31323924 PMCID: PMC6651408 DOI: 10.3390/ijms20133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Péter Szentesi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
13
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 783] [Impact Index Per Article: 156.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
14
|
Zügel M, Wehrstein F, Qiu S, Diel P, Steinacker JM, Schumann U. Moderate intensity continuous training reverses the detrimental effects of ovariectomy on RyR1 phosphorylation in rat skeletal muscle. Mol Cell Endocrinol 2019; 481:1-7. [PMID: 30465874 DOI: 10.1016/j.mce.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
High 17β-Estradiol (E2) concentrations in isolated ventricular myocytes as well as a lack of ovarian hormones in cardiac muscle of ovariectomized (OVX) rodents has been shown to lead to arrhythmogenic effects by inducing post-translational modifications, including phosphorylation of the sarcoplasmic reticulum (SR) Ca2+ release channel ryanodine receptor-2 (RyR2). The effects of estrogens on the phosphorylation status of the RyR1 in skeletal muscle have not been investigated before. Furthermore, while high intensity exercise has been shown to increase RyR phosphorylation, there is no data on the effects of moderate intensity continuous training (MICT). The aims of the study were to investigate the effects of a 3-day treatment with low (1 nM, moderate (5 nM) and high (10 nM, 100 nM) E2 concentrations on RyR1 mRNA and protein expression and phosphorylation status (pRyRSer2844) in cultured C2C12 myotubes and to study the effects of OVX on RyR1 expression and phosphorylation in rat skeletal muscle in combination with 3 weeks of MICT. Treatment with low, physiological E2 concentrations reduced dihydropyridine receptor (DHPR) and RyR1 mRNA content in C2C12 myotubes compared to untreated control cells, whereas RyR1 protein phosphorylation (pRyRSer2844) was significantly increased after treatment with high, non-physiological E2 concentrations (p ≤ 0.05). RyR1 protein content (p ≤ 0.05) and pRyRSer2844 (p ≤ 0.05) were significantly elevated in skeletal muscle of OVX vs. sham-operated rats. Importantly, pRyRSer2844 levels were similar to sham-operated controls in OVX rats after MICT (OVX vs. OVX + MICT, p ≤ 0.05). Our results indicate, that one of the actions of estrogens is to alter skeletal muscle Ca2+ homeostasis by modulating the expression and phosphorylation of the RyR1 in skeletal muscle. Notably, regular MICT was able to counteract RyR1 phosphorylation in skeletal muscle of OVX rats.
Collapse
Affiliation(s)
- M Zügel
- Department of Internal Medicine, Division of Sports Medicine, Ulm University, Ulm, Germany.
| | - F Wehrstein
- Department of Internal Medicine, Division of Sports Medicine, Ulm University, Ulm, Germany
| | - S Qiu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Nanjing, China
| | - P Diel
- Department of Sports Medicine, Molecular and Cellular Sports Medicine, German Sports University Cologne, Germany
| | - J M Steinacker
- Department of Internal Medicine, Division of Sports Medicine, Ulm University, Ulm, Germany
| | - U Schumann
- Department of Internal Medicine, Division of Sports Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Brazaitis M, Paulauskas H, Eimantas N, Daniuseviciute L, Volungevicius G, Skurvydas A. Motor performance is preserved in healthy aged adults following severe whole-body hyperthermia. Int J Hyperthermia 2018; 36:65-74. [PMID: 30484343 DOI: 10.1080/02656736.2018.1533650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Healthy aging is associated with a progressive decline in motor performance and thermoregulatory efficiency. Functional consequences of severe whole-body hyperthermia on neurophysiological functions in healthy aged men have not been investigated. To determine whether severe whole-body hyperthermia (increase in rectal temperature of about 2.5 °C) induced by lower-body heating in older men (64-80 years, n = 9) would suppress excitability of reflexes, voluntarily and electrically induced ankle plantar flexor contractile properties were compared with those in young men (19-21 years, n = 11). Though no aging effect on hyperthermia-induced reflex amplitudes was observed, a decrease in maximal H-reflex and V-wave latencies was found to be greater in older than in young men. In older men, lower-body heating was accompanied by a significant increase in twitch and tetani test torque in parallel with a greater decrease in muscle contraction time. There was no temperature-depended aging effect on the voluntary activation and maximal voluntary torque production. Despite delayed and weakened thermoregulation and age-related decline in neuromuscular function, motor performance in whole-body severe hyperthermia is apparently preserved in healthy aging.
Collapse
Affiliation(s)
- Marius Brazaitis
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Henrikas Paulauskas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Nerijus Eimantas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Laura Daniuseviciute
- b Department of Educational Studies , Kaunas University of Technology , Kaunas , LT , Lithuania
| | - Gintautas Volungevicius
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Albertas Skurvydas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| |
Collapse
|
16
|
Causes and consequences of age-related changes at the neuromuscular junction. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Linsley JW, Hsu IU, Wang W, Kuwada JY. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles. Traffic 2018; 18:622-632. [PMID: 28697281 DOI: 10.1111/tra.12502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Contraction of skeletal muscle is initiated by excitation-contraction (EC) coupling during which membrane voltage is transduced to intracellular Ca2+ release. EC coupling requires L-type voltage gated Ca2+ channels (the dihydropyridine receptor or DHPR) located at triads, which are junctions between the transverse (T) tubule and sarcoplasmic reticulum (SR) membranes, that sense membrane depolarization in the T tubule membrane. Reduced EC coupling is associated with ageing, and disruptions of EC coupling result in congenital myopathies for which there are few therapies. The precise localization of DHPRs to triads is critical for EC coupling, yet trafficking of the DHPR to triads is not well understood. Using dynamic imaging of zebrafish muscle fibers, we find that DHPR is transported along the longitudinal SR in a microtubule-independent mechanism. Furthermore, transport of DHPR in the SR membrane is differentially affected in null mutants of Stac3 or DHPRβ, two essential components of EC coupling. These findings reveal previously unappreciated features of DHPR motility within the SR prior to assembly at triads.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - I-Uen Hsu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Wenjia Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - John Y Kuwada
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Gaboardi AJ, Kressler J, Snow TK, Balog EM. Aging impairs regulation of ryanodine receptors from extensor digitorum longus but not soleus muscles. Muscle Nerve 2018; 57:1022-1025. [PMID: 29315676 DOI: 10.1002/mus.26063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Because impaired excitation-contraction coupling and reduced sarcoplasmic reticulum (SR) Ca2+ release may contribute to the age-associated decline in skeletal muscle strength, we investigated the effect of aging on regulation of the skeletal muscle isoform of the ryanodine receptor (RyR1) by physiological channel ligands. METHODS [3 H]Ryanodine binding to membranes from 8- and 26-month-old Fischer 344 extensor digitorum longus (EDL) and soleus muscles was used to investigate the effects of age on RyR1 modulation by Ca2+ and calmodulin (CaM). RESULTS Aging reduced maximal Ca2+ -stimulated binding to EDL membranes. In 0.3 μM Ca2+ , age reduced binding and CaM increased binding to EDL membranes. In 300 μM Ca2+ , CaM reduced binding, but the age effect was not significant. Aging did not affect Ca2+ or CaM regulation of soleus RyR1. DISCUSSION In aged fast-twitch muscle, impaired RyR1 Ca2+ regulation may contribute to lower SR Ca2+ release and reduced muscle function. Muscle Nerve 57: 1022-1025, 2018.
Collapse
Affiliation(s)
- Angela J Gaboardi
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jochen Kressler
- Exercise and Nutritional Sciences Department, School of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Teresa K Snow
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| | - Edward M Balog
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Mechanical isolation, and measurement of force and myoplasmic free [Ca 2+] in fully intact single skeletal muscle fibers. Nat Protoc 2017; 12:1763-1776. [PMID: 28771237 DOI: 10.1038/nprot.2017.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical dissection of single intact mammalian skeletal muscle fibers permits real-time measurement of intracellular properties and contractile function of living fibers. A major advantage of mechanical over enzymatic fiber dissociation is that single fibers can be isolated with their tendons remaining attached, which allows contractile forces (in the normal expected range of 300-450 kN/m2) to be measured during electrical stimulation. Furthermore, the sarcolemma of single fibers remains fully intact after mechanical dissection, and hence the living fibers can be studied with intact intracellular milieu and normal function and metabolic properties, as well as ionic control. Given that Ca2+ is the principal regulator of the contractile force, measurements of myoplasmic free [Ca2+] ([Ca2+]i) can be used to further delineate the intrinsic mechanisms underlying changes in skeletal muscle function. [Ca2+]i measurements are most commonly performed in intact single fibers using ratiometric fluorescent indicators such as indo-1 or fura-2. These Ca2+ indicators are introduced into the fiber by pressure injection or by using the membrane-permeable indo-1 AM, and [Ca2+]i is measured by calculating a ratio of the fluorescence at specific wavelengths emitted for the Ca2+-free and Ca2+-bound forms of the dye. We describe here the procedures for mechanical dissection, and for force and [Ca2+]i measurement in intact single fibers from mouse flexor digitorum brevis (FDB) muscle, which is the most commonly used muscle in studies using intact single fibers. This technique can also be used to isolate intact single fibers from various muscles and from various species. As an alternative to Ca2+ indicators, single fibers can also be loaded with fluorescent indicators to measure, for instance, reactive oxygen species, pH, and [Mg2+], or they can be injected with proteins to change functional properties. The entire protocol, from dissection to the start of an experiment on a single fiber, takes ∼3 h.
Collapse
|
20
|
Wang Y, Kang Y, Ma C, Miao R, Wu C, Long Y, Ge T, Wu Z, Hou X, Zhang J, Qi Z. CNGC2 Is a Ca2+ Influx Channel That Prevents Accumulation of Apoplastic Ca2+ in the Leaf. PLANT PHYSIOLOGY 2017; 173:1342-1354. [PMID: 27999084 PMCID: PMC5291024 DOI: 10.1104/pp.16.01222] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 05/18/2023]
Abstract
Ca2+ is absorbed by roots and transported upward through the xylem to the apoplastic space of the leaf, after which it is deposited into the leaf cell. In Arabidopsis (Arabidopsis thaliana), the tonoplast-localized Ca2+/H+ transporters CATION EXCHANGER1 (CAX1) and CAX3 sequester Ca2+ from the cytosol into the vacuole, but it is not known what transporter mediates the initial Ca2+ influx from the apoplast to the cytosol. Here, we report that Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) encodes a protein with Ca2+ influx channel activity and is expressed in the leaf areas surrounding the free endings of minor veins, which is the primary site for Ca2+ unloading from the vasculature and influx into leaf cells. Under hydroponic growth conditions, with 0.1 mm Ca2+, both Arabidopsis cngc2 and cax1cax3 loss-of-function mutants grew normally. Increasing the Ca2+ concentration to 10 mm induced H2O2 accumulation, cell death, and leaf senescence and partially suppressed the hypersensitive response to avirulent pathogens in the mutants but not in the wild type. In vivo apoplastic Ca2+ overaccumulation was found in the leaves of cngc2 and cax1cax3 but not the wild type under the 10 mm Ca2+ condition, as monitored by Oregon Green BAPTA 488 5N, a low-affinity and membrane-impermeable Ca2+ probe. Our results indicate that CNGC2 likely has no direct roles in leaf development or the hypersensitive response but, instead, that CNGC2 could mediate Ca2+ influx into leaf cells. Finally, the in vivo extracellular Ca2+ imaging method developed in this study provides a new tool for investigating Ca2+ dynamics in plant cells.
Collapse
Affiliation(s)
- Yan Wang
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Yan Kang
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Chunli Ma
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Ruiying Miao
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Caili Wu
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Yu Long
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Ting Ge
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Zinian Wu
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Xiangyang Hou
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Junxia Zhang
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| | - Zhi Qi
- Inner Mongolia University, School of Life Sciences, Hohhot 010021, People's Republic of China (Y.W., Y.K., C.M., R.M., C.W., Y.L., T.G., J.Z., Z.Q.); and
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, People's Republic of China (Z.W., X.H.)
| |
Collapse
|
21
|
Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol (1985) 2016; 121:1047-1052. [PMID: 27197856 PMCID: PMC5142250 DOI: 10.1152/japplphysiol.00321.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
With advancing age, skeletal muscle function declines as a result of strength loss. These strength deficits are largely due to reductions in muscle size (i.e., quantity) and its intrinsic force-producing capacity (i.e., quality). Age-induced reductions in skeletal muscle quantity and quality can be the consequence of several factors, including accumulation of reactive oxygen and nitrogen species (ROS/RNS), also known as oxidative stress. Therefore, the purpose of this mini-review is to highlight the published literature that has demonstrated links between aging, oxidative stress, and skeletal muscle quantity or quality. In particular, we focused on how oxidative stress has the potential to reduce muscle quantity by shifting protein balance in a deficit, and muscle quality by impairing activation at the neuromuscular junction, excitation-contraction (EC) coupling at the ryanodine receptor (RyR), and cross-bridge cycling within the myofibrillar apparatus. Of these, muscle weakness due to EC coupling failure mediated by RyR dysfunction via oxidation and/or nitrosylation appears to be the strongest candidate based on the publications reviewed. However, it is clear that age-associated oxidative stress has the ability to alter strength through several mechanisms and at various locations of the muscle fiber.
Collapse
Affiliation(s)
- Cory W Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Dongmin Kwak
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Haiming M Liu
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LaDora V Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
22
|
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9057593. [PMID: 27630760 PMCID: PMC5007348 DOI: 10.1155/2016/9057593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/30/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.
Collapse
|
23
|
Beqollari D, Romberg CF, Dobrowolny G, Martini M, Voss AA, Musarò A, Bannister RA. Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skelet Muscle 2016; 6:24. [PMID: 27340545 PMCID: PMC4918102 DOI: 10.1186/s13395-016-0094-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that is typically fatal within 3–5 years of diagnosis. While motoneuron death is the defining characteristic of ALS, the events that underlie its pathology are not restricted to the nervous system. In this regard, ALS muscle atrophies and weakens significantly before presentation of neurological symptoms. Since the skeletal muscle L-type Ca2+ channel (CaV1.1) is a key regulator of both mass and force, we investigated whether CaV1.1 function is impaired in the muscle of two distinct mouse models carrying an ALS-linked mutation. Methods We recorded L-type currents, charge movements, and myoplasmic Ca2+ transients from dissociated flexor digitorum brevis (FDB) fibers to assess CaV1.1 function in two mouse models expressing a type 1 Cu/Zn superoxide dismutase mutant (SOD1G93A). Results In FDB fibers obtained from “symptomatic” global SOD1G93A mice, we observed a substantial reduction of SR Ca2+ release in response to depolarization relative to fibers harvested from age-matched control mice. L-type current and charge movement were both reduced by ~40 % in symptomatic SOD1G93A fibers when compared to control fibers. Ca2+ transients were not significantly reduced in similar experiments performed with FDB fibers obtained from “early-symptomatic” SOD1G93A mice, but L-type current and charge movement were decreased (~30 and ~20 %, respectively). Reductions in SR Ca2+ release (~35 %), L-type current (~20 %), and charge movement (~15 %) were also observed in fibers obtained from another model where SOD1G93A expression was restricted to skeletal muscle. Conclusions We report reductions in EC coupling, L-type current density, and charge movement in FDB fibers obtained from symptomatic global SOD1G93A mice. Experiments performed with FDB fibers obtained from early-symptomatic SOD1G93A and skeletal muscle autonomous MLC/SOD1G93A mice support the idea that events occurring locally in the skeletal muscle contribute to the impairment of CaV1.1 function in ALS muscle independently of innervation status. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0094-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donald Beqollari
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| | - Christin F Romberg
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| | - Gabriella Dobrowolny
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Martina Martini
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrew A Voss
- Department of Biological Sciences, College of Science and Mathematics, Wright State University, 235A Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435 USA
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| |
Collapse
|
24
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
25
|
Lamboley CR, Wyckelsma VL, McKenna MJ, Murphy RM, Lamb GD. Ca(2+) leakage out of the sarcoplasmic reticulum is increased in type I skeletal muscle fibres in aged humans. J Physiol 2015; 594:469-81. [PMID: 26574292 DOI: 10.1113/jp271382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The amount of Ca(2+) stored in the sarcoplasmic reticulum (SR) of muscle fibres is decreased in aged individuals, and an important question is whether this results from increased Ca(2+) leakage out through the Ca(2+) release channels (ryanodine receptors; RyRs). The present study examined the effects of blocking the RyRs with Mg(2+), or applying a strong reducing treatment, on net Ca(2+) accumulation by the SR in skinned muscle fibres from Old (∼70 years) and Young (∼24 years) adults. Raising cytoplasmic [Mg(2+)] and reducing treatment increased net SR Ca(2+) accumulation in type I fibres of Old subjects relative to that in Young. The densities of RyRs and dihydropyridine receptors were not significantly changed in the muscle of Old subjects. These findings indicate that oxidative modification of the RyRs causes increased Ca(2+) leakage from the SR in muscle fibres in Old subjects, which probably deleteriously affects normal muscle function both directly and indirectly. ABSTRACT The present study examined whether the lower Ca(2+) storage levels in the sarcoplasmic reticulum (SR) in vastus lateralis muscle fibres in Old (70 ± 4 years) relative to Young (24 ± 4 years) human subjects is the result of increased leakage of Ca(2+) out of the SR through the Ca(2+) release channels/ryanodine receptors (RyRs) and due to oxidative modification of the RyRs. SR Ca(2+) accumulation in mechanically skinned muscle fibres was examined in the presence of 1, 3 or 10 mm cytoplasmic Mg(2+) because raising [Mg(2+)] strongly inhibits Ca(2+) efflux through the RyRs. In type I fibres of Old subjects, SR Ca(2+) accumulation in the presence of 1 mm Mg(2+) approached saturation at shorter loading times than in Young subjects, consistent with Ca(2+) leakage limiting net uptake, and raising [Mg(2+)] to 10 mm in such fibres increased maximal SR Ca(2+) accumulation. No significant differences were seen in type II fibres. Treatment with dithiothreitol (10 mm for 5 min), a strong reducing agent, also increased maximal SR Ca(2+) accumulation at 1 mm Mg(2+) in type I fibres of Old subjects but not in other fibres. The densities of dihydropyridine receptors and RyRs were not significantly different in muscles of Old relative to Young subjects. These findings indicate that Ca(2+) leakage from the SR is increased in type I fibres in Old subjects by reversible oxidative modification of the RyRs; this increased SR Ca(2+) leak is expected to have both direct and indirect deleterious effects on Ca(2+) movements and muscle function.
Collapse
Affiliation(s)
- C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia
| | - R M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - G D Lamb
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
26
|
Tang Y, Wang H, Wei B, Guo Y, Gu L, Yang Z, Zhang Q, Wu Y, Yuan Q, Zhao G, Ji G. CUG-BP1 regulates RyR1 ASI alternative splicing in skeletal muscle atrophy. Sci Rep 2015; 5:16083. [PMID: 26531141 PMCID: PMC4632035 DOI: 10.1038/srep16083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
RNA binding protein is identified as an important mediator of aberrant alternative splicing in muscle atrophy. The altered splicing of calcium channels, such as ryanodine receptors (RyRs), plays an important role in impaired excitation-contraction (E-C) coupling in muscle atrophy; however, the regulatory mechanisms of ryanodine receptor 1 (RyR1) alternative splicing leading to skeletal muscle atrophy remains to be investigated. In this study we demonstrated that CUG binding protein 1 (CUG-BP1) was up-regulated and the alternative splicing of RyR1 ASI (exon70) was aberrant during the process of neurogenic muscle atrophy both in human patients and mouse models. The gain and loss of function experiments in vivo demonstrated that altered splicing pattern of RyR1 ASI was directly mediated by an up-regulated CUG-BP1 function. Furthermore, we found that CUG-BP1 affected the calcium release activity in single myofibers and the extent of atrophy was significantly reduced upon gene silencing of CUG-BP1 in atrophic muscle. These findings improve our understanding of calcium signaling related biological function of CUG-BP1 in muscle atrophy. Thus, we provide an intriguing perspective of involvement of mis-regulated RyR1 splicing in muscular disease.
Collapse
Affiliation(s)
- Yinglong Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huiwen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Yuting Guo
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yanyun Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
27
|
Messi ML, Li T, Wang ZM, Marsh AP, Nicklas B, Delbono O. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. J Gerontol A Biol Sci Med Sci 2015; 71:1273-80. [PMID: 26447161 DOI: 10.1093/gerona/glv176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 11/14/2022] Open
Abstract
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.
Collapse
Affiliation(s)
- María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tao Li
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
28
|
Zhang T, Choi SJ, Wang ZM, Birbrair A, Messi ML, Jin JP, Marsh AP, Nicklas B, Delbono O. Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. J Gerontol A Biol Sci Med Sci 2014; 69:1437-47. [PMID: 24368775 PMCID: PMC4296115 DOI: 10.1093/gerona/glt204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022] Open
Abstract
Slow skeletal muscle troponin T (TNNT1) pre-messenger RNA alternative splicing (AS) provides transcript diversity and increases the variety of proteins the gene encodes. Here, we identified three major TNNT1 splicing patterns (AS1-3), quantified their expression in the vastus lateralis muscle of older adults, and demonstrated that resistance training modifies their relative abundance; specifically, upregulating AS1 and downregulating AS2 and AS3. In addition, abundance of TNNT1 AS2 correlated negatively with single muscle fiber-specific force after resistance training, while abundance of AS1 correlated negatively with V max. We propose that TNNT1 AS1, AS2 and the AS1/AS2 ratio are potential quantitative biomarkers of skeletal muscle adaptation to resistance training in older adults, and that their profile reflects enhanced single fiber muscle force in the absence of significant increases in fiber cross-sectional area.
Collapse
Affiliation(s)
- Tan Zhang
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Seung Jun Choi
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. Present address: Division of Sports and Health, KyungSung University, Busan, South Korea
| | - Zhong-Min Wang
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alexander Birbrair
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - María L Messi
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
29
|
Hwang CY, Kim K, Choi JY, Bahn YJ, Lee SM, Kim YK, Lee C, Kwon KS. Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ. Proteomics 2014; 14:121-32. [DOI: 10.1002/pmic.201200497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Chae Young Hwang
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Kyutae Kim
- BRI; Korea Institute of Science and Technology; Seoul Korea
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Jeong Yi Choi
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Young Jae Bahn
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Seung-Min Lee
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Cheolju Lee
- BRI; Korea Institute of Science and Technology; Seoul Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| |
Collapse
|
30
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 2013; 6:1339-52. [PMID: 24092876 PMCID: PMC3820258 DOI: 10.1242/dmm.012559] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A characteristic feature of aged humans and other mammals is the debilitating, progressive loss of skeletal muscle function and mass that is known as sarcopenia. Age-related muscle dysfunction occurs to an even greater extent during the relatively short lifespan of the fruit fly Drosophila melanogaster. Studies in model organisms indicate that sarcopenia is driven by a combination of muscle tissue extrinsic and intrinsic factors, and that it fundamentally differs from the rapid atrophy of muscles observed following disuse and fasting. Extrinsic changes in innervation, stem cell function and endocrine regulation of muscle homeostasis contribute to muscle aging. In addition, organelle dysfunction and compromised protein homeostasis are among the primary intrinsic causes. Some of these age-related changes can in turn contribute to the induction of compensatory stress responses that have a protective role during muscle aging. In this Review, we outline how studies in Drosophila and mammalian model organisms can each provide distinct advantages to facilitate the understanding of this complex multifactorial condition and how they can be used to identify suitable therapies.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Larkin LM, Hanes MC, Kayupov E, Claflin DR, Faulkner JA, Brooks SV. Weakness of whole muscles in mice deficient in Cu, Zn superoxide dismutase is not explained by defects at the level of the contractile apparatus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1173-1181. [PMID: 22696118 PMCID: PMC3705120 DOI: 10.1007/s11357-012-9441-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
Mice deficient in Cu,Zn superoxide dismutase (Sod1 (-/-) mice) demonstrate elevated oxidative stress associated with rapid age-related declines in muscle mass and force. The decline in mass for muscles of Sod1 (-/-) mice is explained by a loss of muscle fibers, but the mechanism underlying the weakness is not clear. We hypothesized that the reduced maximum isometric force (F o) normalized by cross-sectional area (specific F o) for whole muscles of Sod1 (-/-) compared with wild-type (WT) mice is due to decreased specific F o of individual fibers. Force generation was measured for permeabilized fibers from muscles of Sod1 (-/-) and WT mice at 8 and 20 months of age. WT mice were also studied at 28 months to determine whether any deficits observed for fibers from Sod1 (-/-) mice were similar to those observed in old WT mice. No effects of genotype were observed for F o or specific F o at either 8 or 20 months, and no age-associated decrease in specific F o was observed for fibers from Sod1 (-/-) mice, whereas specific F o for fibers of WT mice decreased by 20 % by 28 months. Oxidative stress has also been associated with decreased maximum velocity of shortening (V max), and we found a 10 % lower V max for fibers from Sod1 (-/-) compared with WT mice at 20 months. We conclude that the low specific F o of muscles of Sod1 (-/-) mice is not explained by damage to contractile proteins. Moreover, the properties of fibers of Sod1 (-/-) mice do not recapitulate those observed with aging in WT animals.
Collapse
Affiliation(s)
- Lisa M. Larkin
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Michael C. Hanes
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Erdan Kayupov
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Dennis R. Claflin
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- />Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI 48109 USA
| | - John A. Faulkner
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Susan V. Brooks
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
32
|
Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O. Troponin T nuclear localization and its role in aging skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:353-370. [PMID: 22189912 PMCID: PMC3592954 DOI: 10.1007/s11357-011-9368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.
Collapse
Affiliation(s)
- Tan Zhang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Alexander Birbrair
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Zhong-Min Wang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Jackson Taylor
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - María Laura Messi
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Osvaldo Delbono
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
33
|
Zhang T, Birbrair A, Delbono O. Nonmyofilament-associated troponin T3 nuclear and nucleolar localization sequence and leucine zipper domain mediate muscle cell apoptosis. Cytoskeleton (Hoboken) 2013; 70:134-47. [PMID: 23378072 DOI: 10.1002/cm.21095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/07/2022]
Abstract
Troponin T (TnT) plays a major role in striated muscle contraction. We recently demonstrated that the fast skeletal muscle TnT3 isoform is localized in the muscle nucleus, and either its full-length or COOH-terminus leads to muscle cell apoptosis. Here, we further explored the mechanism by which it enters the nucleus and promotes cytotoxicity. Amino acid truncation and substitution showed that its COOH-terminus contains a dominant nuclear/nucleolar localization sequence (KLKRQK) and the basic lysine and arginine residues might play an important role in the nuclear retention and nucleolar enrichment of KLKRQK-DsRed fusion proteins. Deleting this domain or substituting lysine and arginine residues (KLAAQK) resulted in a dramatic loss of TnT3 nuclear and nucleolar localization. In contrast, the GATAKGKVGGRWK domain-DsRed construct localized exclusively in the cytoplasm, indicating that a nuclear exporting sequence is possibly localized in this region. Additionally, we identified a classical DNA-binding leucine zipper domain (LZD) which is conserved among TnT isoforms and species. Deletion of LZD or KLKRQK sequence significantly reduced cell apoptosis compared to full-length TnT3. We conclude that TnT3 contains both a nuclear localization signal and a DNA-binding domain, which may mediate nuclear/nucleolar signaling and muscle cell apoptosis.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
34
|
Yasuda T, Delbono O, Wang ZM, Messi ML, Girard T, Urwyler A, Treves S, Zorzato F. JP-45/JSRP1 variants affect skeletal muscle excitation-contraction coupling by decreasing the sensitivity of the dihydropyridine receptor. Hum Mutat 2012; 34:184-90. [PMID: 22927026 DOI: 10.1002/humu.22209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/14/2012] [Indexed: 11/12/2022]
Abstract
JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Ca(v) 1.1 (the α.1 subunit of the voltage-sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction (EC) coupling. In the present report, we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss malignant hyperthermia population and studied the functional impact of the variants on EC coupling. Our results show that the polymorphisms are equally distributed among malignant hyperthermia negative, malignant hyperthermia equivocal, and malignant hyperthermia susceptible individuals. Interestingly, however, the presence of either one of these JP-45 variants decreased the sensitivity of the DHPR to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and, more importantly, may counteract the hypersensitivity of EC coupling caused by mutations in the RYR1 gene.
Collapse
Affiliation(s)
- Toshimichi Yasuda
- Department of Anesthesiology and Critical Care, Hiroshima University, Manami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
“SR stress” in mixed hindlimb muscles of aging male rats. Biogerontology 2012; 13:547-55. [DOI: 10.1007/s10522-012-9399-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/28/2012] [Indexed: 11/27/2022]
|
36
|
Affiliation(s)
- Russell T. Hepple
- Department of Kinesiology, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Russell AJ, Hartman JJ, Hinken AC, Muci AR, Kawas R, Driscoll L, Godinez G, Lee KH, Marquez D, Browne WF, Chen MM, Clarke D, Collibee SE, Garard M, Hansen R, Jia Z, Lu PP, Rodriguez H, Saikali KG, Schaletzky J, Vijayakumar V, Albertus DL, Claflin DR, Morgans DJ, Morgan BP, Malik FI. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nat Med 2012; 18:452-5. [PMID: 22344294 PMCID: PMC3296825 DOI: 10.1038/nm.2618] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/01/2011] [Indexed: 11/09/2022]
Abstract
Limited neural input results in muscle weakness in neuromuscular disease because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission. We developed a small-molecule fast-skeletal-troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neural input is otherwise diminished secondary to neuromuscular disease. Binding selectively to the fast-skeletal-troponin complex, CK-2017357 slows the rate of calcium release from troponin C and sensitizes muscle to calcium. As a consequence, the force-calcium relationship of muscle fibers shifts leftwards, as does the force-frequency relationship of a nerve-muscle pair, so that CK-2017357 increases the production of muscle force in situ at sub-maximal nerve stimulation rates. Notably, we show that sensitization of the fast-skeletal-troponin complex to calcium improves muscle force and grip strength immediately after administration of single doses of CK-2017357 in a model of the neuromuscular disease myasthenia gravis. Troponin activation may provide a new therapeutic approach to improve physical activity in diseases where neuromuscular function is compromised.
Collapse
Affiliation(s)
- Alan J Russell
- Preclinical Research and Development, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Endogenously determined restriction of food intake overcomes excitation-contraction uncoupling in JP45KO mice with aging. Exp Gerontol 2012; 47:304-16. [PMID: 22297108 DOI: 10.1016/j.exger.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/30/2011] [Accepted: 01/16/2012] [Indexed: 12/19/2022]
Abstract
The decline in muscular strength with age is disproportionate to the loss in total muscle mass that causes it. Knocking out JP45, an integral protein of the junctional face membrane of the skeletal muscle sarcoplasmic reticulum (SR), results in decreased expression of the voltage-gated Ca(2+) channel, Ca(v)1.1; excitation-contraction uncoupling (ECU); and loss of muscle force (Delbono et al., 2007). Here, we show that Ca(v)1.1 expression, charge movement, SR Ca(2+) release, in vitro contractile force, and sustained forced running remain stable in male JP45KO mice at 12 and 18 months. They also exhibit the level of ECU reported for 3-4-month mice (Delbono et al., 2007). No further decline at later ages was recorded. Preserved ECC was not related to increased expression of any protein that directly or indirectly interacts with JP45 at the triad junction. However, maintained muscle force and physical performance were associated with ablation of JP45 expression in the brain, spontaneous and significantly diminished food intake and less tendency toward obesity when exposed to a high-fat diet compared to WT. We propose that (1) endogenously generated restriction in food intake overcomes the deleterious effects of JP45 ablation on ECC and skeletal muscle force mainly through downregulation of neuropeptide-Y expression in the hypothalamic arcuate nucleus; and (2) the JP45KO mouse constitutes an invaluable model to examine the mechanisms controlling food intake as well as skeletal muscle function with aging.
Collapse
|
39
|
Wang ZM, Tang S, Messi ML, Yang JJ, Delbono O. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch 2012; 463:615-24. [PMID: 22249494 DOI: 10.1007/s00424-012-1073-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
Contrasting information suggests either almost complete depletion of sarcoplasmic reticulum (SR) Ca(2+) or significant residual Ca(2+) concentration after prolonged depolarization of the skeletal muscle fiber. The primary obstacle to resolving this controversy is the lack of genetically encoded Ca(2+) indicators targeted to the SR that exhibit low-Ca(2+) affinity, a fast biosensor: Ca(2+) off-rate reaction, and can be expressed in myofibers from adult and older adult mammalian species. This work used the recently designed low-affinity Ca(2+) sensor (Kd = 1.66 mM in the myofiber) CatchER (calcium sensor for detecting high concentrations in the ER) targeted to the SR, to investigate whether prolonged skeletal muscle fiber depolarization significantly alters residual SR Ca(2+) with aging. We found CatchER a proper tool to investigate SR Ca(2+) depletion in young adult and older adult mice, consistently tracking SR luminal Ca(2+) release in response to brief and repetitive stimulation. We evoked SR Ca(2+) release in whole-cell voltage-clamped flexor digitorum brevis muscle fibers from young and old FVB mice and tested the maximal SR Ca(2+) release by directly activating the ryanodine receptor (RyR1) with 4-chloro-m-cresol in the same myofibers. Here, we report for the first time that the Ca(2+) remaining in the SR after prolonged depolarization (2 s) in myofibers from aging (~220 μM) was larger than young (~132 μM) mice. These experiments indicate that SR Ca(2+) is far from fully depleted under physiological conditions throughout life, and support the concept of excitation-contraction uncoupling in functional senescent myofibers.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | | | | | |
Collapse
|
40
|
Delbono O. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 2011; 4:248-59. [PMID: 21529320 PMCID: PMC9634721 DOI: 10.2174/1874609811104030248] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Functional and structural decline of the neuromuscular system is a recognized cause of decreased strength, impaired performance of daily living activities, and loss of independence in the elderly. However, in mammals, including humans, age-related loss of strength is greater than loss of muscle mass, so the underlying mechanisms remain only partially understood. This review focuses on the mechanisms underlying impaired skeletal muscle function with aging, including external calcium-dependent skeletal muscle contraction; increased voltage-sensitive calcium channel Cav1.1 β1asubunit and junctional face protein JP-45 and decreased Cav1.1 (α1) expression, and the potential role of these and other recently discovered molecules of the muscle T-tubule/sarcoplasmic reticulum junction in excitation-contraction uncoupling. We also examined neural influences and trophic factors, particularly insulin-like growth factor-I (IGF-1). Better insight into the triad proteins' involvement in muscle ECC and nerve/muscle interactions and regulation will lead to more rational interventions to delay or prevent muscle weakness with aging. The focus of this review is on the proteins mediating excitation-contraction coupling (ECC) and their expression and regulation in humans and rodent models of skeletal muscle functional decline with aging. Age-dependent changes in proteins other than those related to ECC, muscle composition, clinical assessment and interventions, have been extensively reviewed recently [1-3].
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
41
|
Larkin LM, Davis CS, Sims-Robinson C, Kostrominova TY, Van Remmen H, Richardson A, Feldman EL, Brooks SV. Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1400-7. [PMID: 21900648 DOI: 10.1152/ajpregu.00093.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An association between oxidative stress and muscle atrophy and weakness in vivo is supported by elevated oxidative damage and accelerated loss of muscle mass and force with aging in CuZn-superoxide dismutase-deficient (Sod1(-/-)) mice. The purpose was to determine the basis for low specific force (N/cm(2)) of gastrocnemius muscles in Sod1(-/-) mice and establish the extent to which structural and functional changes in muscles of Sod1(-/-) mice resemble those associated with normal aging. We tested the hypothesis that muscle weakness in Sod1(-/-) mice is due to functionally denervated fibers by comparing forces during nerve and direct muscle stimulation. No differences were observed for wild-type mice at any age in the forces generated in response to nerve and muscle stimulation. Nerve- and muscle-stimulated forces were also not different for 4-wk-old Sod1(-/-) mice, whereas, for 8- and 20-mo-old mice, forces during muscle stimulation were 16 and 30% greater, respectively, than those obtained using nerve stimulation. In addition to functional evidence of denervation with aging, fiber number was not different for Sod1(-/-) and wild-type mice at 4 wk, but 50% lower for Sod1(-/-) mice by 20 mo, and denervated motor end plates were prevalent in Sod1(-/-) mice at both 8 and 20 mo and in WT mice by 28 mo. The data suggest ongoing denervation in muscles of Sod1(-/-) mice that results in fiber loss and muscle atrophy. Moreover, the findings support using Sod1(-/-) mice to explore mechanistic links between oxidative stress and the progression of deficits in muscle structure and function.
Collapse
Affiliation(s)
- Lisa M Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 2011; 14:196-207. [PMID: 21803290 PMCID: PMC3690519 DOI: 10.1016/j.cmet.2011.05.014] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/18/2011] [Accepted: 05/19/2011] [Indexed: 01/07/2023]
Abstract
Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and depleted of the channel-stabilizing subunit calstabin1, compared to RyR1 from younger (3-6 months) adults. This RyR1 channel complex remodeling resulted in "leaky" channels with increased open probability, leading to intracellular calcium leak in skeletal muscle. Similarly, 6-month-old mice harboring leaky RyR1-S2844D mutant channels exhibited skeletal muscle defects comparable to 24-month-old wild-type mice. Treating aged mice with S107 stabilized binding of calstabin1 to RyR1, reduced intracellular calcium leak, decreased reactive oxygen species (ROS), and enhanced tetanic Ca(2+) release, muscle-specific force, and exercise capacity. Taken together, these data indicate that leaky RyR1 contributes to age-related loss of muscle function.
Collapse
Affiliation(s)
- Daniel C Andersson
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Edwards JN, Blackmore DG, Gilbert DF, Murphy RM, Launikonis BS. Store-operated calcium entry remains fully functional in aged mouse skeletal muscle despite a decline in STIM1 protein expression. Aging Cell 2011; 10:675-85. [PMID: 21418512 DOI: 10.1111/j.1474-9726.2011.00706.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a robust mechanism in skeletal muscle, supported by abundant STIM1 and Orai1 in the junctional membranes. The precise role of SOCE in skeletal muscle Ca(2+) homeostasis and excitation-contraction coupling remains to be defined. Regardless, it remains important to determine whether the function and capacity of SOCE changes in aged skeletal muscle. We identified an approximate 40% decline in the expression of the integral SOCE protein, stromal interacting molecule 1 (STIM1), but no such decline in its coupling partner, Orai1, in muscle fibers from aged mice. To determine whether this changed aspects of SOCE functionality in skeletal muscle in aged mice, Ca(2+) in the cytoplasm and t-system were continuously and simultaneously imaged on a confocal microscope during sarcoplasmic reticulum Ca(2+) release and compared to experiments under identical conditions using muscle fibers from young mice. Normal activation, deactivation, Ca(2+) influx, and spatiotemporal characteristics of SOCE were found to persist in skeletal muscle from aged mice. Thus, SOCE remains a robust mechanism in aged skeletal muscle despite the decline in STIM1 protein expression, suggesting STIM1 is in excess in young skeletal muscle.
Collapse
Affiliation(s)
- Joshua N Edwards
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
44
|
Abstract
In 2008, we published an article arguing that the age-related loss of muscle strength is only partially explained by the reduction in muscle mass and that other physiologic factors explain muscle weakness in older adults (Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829-834). Accordingly, we proposed that these events (strength and mass loss) be defined independently, leaving the term "sarcopenia" to be used in its original context to describe the age-related loss of muscle mass. We subsequently coined the term "dynapenia" to describe the age-related loss of muscle strength and power. This article will give an update on both the biological and clinical literature on dynapenia-serving to best synthesize this translational topic. Additionally, we propose a working decision algorithm for defining dynapenia. This algorithm is specific to screening for and defining dynapenia using age, presence or absence of risk factors, a grip strength screening, and if warranted a test for knee extension strength. A definition for a single risk factor such as dynapenia will provide information in building a risk profile for the complex etiology of physical disability. As such, this approach mimics the development of risk profiles for cardiovascular disease that include such factors as hypercholesterolemia, hypertension, hyperglycemia, etc. Because of a lack of data, the working decision algorithm remains to be fully developed and evaluated. However, these efforts are expected to provide a specific understanding of the role that dynapenia plays in the loss of physical function and increased risk for disability among older adults.
Collapse
Affiliation(s)
- Todd M Manini
- Institute on Aging and Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
45
|
Russ DW, Grandy JS, Toma K, Ward CW. Ageing, but not yet senescent, rats exhibit reduced muscle quality and sarcoplasmic reticulum function. Acta Physiol (Oxf) 2011; 201:391-403. [PMID: 20874807 DOI: 10.1111/j.1748-1716.2010.02191.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Reduced muscle force greater than expected from loss of muscle mass has been reported in ageing muscles. Impaired sarcoplasmic reticulum (SR) Ca(2+) release has been implicated as a possible mechanism, and attributed to several factors, including loss of ryanodine receptor (RYR) expression and protein binding. The aim of this study was to evaluate muscle quality and SR Ca(2+) release in ageing rats that were not so old that major atrophy had occurred. METHODS We collected in situ force data from the plantarflexor muscle group and muscle mass from the constituent muscles to determine muscle quality (force/mass) in adult (6-8 months) and ageing (24 months) rats (n=8/group). We evaluated SR Ca(2+) uptake and release, and determined expression of key proteins associated with Ca(2+) release [RYR and FK506 binding protein (FKBP)] and uptake (SERCA, parvalbumin, calsequestrin). RESULTS Plantarflexor force and muscle quality were reduced with ageing (approx. 28 and 34%, respectively), but atrophy was limited, and significant only in the medial gastrocnemius (approx. 15%). The fast phase of SR Ca(2+) release was reduced with ageing in both gastrocnemii, as was FKBP expression and FKBP-RYR binding, but RYR expression was not affected. Similar, but non-significant changes were present in the plantaris, but the soleus muscle generally showed no ageing-related changes. CONCLUSION These data suggest a possible role for impaired SR Ca(2+) release in ageing-related loss of muscle quality, although not through loss of RYR expression.
Collapse
Affiliation(s)
- D W Russ
- Laboratory for Integrative Muscle Biology, School of Physical Therapy, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
46
|
Boncompagni S, Loy RE, Dirksen RT, Franzini-Armstrong C. The I4895T mutation in the type 1 ryanodine receptor induces fiber-type specific alterations in skeletal muscle that mimic premature aging. Aging Cell 2010; 9:958-70. [PMID: 20961389 DOI: 10.1111/j.1474-9726.2010.00623.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The I4898T (IT) mutation in type 1 ryanodine receptor (RyR1), the Ca(2+) release channel of the sarcoplasmic reticulum (SR) is linked to a form of central core disease (CCD) in humans and results in a nonleaky channel and excitation-contraction uncoupling. We characterized age-dependent and fiber-type-dependent alterations in muscle ultrastructure, as well as the magnitude and spatiotemporal properties of evoked Ca(2+) release in heterozygous Ryr1(I4895T/WT) (IT/+) knock-in mice on a mixed genetic background. The results indicate a classical but mild CCD phenotype that includes muscle weakness and the presence of mitochondrial-deficient areas in type I fibers. Electrically evoked Ca(2+) release is significantly reduced in single flexor digitorum brevis (FDB) fibers from young and old IT/+ mice. Structural changes are strongly fiber-type specific, affecting type I and IIB/IIX fibers in very distinct ways, and sparing type IIA fibers. Ultrastructural alterations in our IT/+ mice are also present in wild type, but at a lower frequency and older ages, suggesting that the disease mutation on the mixed background promotes an acceleration of normal age-dependent changes. The observed functional and structural alterations and their similarity to age-associated changes are entirely consistent with the known properties of the mutated channel, which result in reduced calcium release as is also observed in normal aging muscle. In strong contrast to these observations, a subset of patients with the analogous human heterozygous mutation and IT/+ mice on an inbred 129S2/SvPasCrl background exhibit a more severe disease phenotype, which is not directly consistent with the mutated channel properties.
Collapse
Affiliation(s)
- Simona Boncompagni
- IIM - Interuniversitary Institute of Myology, DNI - Department of Neuroscience and Imaging, Ce.S.I.- Centro Scienze dell'Invecchiamento, University of Studi G. d'Annunzio, 66013 Chieti, Italy.
| | | | | | | |
Collapse
|
47
|
Chan S, Head SI. Age- and gender-related changes in contractile properties of non-atrophied EDL muscle. PLoS One 2010; 5:e12345. [PMID: 20808812 PMCID: PMC2925956 DOI: 10.1371/journal.pone.0012345] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies, ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles. However, it is not entirely clear whether these changes in contractile properties can occur before there is significant atrophy, and whether males and females are affected differently. Methods and Results We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult (2–6 months-old) and aged (12–22 months-old) male and female mice. Atrophy was not present in the aged mice. Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times, and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric contractions of 15% strain, and larger force deficits were found in aged than in adult mice. Conclusion Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are more pronounced in female mice than in male mice.
Collapse
Affiliation(s)
- Stephen Chan
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stewart I. Head
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
48
|
Prosser BL, Hernández-Ochoa EO, Lovering RM, Andronache Z, Zimmer DB, Melzer W, Schneider MF. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol 2010; 299:C891-902. [PMID: 20686070 DOI: 10.1152/ajpcell.00180.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of S100A1 in skeletal muscle is just beginning to be elucidated. We have previously shown that skeletal muscle fibers from S100A1 knockout (KO) mice exhibit decreased action potential (AP)-evoked Ca(2+) transients, and that S100A1 binds competitively with calmodulin to a canonical S100 binding sequence within the calmodulin-binding domain of the skeletal muscle ryanodine receptor. Using voltage clamped fibers, we found that Ca(2+) release was suppressed at all test membrane potentials in S100A1(-/-) fibers. Here we examine the role of S100A1 during physiological AP-induced muscle activity, using an integrative approach spanning AP propagation to muscle force production. With the voltage-sensitive indicator di-8-aminonaphthylethenylpyridinium, we first demonstrate that the AP waveform is not altered in flexor digitorum brevis muscle fibers isolated from S100A1 KO mice. We then use a model for myoplasmic Ca(2+) binding and transport processes to calculate sarcoplasmic reticulum Ca(2+) release flux initiated by APs and demonstrate decreased release flux and greater inactivation of flux in KO fibers. Using in vivo stimulation of tibialis anterior muscles in anesthetized mice, we show that the maximal isometric force response to twitch and tetanic stimulation is decreased in S100A1(-/-) muscles. KO muscles also fatigue more rapidly upon repetitive stimulation than those of wild-type counterparts. We additionally show that fiber diameter, type, and expression of key excitation-contraction coupling proteins are unchanged in S100A1 KO muscle. We conclude that the absence of S100A1 suppresses physiological AP-induced Ca(2+) release flux, resulting in impaired contractile activation and force production in skeletal muscle.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiménez-Moreno R, Wang ZM, Messi ML, Delbono O. Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER. Pflugers Arch 2010; 459:725-35. [PMID: 20069312 PMCID: PMC2864504 DOI: 10.1007/s00424-009-0778-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/16/2009] [Indexed: 01/21/2023]
Abstract
The endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the mouse flexor digitorum brevis (FDB) muscle to directly assess SR Ca2+ depletion in response to electrical and pharmacological stimulation. The main conclusions are: (1) D1ER is expressed in the SR of FDB fibres according to both di-8-(amino naphthyl ethenyl pyridinium) staining experiments and reductions in the Förster resonance energy transfer signal consequent to SR Ca2+ release; (2) the amplitude of D1ER citrine/cyan fluorescent protein (CFP) ratio evoked by either 4-chloro-m-cresol (4-CmC) or electrical stimulation is directly proportional to the basal citrine/CFP ratio, which indicates that SR Ca2+ modulates ryanodine-receptor-isoform-1-mediated SR Ca2+ release in the intact muscle fibre; (3) SR Ca2+ release, measured as D1ER citrine/CFP signal, is voltage-dependent and follows a Boltzmann function; and (4) average SR Ca2+ depletion is 20% in response to 4-CmC and 6.4% in response to prolonged sarcolemmal depolarization. These results indicate that significantly depleting SR Ca2+ content under physiological conditions is difficult.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
50
|
Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 2009; 8:584-94. [PMID: 19663902 DOI: 10.1111/j.1474-9726.2009.00507.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation-contraction (E-C) coupling. Excitation-contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation-contraction uncoupling may be caused by alterations in expression of the voltage-dependent calcium channel alpha1s (CaV1.1) and beta1a (CaVbeta1a) subunits, both of which are necessary for E-C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaVbeta1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaVbeta1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaVbeta1a overexpression, a CaVbeta1a-YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaVbeta1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaVbeta1a-YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole-cell patch-clamp technique. Specific force was significantly reduced in young CaVbeta1a-YFP electroporated muscle fibers compared with sham-electroporated, age-matched controls. siRNA interference of CaVbeta1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaVbeta1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaVbeta1a during old age may play a role in the loss of specific force.
Collapse
Affiliation(s)
- Jackson R Taylor
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, 1 Medical Center Boulvard, Winston Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|