1
|
Shin S, Yu J, Tae H, Zhao Y, Jiang D, Qiao Y, Kim W, Cho NJ. Exploring the Membrane-Active Interactions of Antimicrobial Long-Chain Fatty Acids Using a Supported Lipid Bilayer Model for Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56705-56717. [PMID: 39388376 DOI: 10.1021/acsami.4c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The dynamic nature of bacterial lipid membranes significantly impacts the efficacy of antimicrobial therapies. However, traditional assay methods often fall short in replicating the complexity of these membranes, necessitating innovative approaches. Herein, we successfully fabricated model bacterially supported lipid bilayers (SLBs) that closely mimic the characteristics of Gram-positive bacteria using the solvent-assisted lipid bilayer (SALB) technique. By employing a quartz crystal microbalance with dissipation and fluorescence microscopy, we investigated the interactions between these bacterial mimetic membranes and long-chain unsaturated fatty acids. Specifically, linolenic acid (LNA) and linoleic acid (LLA) demonstrated interaction behaviors correlated with the critical micelle concentration (CMC) on Gram-positive membranes, resulting in membrane remodeling and removal at concentrations above their respective CMC values. In contrast, oleic acid (OA), while showing similar membrane remodeling patterns to LNA and LLA, exhibited membrane insertion and CMC-independent activity on the Gram-positive membranes. Particularly, LNA and LLA demonstrated bactericidal effects and promoted membrane permeability and ATP leakage in the bacterial membranes. OA, characterized by a CMC-independent activity profile, exhibited potent bactericidal effects due to its robust penetration into the SLBs, also enhancing membrane permeability and ATP leakage. These findings shed light on the intricate molecular mechanisms governing the interactions between long-chain unsaturated fatty acids and bacterial membranes. Importantly, this study underscores the potential of using biologically relevant model bacterial membrane systems to develop innovative strategies for combating bacterial infections and designing effective therapeutic agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| |
Collapse
|
2
|
Brunel LG, Christakopoulos F, Kilian D, Cai B, Hull SM, Myung D, Heilshorn SC. Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading. Adv Healthc Mater 2024; 13:e2303325. [PMID: 38134346 PMCID: PMC11192865 DOI: 10.1002/adhm.202303325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Cawley JL, Santa DE, Singh AN, Odudimu AT, Berger BA, Wittenberg NJ. Chaotropic Agent-Assisted Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20629-20639. [PMID: 39285818 PMCID: PMC11447895 DOI: 10.1021/acs.langmuir.4c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Supported lipid bilayers (SLBs) are useful structures for mimicking cellular membranes, and they can be integrated with a variety of sensors. Although there are a variety of methods for forming SLBs, many of these methods come with limitations in terms of the lipid compositions that can be employed and the substrates upon which the SLBs can be deposited. Here we demonstrate the use of an all-aqueous chaotropic agent exchange process that can be used to form SLBs on two different substrate materials: SiO2, which is compatible with traditional SLB formation by vesicle fusion, and Al2O3, which is not compatible with vesicle fusion. When examined with a quartz crystal microbalance with dissipation monitoring, the SLBs generated by chaotropic agent exchange (CASLBs) have similar frequency and dissipation shifts to SLBs formed by the vesicle fusion technique. The CASLBs block nonspecific protein adsorption on the substrate and can be used to sense protein-lipid interactions. Fluorescence microscopy was used to examine the CASLBs, and we observed long-range lateral diffusion of fluorescent probes, which confirmed that the CASLBs were composed of a continuous, planar lipid bilayer. Our CASLB method provides another option for forming planar lipid bilayers on a variety of surfaces, including those that are not amenable to the widely used vesicle fusion method.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E Santa
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T Odudimu
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A Berger
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Aliakbarinodehi N, Niederkofler S, Emilsson G, Parkkila P, Olsén E, Jing Y, Sjöberg M, Agnarsson B, Lindfors L, Höök F. Time-Resolved Inspection of Ionizable Lipid-Facilitated Lipid Nanoparticle Disintegration and Cargo Release at an Early Endosomal Membrane Mimic. ACS NANO 2024; 18:22989-23000. [PMID: 39133894 PMCID: PMC11363135 DOI: 10.1021/acsnano.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Advances in lipid nanoparticle (LNP) design have contributed notably to the emergence of the current clinically approved mRNA-based vaccines and are of high relevance for delivering mRNA to combat diseases where therapeutic alternatives are sparse. LNP-assisted mRNA delivery utilizes ionizable lipid-mediated cargo translocation across the endosomal membrane driven by the acidification of the endosomal environment. However, this process occurs at a low efficiency, a few percent at the best. Utilizing surface-sensitive fluorescence microscopy with a single LNP and mRNA resolution, we have investigated pH-controlled interactions between individual LNPs and a planar anionic supported lipid bilayer (SLB) formed on nanoporous silica, mimicking the electrostatic conditions of the early endosomal membrane. For LNPs with an average diameter of 140 nm, fusion with the anionic SLB preferentially occurred when the pH was reduced from 6.6 to 6.0. Furthermore, there was a delay in the onset of LNP fusion after the pH drop, and upon fusion, a significant fraction (>70%) of mRNA was released into the acidic solution representing the endosomal lumen, while a fraction of mRNA remained bound to the SLB even after reversing the pH to neutral cytosolic conditions. Finally, a comparison of the fusion efficiency of two LNP formulations with different surface concentrations of gel-forming lipids correlated with differences in the protein translation efficiency previously observed in human primary cell transfection studies. Together, these findings emphasize the relevance of biophysical investigations of ionizable lipid-containing LNP-assisted mRNA delivery mechanisms while potentially also offering means to optimize the design of LNPs with enhanced endosomal escape capabilities.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Simon Niederkofler
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Petteri Parkkila
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Erik Olsén
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Mattias Sjöberg
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Björn Agnarsson
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Fredrik Höök
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
5
|
Serrano JC, Gillrie MR, Li R, Ishamuddin SH, Moeendarbary E, Kamm RD. Microfluidic-Based Reconstitution of Functional Lymphatic Microvasculature: Elucidating the Role of Lymphatics in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302903. [PMID: 38059806 PMCID: PMC10837354 DOI: 10.1002/advs.202302903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Indexed: 12/08/2023]
Abstract
The knowledge of the blood microvasculature and its functional role in health and disease has grown significantly attributable to decades of research and numerous advances in cell biology and tissue engineering; however, the lymphatics (the secondary vascular system) has not garnered similar attention, in part due to a lack of relevant in vitro models that mimic its pathophysiological functions. Here, a microfluidic-based approach is adopted to achieve precise control over the biological transport of growth factors and interstitial flow that drive the in vivo growth of lymphatic capillaries (lymphangiogenesis). The engineered on-chip lymphatics with in vivo-like morphology exhibit tissue-scale functionality with drainage rates of interstitial proteins and molecules comparable to in vivo standards. Computational and scaling analyses of the underlying transport phenomena elucidate the critical role of the three-dimensional geometry and lymphatic endothelium in recapitulating physiological drainage. Finally, the engineered on-chip lymphatics enabled studies of lymphatic-immune interactions that revealed inflammation-driven responses by the lymphatics to recruit immune cells via chemotactic signals similar to in vivo, pathological events. This on-chip lymphatics platform permits the interrogation of various lymphatic biological functions, as well as screening of lymphatic-based therapies such as interstitial absorption of protein therapeutics and lymphatic immunomodulation for cancer therapy.
Collapse
Affiliation(s)
- Jean C. Serrano
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark R. Gillrie
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medicine University of CalgaryCalgaryABT2N 1N4Canada
| | - Ran Li
- Center for Systems Biology Massachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sarah H. Ishamuddin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
6
|
Lin YS, Chen HY, Yang YP. Fluorescence photobleaching and recovery of fluorescein sodium in carbomer film. RSC Adv 2024; 14:3841-3844. [PMID: 38274174 PMCID: PMC10810102 DOI: 10.1039/d3ra08718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This study investigated fluorescence photobleaching and the recovery of fluorescein sodium (FS)-loaded carbomer films. To mitigate errors caused by the self-quenching effect, the experiments were conducted at FS concentrations of 0.1, 0.5, and 1 wt%. The results revealed a nonlinear relationship between fluorescence intensity and FS concentration (0.1-1 wt%). Moreover, the degree and rate of photobleaching increased with FS concentration. The recovery level and recovery rate exhibited contrasting relationships with FS concentration. Higher FS concentrations were associated with a longer recovery time, which can be attributed to the prolonged irradiation, resulting in a bleached region that was larger than the initially irradiated area.
Collapse
Affiliation(s)
- Yung-Sheng Lin
- Department of Chemical Engineering, National United University Taiwan
| | - Hao-Yan Chen
- Department of Chemical Engineering, National United University Taiwan
| | - Yih-Pey Yang
- Department of Biomechatronic Engineering, National Ilan University Taiwan
| |
Collapse
|
7
|
Arslan FN, Hannezo É, Merrin J, Loose M, Heisenberg CP. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Curr Biol 2024; 34:171-182.e8. [PMID: 38134934 DOI: 10.1016/j.cub.2023.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Édouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | | |
Collapse
|
8
|
Gilbert J, Ermilova I, Fornasier M, Skoda M, Fragneto G, Swenson J, Nylander T. On the interactions between RNA and titrateable lipid layers: implications for RNA delivery with lipid nanoparticles. NANOSCALE 2024; 16:777-794. [PMID: 38088740 DOI: 10.1039/d3nr03308b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Characterising the interaction between cationic ionisable lipids (CIL) and nucleic acids (NAs) is key to understanding the process of RNA lipid nanoparticle (LNP) formation and release of NAs from LNPs. Here, we have used different surface techniques to reveal the effect of pH and NA type on the interaction with a model system of DOPC and the CIL DLin-MC3-DMA (MC3). At only 5% MC3, differences in the structure and dynamics of the lipid layer were observed. Both pH and %MC3 were shown to affect the absorption behaviour of erythropoietin mRNA, polyadenylic acid (polyA) and polyuridylic acid (polyU). The adsorbed amount of all studied NAs was found to increase with decreasing pH and increasing %MC3 but with different effects on the lipid layer, which could be linked to the NA secondary structure. For polyA at pH 6, adsorption to the surface of the layer was observed, whereas for other conditions and NAs, penetration of the NA into the layer resulted in the formation of a multilayer structure. By comparison to simulations excluding the secondary structure, differences in adsorption behaviours between polyA and polyU could be observed, indicating that the NA's secondary structure also affected the MC3-NA interactions.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
| | - Maximilian Skoda
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX, UK
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tommy Nylander
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
- Lund Institute of Advanced Neutron and X-Ray Science, Scheelevägen 19, 223 70 Lund, Sweden
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Cherubini M, Erickson S, Padmanaban P, Haberkant P, Stein F, Beltran-Sastre V, Haase K. Flow in fetoplacental-like microvessels in vitro enhances perfusion, barrier function, and matrix stability. SCIENCE ADVANCES 2023; 9:eadj8540. [PMID: 38134282 PMCID: PMC10745711 DOI: 10.1126/sciadv.adj8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Proper placental vascularization is vital for pregnancy outcomes, but assessing it with animal models and human explants has limitations. We introduce a 3D in vitro model of human placenta terminal villi including fetal mesenchyme and vascular endothelium. By coculturing HUVEC, placental fibroblasts, and pericytes in a macrofluidic chip with a flow reservoir, we generate fully perfusable fetal microvessels. Pressure-driven flow facilitates microvessel growth and remodeling, resulting in early formation of interconnected and lasting placental-like vascular networks. Computational fluid dynamics simulations predict shear forces, which increase microtissue stiffness, decrease diffusivity, and enhance barrier function as shear stress rises. Mass spectrometry analysis reveals enhanced protein expression with flow, including matrix stability regulators, proteins associated with actin dynamics, and cytoskeleton organization. Our model provides a powerful tool for deducing complex in vivo parameters, such as shear stress on developing vascularized placental tissue, and holds promise for unraveling gestational disorders related to the vasculature.
Collapse
Affiliation(s)
- Marta Cherubini
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Scott Erickson
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | | | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Kristina Haase
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| |
Collapse
|
10
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2307435. [PMID: 38646474 PMCID: PMC11031202 DOI: 10.1002/adfm.202307435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 04/23/2024]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physicochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
Affiliation(s)
- Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 08826 Gwanak-ro 1, Gwanak-gu, Seoul, Republic of Korea
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Roger E, Franconi F, Do TAT, Simonsson C, Siegler B, Perrot R, Saulnier P, Gimel JC. Evidence of residual micellar structures in a lipid nanocapsule dispersion. A multi-technique approach. J Control Release 2023; 364:700-717. [PMID: 37951474 DOI: 10.1016/j.jconrel.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Nanoemulsions are metastable emulsions in the nanometric range which can be obtained using low-energy processes. A decade ago, it was demonstrated that a non-negligible amount of residual surfactant micelles may coexist with the oil nanodroplets in a model oil/surfactant system. Those micelles were called "wasted" micelles as they did not participate in the formation of the nanodroplets. Little attention has been focused on the potential presence or effect of such secondary structures in nanoemulsions used as drug delivery systems. Here, we present an extensive characterization of lipid nanocapsules, a nanoemulsion obtained from a medium-chain triglyceride mixed with a pegylated surfactant by a process comprising a temperature-dependent phase inversion followed by a cold-water quench. Lipid nanocapsules demonstrate a very good shelf stability. First, for clarity and academic purposes, we briefly present the pros and the cons of the various diffusion-based characterization techniques used i.e., multi-angle and single-angle dynamic light scattering, nanoparticle tracking analysis, fluorescence recovery after photobleaching, and diffusometry nuclear magnetic resonance. Then, combining all these techniques, we show that up to 40 wt% of the surfactant is not involved in the lipid nanocapsule construction but forms residual micellar structures. Those micelles also contain a small quantity of medium-chain triglyceride (2 wt% of the initial amount) and encapsulate around 40 wt% of a fluorescent dye originally dispersed in the oily phase.
Collapse
Affiliation(s)
- Emilie Roger
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Florence Franconi
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, Biogenouest, F-49000 Angers, France
| | - Tran Anh Thu Do
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Carl Simonsson
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Patrick Saulnier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | |
Collapse
|
12
|
Roth JG, Huang MS, Navarro RS, Akram JT, LeSavage BL, Heilshorn SC. Tunable hydrogel viscoelasticity modulates human neural maturation. SCIENCE ADVANCES 2023; 9:eadh8313. [PMID: 37862423 PMCID: PMC10588948 DOI: 10.1126/sciadv.adh8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have emerged as a promising in vitro model system for studying neurodevelopment. However, current models remain limited in their ability to incorporate tunable biomechanical signaling cues imparted by the extracellular matrix (ECM). The native brain ECM is viscoelastic and stress-relaxing, exhibiting a time-dependent response to an applied force. To recapitulate the remodelability of the neural ECM, we developed a family of protein-engineered hydrogels that exhibit tunable stress relaxation rates. hiPSC-derived neural progenitor cells (NPCs) encapsulated within these gels underwent relaxation rate-dependent maturation. Specifically, NPCs within hydrogels with faster stress relaxation rates extended longer, more complex neuritic projections, exhibited decreased metabolic activity, and expressed higher levels of genes associated with neural maturation. By inhibiting actin polymerization, we observed decreased neuritic projections and a concomitant decrease in neural maturation gene expression. Together, these results suggest that microenvironmental viscoelasticity is sufficient to bias human NPC maturation.
Collapse
Affiliation(s)
- Julien G. Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Complex in Vitro Systems, Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Michelle S. Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jason T. Akram
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Bauer L. LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Richbourg NR, Peppas NA. Structurally decoupled stiffness and solute transport in multi-arm poly(ethylene glycol) hydrogels. Biomaterials 2023; 301:122272. [PMID: 37573839 PMCID: PMC10785603 DOI: 10.1016/j.biomaterials.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Synthetic hydrogels are widely used as artificial 3D environments for cell culture, facilitating the controlled study of cell-environment interactions. However, most hydrogels are limited in their ability to represent the physical properties of biological tissues because stiffness and solute transport properties in hydrogels are closely correlated. Resultingly, experimental investigations of cell-environment interactions in hydrogels are confounded by simultaneous changes in multiple physical properties. Here, we overcame this limitation by simultaneously manipulating four structural parameters to synthesize a library of multi-arm poly (ethylene glycol) (PEG) hydrogel formulations with robustly decoupled stiffness and solute transport. This structural design approach avoids chemical alterations or additions to the network that might have unanticipated effects on encapsulated cells. An algorithm created to statistically evaluate stiffness-transport decoupling within the dataset identified 46 of the 73 synthesized formulations as robustly decoupled. We show that the swollen polymer network model accurately predicts 11 out of 12 structure-property relationships, suggesting that this approach to decoupling stiffness and solute transport in hydrogels is fundamentally validated and potentially broadly applicable. Furthermore, the unprecedented control of hydrogel network structure provided by multi-arm PEG hydrogels confirmed several fundamental modeling assumptions. This study enables nuanced hydrogel design for uncompromised investigation of cell-environment interactions.
Collapse
Affiliation(s)
- Nathan R Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA.
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA; Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX, 78712, USA; Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
15
|
Cawley J, Berger BA, Odudimu AT, Singh AN, Santa DE, McDarby AI, Honerkamp-Smith AR, Wittenberg NJ. Imaging Giant Vesicle Membrane Domains with a Luminescent Europium Tetracycline Complex. ACS OMEGA 2023; 8:29314-29323. [PMID: 37599986 PMCID: PMC10433515 DOI: 10.1021/acsomega.3c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Microdomains in lipid bilayer membranes are routinely imaged using organic fluorophores that preferentially partition into one of the lipid phases, resulting in fluorescence contrast. Here, we show that membrane microdomains in giant unilamellar vesicles (GUVs) can be visualized with europium luminescence using a complex of europium III (Eu3+) and tetracycline (EuTc). EuTc is unlike typical organic lipid probes in that it is a coordination complex with a unique excitation/emission wavelength combination (396/617 nm), a very large Stokes shift (221 nm), and a very narrow emission bandwidth (8 nm). The probe preferentially interacts with liquid disordered domains in GUVs, which results in intensity contrast across the surface of phase-separated GUVs. Interestingly, EuTc also alters GM1 ganglioside partitioning. GM1 typically partitions into liquid ordered domains, but after labeling phase-separated GUVs with EuTc, cholera toxin B-subunit (CTxB), which binds GM1, labels liquid disordered domains. We also demonstrate that EuTc, but not free Eu3+ or Tc, significantly reduces lipid diffusion coefficients. Finally, we show that EuTc can be used to label cellular membranes similar to a traditional membrane probe. EuTc may find utility as a membrane imaging probe where its large Stokes shift and sharp emission band would enable multicolor imaging.
Collapse
Affiliation(s)
- Jennie
L. Cawley
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A. Berger
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T. Odudimu
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N. Singh
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E. Santa
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ariana I. McDarby
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aurelia R. Honerkamp-Smith
- Department
of Physics, Lehigh University, 17 Memorial Drive East, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
16
|
Roth JG, Brunel LG, Huang MS, Liu Y, Cai B, Sinha S, Yang F, Pașca SP, Shin S, Heilshorn SC. Spatially controlled construction of assembloids using bioprinting. Nat Commun 2023; 14:4346. [PMID: 37468483 PMCID: PMC10356773 DOI: 10.1038/s41467-023-40006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Complex in Vitro Systems, Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Friedrichs J, Helbig R, Hilsenbeck J, Pandey PR, Sommer JU, Renner LD, Pompe T, Werner C. Entropic repulsion of cholesterol-containing layers counteracts bioadhesion. Nature 2023; 618:733-739. [PMID: 37344647 DOI: 10.1038/s41586-023-06033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2023] [Indexed: 06/23/2023]
Abstract
Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.
Collapse
Affiliation(s)
- Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Ralf Helbig
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Julia Hilsenbeck
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Prithvi Raj Pandey
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Jens-Uwe Sommer
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lars David Renner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Tilo Pompe
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535250. [PMID: 37066190 PMCID: PMC10104000 DOI: 10.1101/2023.04.02.535250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physiochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
|
19
|
Liebe NL, Mey I, Vuong L, Shikho F, Geil B, Janshoff A, Steinem C. Bioinspired Membrane Interfaces: Controlling Actomyosin Architecture and Contractility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11586-11598. [PMID: 36848241 PMCID: PMC9999349 DOI: 10.1021/acsami.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane. Here, we established phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2)-doped supported planar lipid bilayers to which contractile actomyosin networks were bound via the membrane-actin linker ezrin. This membrane system, amenable to high-resolution fluorescence microscopy, enabled us to analyze the connectivity and contractility of the actomyosin network. We found that the network architecture and dynamics are not only a function of the PtdIns[4,5]P2 concentration but also depend on the presence of negatively charged phosphatidylserine (PS). PS drives the attached network into a regime, where low but physiologically relevant connectivity to the membrane results in strong contractility of the actomyosin network, emphasizing the importance of the lipid composition of the membrane interface.
Collapse
Affiliation(s)
- Nils L. Liebe
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Ingo Mey
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Loan Vuong
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Fadi Shikho
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Burkhard Geil
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Andreas Janshoff
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
- Max-Planck-Institut
für Dynamik und Selbstorganisation, Am Fassberg 17, Göttingen 37077, Germany
| |
Collapse
|
20
|
Aliakbarinodehi N, Gallud A, Mapar M, Wesén E, Heydari S, Jing Y, Emilsson G, Liu K, Sabirsh A, Zhdanov VP, Lindfors L, Esbjörner EK, Höök F. Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion. ACS NANO 2022; 16:20163-20173. [PMID: 36511601 PMCID: PMC9798854 DOI: 10.1021/acsnano.2c04829] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/06/2022] [Indexed: 06/04/2023]
Abstract
Lipid nanoparticles (LNPs) have emerged as potent carriers for mRNA delivery, but several challenges remain before this approach can offer broad clinical translation of mRNA therapeutics. To improve their efficacy, a better understanding is required regarding how LNPs are trapped and processed at the anionic endosomal membrane prior to mRNA release. We used surface-sensitive fluorescence microscopy with single LNP resolution to investigate the pH dependency of the binding kinetics of ionizable lipid-containing LNPs to a supported endosomal model membrane. A sharp increase of LNP binding was observed when the pH was lowered from 6 to 5, accompanied by stepwise large-scale LNP disintegration. For LNPs preincubated in serum, protein corona formation shifted the onset of LNP binding and subsequent disintegration to lower pH, an effect that was less pronounced for lipoprotein-depleted serum. The LNP binding to the endosomal membrane mimic was observed to eventually become severely limited by suppression of the driving force for the formation of multivalent bonds during LNP attachment or, more specifically, by charge neutralization of anionic lipids in the model membrane due to their association with cationic lipids from earlier attached LNPs upon their disintegration. Cell uptake experiments demonstrated marginal differences in LNP uptake in untreated and lipoprotein-depleted serum, whereas lipoprotein-depleted serum increased mRNA-controlled protein (eGFP) production substantially. This complies with model membrane data and suggests that protein corona formation on the surface of the LNPs influences the nature of the interaction between LNPs and endosomal membranes.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| | - Audrey Gallud
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Mokhtar Mapar
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| | - Emelie Wesén
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Sahar Heydari
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Kai Liu
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Vladimir P. Zhdanov
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Elin K. Esbjörner
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| |
Collapse
|
21
|
Machour M, Hen N, Goldfracht I, Safina D, Davidovich‐Pinhas M, Bianco‐Peled H, Levenberg S. Print-and-Grow within a Novel Support Material for 3D Bioprinting and Post-Printing Tissue Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200882. [PMID: 36261395 PMCID: PMC9731703 DOI: 10.1002/advs.202200882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/20/2022] [Indexed: 06/16/2023]
Abstract
3D bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material followed by gelation of the bioink through diverse cross-linking mechanisms. This approach offers high fidelity and precise fabrication of complex structures mimicking living tissue properties. However, the transition of cell mass mixed with the bioink into functional native-like tissue requires post-printing cultivation in vitro. An often-overlooked drawback of 3D bioprinting is the nonuniform shrinkage and deformation of printed constructs during the post-printing tissue maturation period, leading to highly variable engineered constructs with unpredictable size and shape. This limitation poses a challenge for the technology to meet applicative requirements. A novel technology of "print-and-grow," involving 3D bioprinting and subsequent cultivation in κ-Carrageenan-based microgels (CarGrow) for days is presented. CarGrow enhances the long-term structural stability of the printed objects by providing mechanical support. Moreover, this technology provides a possibility for live imaging to monitor tissue maturation. The "print-and-grow" method demonstrates accurate bioprinting with high tissue viability and functionality while preserving the construct's shape and size.
Collapse
Affiliation(s)
- Majd Machour
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Noy Hen
- Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and NanotechnologyTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Idit Goldfracht
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Dina Safina
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Maya Davidovich‐Pinhas
- Department of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Havazelet Bianco‐Peled
- Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
22
|
Alexander AM, Lawley SD. Inferences from FRAP data are model dependent: A subdiffusive analysis. Biophys J 2022; 121:3795-3810. [PMID: 36127879 PMCID: PMC9674994 DOI: 10.1016/j.bpj.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a widely used biological experiment to study the kinetics of molecules that react and move randomly. Since the development of FRAP in the 1970s, many reaction-diffusion models have been used to interpret FRAP data. However, intracellular molecules are widely observed to move by anomalous subdiffusion instead of normal diffusion. In this article, we extend a popular reaction-diffusion model of FRAP to the case of subdiffusion modeled by a fractional diffusion equation. By analyzing this reaction-subdiffusion model, we show that FRAP data are consistent with both diffusive and subdiffusive motion in many scenarios. We illustrate this general result by fitting our model to FRAP data from glucocorticoid receptors in a cell nucleus. We further show that the assumed model of molecular motion (normal diffusion or subdiffusion) strongly impacts the biological parameter values inferred from a given experimentally observed FRAP curve. We additionally analyze our model in three simplified parameter regimes and discuss parameter identifiability for varying subdiffusion exponents.
Collapse
Affiliation(s)
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
23
|
Schwarz P, Steinem C. The role of the transmembrane domain of silicanin-1: Reconstitution of the full-length protein in artificial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183921. [PMID: 35367203 DOI: 10.1016/j.bbamem.2022.183921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Biosilica formation in diatoms is a membrane-confined process that occurs in so-called silica deposition vesicles (SDVs). As SDVs have as yet not been successfully isolated, the impact of the SDV membrane on silica morphogenesis is not well understood. However, recently the first SDV transmembrane protein, silicanin-1 (Sin1) has been identified that appears to be involved in biosilica formation. In this study, we recombinantly expressed and isolated full-length Sin1 from E. coli and investigated its reconstitution behavior in artificial membranes. A reconstitution efficiency in vesicles of up to 80% was achieved by a co-micellization method. By using a chymotrypsin digest, the orientation of Sin1 in unilamellar vesicles was analyzed indicating a positioning of the large N-terminal domain to the outside of the vesicles. These proteoliposomes were capable of precipitating silica in the presence of long-chain polyamines. Supported lipid bilayers were produced by proteoliposome spreading on lipid monolayers to form continuous lipid bilayers with Sin1 confined to the membrane. Successful Sin1 reconstitution into these planar membranes was shown by means of immunostaining with purified primary anti-Sin1 and secondary fluorescent antibodies. The established planar model membrane system, amenable for surface sensitive and microscopy techniques, will pave the way to investigate SDV-membrane interactions with other SDV associated biomolecules and its role in silica biogenesis.
Collapse
Affiliation(s)
- Philipp Schwarz
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany; Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
24
|
Saito T, Matsunaga D, Deguchi S. Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP. Biophys J 2022; 121:2921-2930. [PMID: 35778840 PMCID: PMC9388576 DOI: 10.1016/j.bpj.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
25
|
Cai N, Lai ACK, Liao K, Corridon PR, Graves DJ, Chan V. Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology. Polymers (Basel) 2022; 14:1913. [PMID: 35567083 PMCID: PMC9105003 DOI: 10.3390/polym14091913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Among the new molecular tools available to scientists and engineers, some of the most useful include fluorescently tagged biomolecules. Tools, such as green fluorescence protein (GFP), have been applied to perform semi-quantitative studies on biological signal transduction and cellular structural dynamics involved in the physiology of healthy and disease states. Such studies focus on drug pharmacokinetics, receptor-mediated endocytosis, nuclear mechanobiology, viral infections, and cancer metastasis. In 1976, fluorescence recovery after photobleaching (FRAP), which involves the monitoring of fluorescence emission recovery within a photobleached spot, was developed. FRAP allowed investigators to probe two-dimensional (2D) diffusion of fluorescently-labelled biomolecules. Since then, FRAP has been refined through the advancements of optics, charged-coupled-device (CCD) cameras, confocal microscopes, and molecular probes. FRAP is now a highly quantitative tool used for transport and kinetic studies in the cytosol, organelles, and membrane of a cell. In this work, the authors intend to provide a review of recent advances in FRAP. The authors include epifluorescence spot FRAP, total internal reflection (TIR)/FRAP, and confocal microscope-based FRAP. The underlying mathematical models are also described. Finally, our understanding of coupled transport and kinetics as determined by FRAP will be discussed and the potential for future advances suggested.
Collapse
Affiliation(s)
- Ning Cai
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Wuhan 430073, China;
| | - Alvin Chi-Keung Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China;
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Peter R. Corridon
- Department of Physiology and Immunology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David J. Graves
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
26
|
Inkjet-Printed Phospholipid Bilayers on Titanium Oxide Surfaces: Towards Functional Membrane Biointerfaces. MEMBRANES 2022; 12:membranes12040361. [PMID: 35448333 PMCID: PMC9030265 DOI: 10.3390/membranes12040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Functional biointerfaces hold broad significance for designing cell-responsive medical implants and sensor devices. Solid-supported phospholipid bilayers are a promising class of biological materials to build bioinspired thin-film coatings, as they can facilitate interactions with cell membranes. However, it remains challenging to fabricate lipid bilayers on medically relevant materials such as titanium oxide surfaces. There are also limitations in existing bilayer printing capabilities since most approaches are restricted to either deposition alone or to fixed microarray patterning. By combining advances in lipid surface chemistry and on-demand inkjet printing, we demonstrate the direct deposition and patterning of covalently tethered lipid bilayer membranes on titanium oxide surfaces, in ambient conditions and without any surface pretreatment process. The deposition conditions were evaluated by quartz crystal microbalance-dissipation (QCM-D) measurements, with corresponding resonance frequency (Δf) and energy dissipation (ΔD) shifts of around −25 Hz and <1 × 10−6, respectively, that indicated successful bilayer printing. The resulting printed phospholipid bilayers are stable in air and do not collapse following dehydration; through rehydration, the bilayers regain their functional properties, such as lateral mobility (>1 µm2/s diffusion coefficient), according to fluorescence recovery after photobleaching (FRAP) measurements. By taking advantage of the lipid bilayer patterned architectures and the unique features of titanium oxide’s photoactivity, we further show how patterned cell culture arrays can be fabricated. Looking forward, this work presents new capabilities to achieve stable lipid bilayer patterns that can potentially be translated into implantable biomedical devices.
Collapse
|
27
|
Tae H, Park S, Ma GJ, Cho NJ. Nanoarchitectured air-stable supported lipid bilayer incorporating sucrose-bicelle complex system. NANO CONVERGENCE 2022; 9:3. [PMID: 35015161 PMCID: PMC8752642 DOI: 10.1186/s40580-021-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Cell-membrane-mimicking supported lipid bilayers (SLBs) provide an ultrathin, self-assembled layer that forms on solid supports and can exhibit antifouling, signaling, and transport properties among various possible functions. While recent material innovations have increased the number of practically useful SLB fabrication methods, typical SLB platforms only work in aqueous environments and are prone to fluidity loss and lipid-bilayer collapse upon air exposure, which limits industrial applicability. To address this issue, herein, we developed sucrose-bicelle complex system to fabricate air-stable SLBs that were laterally mobile upon rehydration. SLBs were fabricated from bicelles in the presence of up to 40 wt% sucrose, which was verified by quartz crystal microbalance-dissipation (QCM-D) and fluorescence recovery after photobleaching (FRAP) experiments. The sucrose fraction in the system was an important factor; while 40 wt% sucrose induced lipid aggregation and defects on SLBs after the dehydration-rehydration process, 20 wt% sucrose yielded SLBs that exhibited fully recovered lateral mobility after these processes. Taken together, these findings demonstrate that sucrose-bicelle complex system can facilitate one-step fabrication of air-stable SLBs that can be useful for a wide range of biointerfacial science applications.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore, Singapore
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore, Singapore.
- China-Singapore International Joint Research Institute (CSIJRI), Guangzhou, 510000, China.
| |
Collapse
|
28
|
Pritzl SD, Konrad DB, Ober MF, Richter AF, Frank JA, Nickel B, Trauner D, Lohmüller T. Optical Membrane Control with Red Light Enabled by Red-Shifted Photolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:385-393. [PMID: 34969246 DOI: 10.1021/acs.langmuir.1c02745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoswitchable phospholipids, or "photolipids", that harbor an azobenzene group in their lipid tails are versatile tools to manipulate and control lipid bilayer properties with light. So far, the limited ultraviolet-A/blue spectral range in which the photoisomerization of regular azobenzene operates has been a major obstacle for biophysical or photopharmaceutical applications. Here, we report on the synthesis of nano- and micrometer-sized liposomes from tetra-ortho-chloro azobenzene-substituted phosphatidylcholine (termed red-azo-PC) that undergoes photoisomerization on irradiation with tissue-penetrating red light (≥630 nm). Photoswitching strongly affects the fluidity and mechanical properties of lipid membranes, although small-angle X-ray scattering and dynamic light scattering measurements reveal only a minor influence on the overall bilayer thickness and area expansion. By controlling the photostationary state and the photoswitching efficiency of red-azo-PC for specific wavelengths, we demonstrate that shape transitions such as budding or pearling and the division of cell-sized vesicles can be achieved. These results emphasize the applicability of red-azo-PC as a nanophotonic tool in synthetic biology and for biomedical applications.
Collapse
Affiliation(s)
- Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universtität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-Universtität (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Martina F Ober
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universtität (LMU), Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Alexander F Richter
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universtität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - James A Frank
- Department of Chemical Physiology & Biochemistry, Vollum Institute, Oregon, Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, Oregon 97239, United States
| | - Bert Nickel
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universtität (LMU), Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, Silver Center, 100 Washington Square East, Room 712, New York, New York 10003, United States
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universtität (LMU), Königinstraße 10, 80539 Munich, Germany
| |
Collapse
|
29
|
Chouliara M, Junghans V, Dam T, Santos AM, Davis SJ, Jönsson P. Single-cell measurements of two-dimensional binding affinity across cell contacts. Biophys J 2021; 120:5032-5040. [PMID: 34653390 PMCID: PMC8633712 DOI: 10.1016/j.bpj.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The two-dimensional (2D) affinity between protein molecules across contacting cells is a key parameter regulating and initiating several cellular processes. However, measuring 2D affinity can be challenging, and experimental data are limited. In addition, the obtained 2D affinities are typically averaged over the cell population. We here present a method to measure 2D affinity on single cells binding to polyhistidine-tagged fluorescent ligands anchored to a supported lipid bilayer (SLB). By decreasing the density of ligands in the SLB using imidazole, a new steady-state accumulation in the contact is obtained, and from this change, both the 2D affinity and the number of receptors on the cell can be determined. The method was validated on an SLB containing rat CD2 binding to the rat CD48 mutant T92A expressed on Jurkat T cells. The addition of imidazole did not influence the average 2D affinity (1/Kd), and the spread in affinities within the cell population was low, Kd = 4.9 ± 0.9 molecules/μm2 (mean ± SD), despite an order of magnitude spread in ligand accumulation because of differences in receptor density. It was also found that cell contact size increased both with ligand density and with the number of receptors per cell but that the contact size stayed approximately constant when lowering the ligand density, above a density of around 10 rat CD2 molecules/μm2, after the contact first had formed, indicative of a heterogeneous process. In summary, this method not only allows for single-cell affinities to be measured, but it can also reduce measurement and analysis time and improve measurement accuracy. Because of the low spread in 2D Kd within the cell population, the analysis can further be restricted to the cells showing the strongest binding, paving the way for using this method to study weak binding events.
Collapse
Affiliation(s)
| | - Victoria Junghans
- Department of Chemistry, Lund University, Lund, Sweden; Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tommy Dam
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Haase K, Piatti F, Marcano M, Shin Y, Visone R, Redaelli A, Rasponi M, Kamm RD. Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries. Biomaterials 2021; 280:121248. [PMID: 34794827 DOI: 10.1016/j.biomaterials.2021.121248] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
Hemodynamics play a central role in the health and disease of the coronary and peripheral vascular systems. Vessel-lining endothelial cells are known mechanosensors, responding to disturbances in flow - with mechanosensitivity hypothesized to change in response to metabolic demands. The health of our smallest microvessels have been lauded as a prognostic marker for cardiovascular health. Yet, despite numerous animal models, studying these small vessels has proved difficult. Microfluidic technologies have allowed a number of 3D vascular models to be developed and used to investigate human vessels. Here, two such systems are employed for examining 1) interstitial flow effects on neo-vessel formation, and 2) the effects of flow-conditioning on vascular remodeling following sustained static culture. Interstitial flow is shown to enhance early vessel formation via significant remodeling of vessels and interconnected tight junctions of the endothelium. In formed vessels, continuous flow maintains a stable vascular diameter and causes significant remodeling, contrasting the continued anti-angiogenic decline of statically cultured vessels. This study is the first to couple complex 3D computational flow distributions and microvessel remodeling from microvessels grown on-chip (exposed to flow or no-flow conditions). Flow-conditioned vessels (WSS < 1Pa for 30 μm vessels) increase endothelial barrier function, result in significant changes in gene expression and reduce reactive oxygen species and anti-angiogenic cytokines. Taken together, these results demonstrate microvessel mechanosensitivity to flow-conditioning, which limits deleterious vessel regression in vitro, and could have implications for future modeling of reperfusion/no-flow conditions.
Collapse
Affiliation(s)
- Kristina Haase
- Dept. of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Filippo Piatti
- Dept. of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Yoojin Shin
- Dept. of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Roberta Visone
- Dept. of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alberto Redaelli
- Dept. of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco Rasponi
- Dept. of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Roger D Kamm
- Dept. of Mechanical Engineering, MIT, Cambridge, MA, USA; Dept. of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
31
|
Richbourg NR, Peppas NA. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules 2021; 54:10477-10486. [DOI: 10.1021/acs.macromol.1c01752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan R. Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, United States
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
- Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
32
|
Akinbote A, Beltran-Sastre V, Cherubini M, Visone R, Hajal C, Cobanoglu D, Haase K. Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip. Front Physiol 2021; 12:735915. [PMID: 34690810 PMCID: PMC8528192 DOI: 10.3389/fphys.2021.735915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Fibrosis, a hallmark of many cardiac and pulmonary diseases, is characterized by excess deposition of extracellular matrix proteins and increased tissue stiffness. This serious pathologic condition is thought to stem majorly from local stromal cell activation. Most studies have focused on the role of fibroblasts; however, the endothelium has been implicated in fibrosis through direct and indirect contributions. Here, we present a 3D vascular model to investigate vessel-stroma crosstalk in normal conditions and following induced fibrosis. Human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) are co-cultured with (and without) primary human cardiac and lung fibroblasts (LFs) in a microfluidic device to generate perfusable microvasculature in cardiac- and pulmonary-like microenvironments. Endothelial barrier function, vascular morphology, and matrix properties (stiffness and diffusivity) are differentially impacted by the presence of stromal cells. These vessels (with and without stromal cells) express inflammatory cytokines, which could induce a wound-healing state. Further treatment with transforming growth factor-β (TGF-β) induced varied fibrotic phenotypes on-chip, with LFs resulting in increased stiffness, lower MMP activity, and increased smooth muscle actin expression. Taken together, our work demonstrates the strong impact of stromal-endothelial interactions on vessel formation and extravascular matrix regulation. The role of TGF-β is shown to affect co-cultured microvessels differentially and has a severe negative impact on the endothelium without stromal cell support. Our human 3D in vitro model has the potential to examine anti-fibrotic therapies on patient-specific hiPSCs in the future.
Collapse
Affiliation(s)
- Akinola Akinbote
- European Molecular Biology Laboratory, Barcelona, Spain.,Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | | | - Roberta Visone
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan Italy.,Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, United States
| | - Cynthia Hajal
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, United States
| | - Defne Cobanoglu
- European Molecular Biology Laboratory, Barcelona, Spain.,Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | |
Collapse
|
33
|
Hedge O, Höök F, Joyce P, Bergström CAS. Investigation of Self-Emulsifying Drug-Delivery System Interaction with a Biomimetic Membrane under Conditions Relevant to the Small Intestine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10200-10213. [PMID: 34379976 PMCID: PMC8388123 DOI: 10.1021/acs.langmuir.1c01689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Self-emulsifying drug-delivery systems (SEDDS) have been extensively shown to increase oral absorption of solvation-limited compounds. However, there has been little clinical and commercial use of these formulations, in large part because the demonstrated advantages of SEDDS have been outweighed by our inability to precisely predict drug absorption from SEDDS using current in vitro assays. To overcome this limitation and increase the biological relevancy of in vitro assays, an absorption function can be incorporated using biomimetic membranes. However, the effects that SEDDS have on the integrity of a biomimetic membrane are not known. In this study, a quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy were employed as complementary methods to in vitro lipolysis-permeation assays to characterize the interaction of various actively digested SEDDS with a liquescent artificial membrane comprising lecithin in dodecane (LiDo). Observations from surface analysis showed that interactions between the digesting SEDDS and LiDo membrane coincided with inflection points in the digestion profiles. Importantly, no indications of membrane damage could be observed, which was supported by flux profiles of the lipophilic model drug felodipine (FEL) and impermeable marker Lucifer yellow on the basal side of the membrane. There was a correlation between the digestion kinetics of the SEDDS and the flux of FEL, but no clear correlation between solubilization and absorption profiles. Membrane interactions were dependent on the composition of lipids within each SEDDS, with the more digestible lipids leading to more pronounced interactions, but in all cases, the integrity of the membrane was maintained. These insights demonstrate that LiDo membranes are compatible with in vitro lipolysis assays for improving predictions of drug absorption from lipid-based formulations.
Collapse
Affiliation(s)
- Oliver
J. Hedge
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers Technical University, 412 96 Gothenburg, Sweden
| | - Paul Joyce
- Division
of Nano and Biophysics, Department of Physics, Chalmers Technical University, 412 96 Gothenburg, Sweden
- UniSA
Clinical & Health Sciences, University
of South Australia, 5090 Adelaide, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, 5090 Adelaide, Australia
| | - Christel A. S. Bergström
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
- The
Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, 751
23 Uppsala, Sweden
| |
Collapse
|
34
|
Makasewicz K, Wennmalm S, Stenqvist B, Fornasier M, Andersson A, Jönsson P, Linse S, Sparr E. Cooperativity of α-Synuclein Binding to Lipid Membranes. ACS Chem Neurosci 2021; 12:2099-2109. [PMID: 34076426 PMCID: PMC8291482 DOI: 10.1021/acschemneuro.1c00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cooperative binding is a key feature of metabolic pathways, signaling, and transport processes. It provides tight regulation over a narrow concentration interval of a ligand, thus enabling switching to be triggered by small concentration variations. The data presented in this work reveal strong positive cooperativity of α-synuclein binding to phospholipid membranes. Fluorescence cross-correlation spectroscopy, confocal microscopy, and cryo-TEM results show that in excess of vesicles α-synuclein does not distribute randomly but binds only to a fraction of all available vesicles. Furthermore, α-synuclein binding to a supported lipid bilayer observed with total internal reflection fluorescence microscopy displays a much steeper dependence of bound protein on total protein concentration than expected for independent binding. The same phenomenon was observed in the case of α-synuclein binding to unilamellar vesicles of sizes in the nm and μm range as well as to flat supported lipid bilayers, ruling out that nonuniform binding of the protein is governed by differences in membrane curvature. Positive cooperativity of α-synuclein binding to lipid membranes means that the affinity of the protein to a membrane is higher where there is already protein bound compared to a bare membrane. The phenomenon described in this work may have implications for α-synuclein function in synaptic transmission and other membrane remodeling events.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Stefan Wennmalm
- Department of Applied Physics, Biophysics Group, SciLifeLab, Royal Institute of Technology-KTH, 171 65 Solna, Sweden
| | - Björn Stenqvist
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Alexandra Andersson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Peter Jönsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
35
|
Ulmefors H, Nissa J, Pace H, Wahlsten O, Gunnarsson A, Simon DT, Berggren M, Höök F. Formation of Supported Lipid Bilayers Derived from Vesicles of Various Compositional Complexity on Conducting Polymer/Silica Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5494-5505. [PMID: 33929845 PMCID: PMC8280725 DOI: 10.1021/acs.langmuir.1c00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Indexed: 05/30/2023]
Abstract
Supported lipid bilayers (SLBs) serve important roles as minimalistic models of cellular membranes in multiple diagnostic and pharmaceutical applications as well as in the strive to gain fundamental insights about their complex biological function. To further expand the utility of SLBs, there is a need to go beyond simple lipid compositions to thereby better mimic the complexity of native cell membranes, while simultaneously retaining their compatibility with a versatile range of analytical platforms. To meet this demand, we have in this work explored SLB formation on PEDOT:PSS/silica nanoparticle composite films and mesoporous silica films, both capable of transporting ions to an underlying conducting PEDOT:PSS film. The SLB formation process was evaluated by using the quartz crystal microbalance with dissipation (QCM-D) monitoring, total internal reflection fluorescence (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) for membranes made of pure synthetic lipids with or without the reconstituted membrane protein β-secretase 1 (BACE1) as well as cell-derived native lipid vesicles containing overexpressed BACE1. The mesoporous silica thin film was superior to the PEDOT:PSS/silica nanoparticle composite, providing successful formation of bilayers with high lateral mobility and low defect density even for the most complex native cell membranes.
Collapse
Affiliation(s)
- Hanna Ulmefors
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Josefin Nissa
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Hudson Pace
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Olov Wahlsten
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery
Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Fredrik Höök
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
36
|
Hernández-Rocamora VM, Baranova N, Peters K, Breukink E, Loose M, Vollmer W. Real-time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin-binding proteins. eLife 2021; 10:61525. [PMID: 33625355 PMCID: PMC7943195 DOI: 10.7554/elife.61525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.
Collapse
Affiliation(s)
- Víctor M Hernández-Rocamora
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Baranova
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
| | - Martin Loose
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
37
|
Hull SM, Lindsay CD, Brunel LG, Shiwarski DJ, Tashman JW, Roth JG, Myung D, Feinberg AW, Heilshorn SC. 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007983. [PMID: 33613150 PMCID: PMC7888563 DOI: 10.1002/adfm.202007983] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 05/02/2023]
Abstract
Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.
Collapse
Affiliation(s)
- Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christopher D Lindsay
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Myung
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Dam T, Junghans V, Humphrey J, Chouliara M, Jönsson P. Calcium Signaling in T Cells Is Induced by Binding to Nickel-Chelating Lipids in Supported Lipid Bilayers. Front Physiol 2021; 11:613367. [PMID: 33551841 PMCID: PMC7859345 DOI: 10.3389/fphys.2020.613367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Supported lipid bilayers (SLBs) are one of the most common cell-membrane model systems to study cell-cell interactions. Nickel-chelating lipids are frequently used to functionalize the SLB with polyhistidine-tagged ligands. We show here that these lipids by themselves can induce calcium signaling in T cells, also when having protein ligands on the SLB. This is important to avoid "false" signaling events in cell studies with SLBs, but also to better understand the molecular mechanisms involved in T-cell signaling. Jurkat T cells transfected with the non-signaling molecule rat CD48 were found to bind to ligand-free SLBs containing ≥2 wt% nickel-chelating lipids upon which calcium signaling was induced. This signaling fraction steadily increased from 24 to 60% when increasing the amount of nickel-chelating lipids from 2 to 10 wt%. Both the signaling fraction and signaling time did not change significantly compared to ligand-free SLBs when adding the CD48-ligand rat CD2 to the SLB. Blocking the SLB with bovine serum albumin reduced the signaling fraction to 11%, while preserving CD2 binding and the exclusion of the phosphatase CD45 from the cell-SLB contacts. Thus, CD45 exclusion alone was not sufficient to result in calcium signaling. In addition, more cells signaled on ligand-free SLBs with copper-chelating lipids instead of nickel-chelating lipids and the signaling was found to be predominantly via T-cell receptor (TCR) triggering. Hence, it is possible that the nickel-chelating lipids act as ligands to the cell's TCRs, an interaction that needs to be blocked to avoid unwanted cell activation.
Collapse
Affiliation(s)
- Tommy Dam
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Barnhouse V, Petrikas N, Crosby C, Zoldan J, Harley B. Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Ann Biomed Eng 2021; 49:780-792. [PMID: 32939609 PMCID: PMC7854499 DOI: 10.1007/s10439-020-02602-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Adult hematopoietic stem cells (HSCs) produce the body's full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.
Collapse
Affiliation(s)
- Victoria Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nathan Petrikas
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cody Crosby
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
40
|
Joyce P, Jõemetsa S, Isaksson S, Hossain S, Larsson P, Bergström C, Höök F. TIRF Microscopy-Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angew Chem Int Ed Engl 2021; 60:2069-2073. [PMID: 32926534 PMCID: PMC7894553 DOI: 10.1002/anie.202011931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/12/2022]
Abstract
There is an urgent demand for analytic approaches that enable precise and representative quantification of the transport of biologically active compounds across cellular membranes. In this study, we established a new means to monitor membrane permeation kinetics, using total internal reflection fluorescence microscopy confined to a ≈500 nm thick mesoporous silica substrate, positioned underneath a planar supported cell membrane mimic. This way, we demonstrate spatiotemporally resolved membrane permeation kinetics of a small-molecule model drug, felodipine, while simultaneously controlling the integrity of, and monitoring the drug binding to, the cell membrane mimic. By contrasting the permeation behaviour of pure felodipine with felodipine coupled to the permeability enhancer caprylate (C8), we provide evidence for C8-facilitated transport across lipid membranes, thus validating the potential for this approach to successfully quantify carrier system-induced changes to cellular membrane permeation.
Collapse
Affiliation(s)
- Paul Joyce
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Silver Jõemetsa
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Simon Isaksson
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Shakhawath Hossain
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Per Larsson
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Christel Bergström
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Fredrik Höök
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| |
Collapse
|
41
|
Cawley JL, Jordan LR, Wittenberg NJ. Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers. Anal Chem 2021; 93:1185-1192. [PMID: 33296186 DOI: 10.1021/acs.analchem.0c04412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the nervous system, a myelin sheath that originates from oligodendrocytes or Schwann cells wraps around axons to facilitate electrical signal transduction. The interface between an axon and myelin is maintained by a number of biomolecular interactions. Among the interactions are those between GD1a and GT1b gangliosides on the axon and myelin-associated glycoprotein (MAG) on myelin. Interestingly, these interactions can also inhibit neuronal outgrowth. Ganglioside-MAG interactions are often studied in cellular or animal models where their relative concentrations are not easily controlled or in assays where the gangliosides and MAG are not presented as part of fluid lipid bilayers. Here, we present an approach to characterize MAG-ganglioside interactions in real time, where MAG, GD1a, and GT1b contents are controlled and they are in their in vivo orientation within fluid lipid bilayers. Using a quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor functionalized with a supported lipid bilayer (SLB) and MAG, we detect vesicular GD1a and GT1b binding and determine the interaction kinetics as a function of vesicular ganglioside content. MAG-bound vesicles are deformed similarly, regardless of the ganglioside or its mole fraction. We further demonstrate how MAG-ganglioside interactions can be disrupted by antiganglioside antibodies that override MAG-based neuron growth inhibition.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
42
|
Schäfer J, Förster L, Mey I, Papadopoulos T, Brose N, Steinem C. Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. J Biol Chem 2020; 295:18604-18613. [PMID: 33127642 PMCID: PMC7939476 DOI: 10.1074/jbc.ra120.015347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The assembly of the postsynaptic transmitter sensing machinery at inhibitory nerve cell synapses requires the intimate interplay between cell adhesion proteins, scaffold and adaptor proteins, and γ-aminobutyric acid (GABA) or glycine receptors. We developed an in vitro membrane system to reconstitute this process, to identify the essential protein components, and to define their mechanism of action, with a specific focus on the mechanism by which the cytosolic C terminus of the synaptic cell adhesion protein Neuroligin-2 alters the conformation of the adaptor protein Collybistin-2 and thereby controls Collybistin-2-interactions with phosphoinositides (PtdInsPs) in the plasma membrane. Supported hybrid membranes doped with different PtdInsPs and 1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl} nickel salt (DGS-NTA(Ni)) to allow for the specific adsorption of the His6-tagged intracellular domain of Neuroligin-2 (His-cytNL2) were prepared on hydrophobically functionalized silicon dioxide substrates via vesicle spreading. Two different collybistin variants, the WT protein (CB2SH3) and a mutant that adopts an intrinsically 'open' and activated conformation (CB2SH3/W24A-E262A), were bound to supported membranes in the absence or presence of His-cytNL2. The corresponding binding data, obtained by reflectometric interference spectroscopy, show that the interaction of the C terminus of Neuroligin-2 with Collybistin-2 induces a conformational change in Collybistin-2 that promotes its interaction with distinct membrane PtdInsPs.
Collapse
Affiliation(s)
- Jonas Schäfer
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Lucas Förster
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Ingo Mey
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
43
|
Park S, Sut TN, Ma GJ, Parikh AN, Cho NJ. Crystallization of Cholesterol in Phospholipid Membranes Follows Ostwald’s Rule of Stages. J Am Chem Soc 2020; 142:21872-21882. [DOI: 10.1021/jacs.0c10674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Tun Naw Sut
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Atul N. Parikh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
44
|
Defining the Diffusion in Model Membranes Using Line Fluorescence Recovery after Photobleaching. MEMBRANES 2020; 10:membranes10120434. [PMID: 33348780 PMCID: PMC7767200 DOI: 10.3390/membranes10120434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
In this study, we explore the use of line FRAP to detect diffusion in synthetic lipid membranes. The study of the dynamics of these membrane lipids can, however, be challenging. The diffusion in two different synthetic membranes consisting of the lipid mixtures 1:1 DOPC:DPPC and 2:2:1 DOPC:DPPC:Cholesterol was studied with line FRAP. A correlation between diffusion coefficient and temperature was found to be dependent on the morphology of the membrane. We suggest line FRAP as a promising accessible and simple technique to study diffusion in plasma membranes.
Collapse
|
45
|
Joyce P, Jõemetsa S, Isaksson S, Hossain S, Larsson P, Bergström C, Höök F. TIRF Microscopy‐Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul Joyce
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Silver Jõemetsa
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Simon Isaksson
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Shakhawath Hossain
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Per Larsson
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Christel Bergström
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Fredrik Höök
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| |
Collapse
|
46
|
Hossain S, Joyce P, Parrow A, Jõemetsa S, Höök F, Larsson P, Bergström CAS. Influence of Bile Composition on Membrane Incorporation of Transient Permeability Enhancers. Mol Pharm 2020; 17:4226-4240. [PMID: 32960068 PMCID: PMC7610231 DOI: 10.1021/acs.molpharmaceut.0c00668] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Transient
permeability enhancers (PEs), such as caprylate, caprate,
and salcaprozate sodium (SNAC), improve the bioavailability of poorly
permeable macromolecular drugs. However, the effects are variable
across individuals and classes of macromolecular drugs and biologics.
Here, we examined the influence of bile compositions on the ability
of membrane incorporation of three transient PEs—caprylate,
caprate, and SNAC—using coarse-grained molecular dynamics (CG-MD).
The availability of free PE monomers, which are important near the
absorption site, to become incorporated into the membrane was higher
in fasted-state fluids than that in fed-state fluids. The simulations
also showed that transmembrane perturbation, i.e.,
insertion of PEs into the membrane, is a key mechanism by which caprylate
and caprate increase permeability. In contrast, SNAC was mainly adsorbed
onto the membrane surface, indicating a different mode of action.
Membrane incorporation of caprylate and caprate was also influenced
by bile composition, with more incorporation into fasted- than fed-state
fluids. The simulations of transient PE interaction with membranes
were further evaluated using two experimental techniques: the quartz
crystal microbalance with dissipation technique and total internal
reflection fluorescence microscopy. The experimental results were
in good agreement with the computational simulations. Finally, the
kinetics of membrane insertion was studied with CG-MD. Variation in
micelle composition affected the insertion rates of caprate monomer
insertion and expulsion from the micelle surface. In conclusion, this
study suggests that the bile composition and the luminal composition
of the intestinal fluid are important factors contributing to the
interindividual variability in the absorption of macromolecular drugs
administered with transient PEs.
Collapse
Affiliation(s)
- Shakhawath Hossain
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,The Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Paul Joyce
- Division of Biological Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Silver Jõemetsa
- Division of Biological Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Fredrik Höök
- Division of Biological Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,The Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,The Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| |
Collapse
|
47
|
Versatile formation of supported lipid bilayers from bicellar mixtures of phospholipids and capric acid. Sci Rep 2020; 10:13849. [PMID: 32796898 PMCID: PMC7427796 DOI: 10.1038/s41598-020-70872-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Originally developed for the structural biology field, lipid bicelle nanostructures composed of long- and short-chain phospholipid molecules have emerged as a useful interfacial science tool to fabricate two-dimensional supported lipid bilayers (SLBs) on hydrophilic surfaces due to ease of sample preparation, scalability, and versatility. To improve SLB fabrication prospects, there has been recent interest in replacing the synthetic, short-chain phospholipid component of bicellar mixtures with naturally abundant fatty acids and monoglycerides, i.e., lauric acid and monocaprin. Such options have proven successful under specific conditions, however, there is room for devising more versatile fabrication options, especially in terms of overcoming lipid concentration-dependent SLB formation limitations. Herein, we investigated SLB fabrication by using bicellar mixtures consisting of long-chain phospholipid and capric acid, the latter of which has similar headgroup and chain length properties to lauric acid and monocaprin, respectively. Quartz crystal microbalance-dissipation, epifluorescence microscopy, and fluorescence recovery after photobleaching experiments were conducted to characterize lipid concentration-dependent bicelle adsorption onto silicon dioxide surfaces. We identified that uniform-phase SLB formation occurred independently of total lipid concentration when the ratio of long-chain phospholipid to capric acid molecules ("q-ratio") was 0.25 or 2.5, which is superior to past results with lauric acid- and monocaprin-containing bicelles in which cases lipid concentration-dependent behavior was observed. Together, these findings demonstrate that capric acid-containing bicelles are versatile tools for SLB fabrication and highlight how the molecular structure of bicelle components can be rationally finetuned to modulate self-assembly processes at solid-liquid interfaces.
Collapse
|
48
|
Junghans V, Chouliara M, Santos AM, Hatherley D, Petersen J, Dam T, Svensson LM, Rossjohn J, Davis SJ, Jönsson P. Effects of a local auxiliary protein on the two-dimensional affinity of a TCR-peptide MHC interaction. J Cell Sci 2020; 133:jcs245985. [PMID: 32591485 DOI: 10.1242/jcs.245985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
The affinity of T-cell receptors (TCRs) for major histocompatibility complex molecules (MHCs) presenting cognate antigens likely determines whether T cells initiate immune responses, or not. There exist few measurements of two-dimensional (2D) TCR-MHC interactions, and the effect of auxiliary proteins on binding is unexplored. Here, Jurkat T-cells expressing the MHC molecule HLA-DQ8-glia-α1 and the ligand of an adhesion protein (rat CD2) were allowed to bind supported lipid bilayers (SLBs) presenting fluorescently labelled L3-12 TCR and rat CD2, allowing measurements of binding unconfounded by cell signaling effects or co-receptor binding. The 2D Kd for L3-12 TCR binding to HLA-DQ8-glia-α1, of 14±5 molecules/μm2 (mean±s.d.), was only marginally influenced by including CD2 up to ∼200 bound molecules/μm2 but higher CD2 densities reduced the affinity up to 1.9-fold. Cell-SLB contact size increased steadily with ligand density without affecting binding for contacts at up to ∼20% of total cell area, but beyond this lamellipodia appeared, giving an apparent increase in bound receptors of up to 50%. Our findings show how parameters other than the specific protein-protein interaction can influence binding behavior at cell-cell contacts.
Collapse
Affiliation(s)
| | - Manto Chouliara
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Deborah Hatherley
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tommy Dam
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Lena M Svensson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; and School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Peter Jönsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
49
|
Optimal formation of uniform-phase supported lipid bilayers from phospholipid–monoglyceride bicellar mixtures. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Fluorescence recovery after photobleaching: direct measurement of diffusion anisotropy. Biomech Model Mechanobiol 2020; 19:2397-2412. [PMID: 32562093 DOI: 10.1007/s10237-020-01346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a widely used technique for studying diffusion in biological tissues. Most of the existing approaches for the analysis of FRAP experiments assume isotropic diffusion, while only a few account for anisotropic diffusion. In fibrous tissues, such as articular cartilage, tendons and ligaments, diffusion, the main mechanism for molecular transport, is anisotropic and depends on the fibre alignment. In this work, we solve the general diffusion equation governing a FRAP test, assuming an anisotropic diffusivity tensor and using a general initial condition for the case of an elliptical (thereby including the case of a circular) bleaching profile. We introduce a closed-form solution in the spatial coordinates, which can be applied directly to FRAP tests to extract the diffusivity tensor. We validate the approach by measuring the diffusivity tensor of [Formula: see text] FITC-Dextran in porcine medial collateral ligaments. The measured diffusion anisotropy was [Formula: see text] (SE), which is in agreement with that reported in the literature. The limitations of the approach, such as the size of the bleached region and the intensity of the bleaching, are studied using COMSOL simulations.
Collapse
|