1
|
Tan B, Zhang B, Chen H. Gastroenteropancreatic neuroendocrine neoplasms: epidemiology, genetics, and treatment. Front Endocrinol (Lausanne) 2024; 15:1424839. [PMID: 39411312 PMCID: PMC11474919 DOI: 10.3389/fendo.2024.1424839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
The incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) is increasing at a rapid pace and is becoming an increasingly important consideration in clinical care. Epidemiological data from multiple countries indicate that the incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) exhibits regional, site-specific, and gender-based variations. While the genetics and pathogenesis of some GEP NEN, particularly pancreatic NENs, have been investigated, there are still many mechanisms that require further investigation. The management of GEP NEN is diverse, but surgery remains the primary option for most cases. Peptide receptor radionuclide therapy (PRRT) is an effective treatment, and several clinical trials are exploring the potential of immunotherapy and targeted therapy, as well as combination therapy.
Collapse
Affiliation(s)
- Baizhou Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Beiyu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zhu L, Ye X, She Y, Liu W, Hasegawa K, Rossi RE, Du Q, Zhai Q. Assessing the effectiveness and safety of surufatinib versus everolimus or sunitinib in advanced neuroendocrine neoplasms: insights from a real-world, retrospective cohort study using propensity score and inverse probability treatment weighting analysis. J Gastrointest Oncol 2024; 15:689-709. [PMID: 38756630 PMCID: PMC11094498 DOI: 10.21037/jgo-24-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background While surufatinib, sunitinib, and everolimus have shown efficacy for advanced neuroendocrine neoplasms (NENs) in randomized controlled trials (RCTs), direct comparisons in a real-world setting remain unexplored. This gap highlights the clinical need to understand their comparative effectiveness and safety within the diverse Chinese population. Addressing this, our study provides insights into the real-world performance of these therapies, aiming to inform treatment selection and improve patient outcomes. Methods A retrospective, observational study was conducted at Fudan University Shanghai Cancer Center, including patients with advanced NENs treated with surufatinib, sunitinib, or everolimus between July 2020 and April 2023. Eligibility criteria focused on histologically confirmed, locally advanced, unresectable, or metastatic NENs, with patients having received at least one month of targeted therapy. We employed inverse probability weighting (IPW) with the propensity score (PS) matching to adjust for the bias of baseline characteristics. The assessment of covariates included age, sex, performance status, primary tumor site, functional status, genetic mutations, tumor differentiation, Ki67 index, tumor grade, metastasis site, and previous therapies. The primary outcome was progression-free survival (PFS), and secondary outcomes included objective response rate (ORR), disease control rate (DCR), and adverse events (AEs). Results The study enrolled 123, 56, and 68 locally advanced or metastatic NEN patients treated with surufatinib, sunitinib, and everolimus, respectively. Before adjusting for confounding factors, surufatinib was used less frequently as a first-line treatment compared to sunitinib and everolimus in pancreatic NENs (pNENs) (11.1% vs. 22.1%, P=0.057). Significant differences were noted in prior treatments and tumor characteristics between surufatinib and everolimus groups in extrapancreatic NENs (epNENs) (P<0.05). Post-IPW, these disparities were resolved (P>0.05). Surufatinib demonstrated superior median PFS (mPFS) in both pancreatic [8.30 vs. 6.33 months, hazard ratio (HR) 0.592, P<0.001] and epNENs (8.73 vs. 3.70 months, HR 0.608, P<0.001) compared to everolimus or sunitinib. Notably, male gender (HR 1.75, P=0.001), functional status (HR 2.09, P=0.01), Ki67 index >20% (HR 12.7, P=0.004), previous somatostatin analogue (SSA) treatment (HR 1.73, P=0.001), germline mutation (HR 5.62, P<0.001), poor differentiation (HR 7.45, P<0.001), liver metastasis (HR 1.72, P=0.001) and multiple treatment lines (HR 1.62 for 2nd line, P=0.04; HR 1.88 for ≥3rd line, P=0.01) were identified as negative prognostic factors for PFS. Conversely, dose adjustment (HR 0.63, P=0.009) and treatment with surufatinib (HR 0.58 for pNEN, P<0.001; HR 0.62 for epNEN, P=0.002) were correlated with longer PFS. Conclusions In a real-world Chinese cohort, surufatinib significantly outperformed sunitinib and everolimus in prolonging PFS among advanced NEN patients, with identifiable clinical features impacting survival, and conclusions regarding superiority should be interpreted with caution due to the retrospective design. Our findings underscore the need for prospective studies to further validate these results and explore additional predictive biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Linhui Zhu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Ye
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjun She
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kiyoshi Hasegawa
- Hepato-Biliary and Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Davis CH, Laird AM, Libutti SK. Resistant gastroenteropancreatic neuroendocrine tumors: a definition and guideline to medical and surgical management. Proc AMIA Symp 2023; 37:104-110. [PMID: 38174011 PMCID: PMC10761146 DOI: 10.1080/08998280.2023.2284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (NETs), also historically known as carcinoids, are tumors derived of hormone-secreting enteroendocrine cells. Carcinoids may be found in the esophagus, stomach, small intestine, appendix, colon, rectum, or pancreas. The biologic behavior of carcinoids differs based on their location, with gastric and appendiceal NETs among the least aggressive and small intestinal and pancreatic NETs among the most aggressive. Ultimately, however, biologic behavior is most heavily influenced by tumor grade. The incidence of NETs has increased by 6.4 times over the past 40 years. Surgery remains the mainstay for management of most carcinoids. Medical management, however, is a useful adjunct and/or definitive therapy in patients with symptomatic functional carcinoids, in patients with unresectable or incompletely resected carcinoids, in some cases of recurrent carcinoid, and in postoperative patients to prevent recurrence. Functional tumors with persistent symptoms or progressive metastatic carcinoids despite therapy are called "resistant" tumors. In patients with unresectable disease and/or carcinoid syndrome, an array of medical therapies is available, mainly including somatostatin analogues, molecular-targeted therapy, and peptide receptor radionuclide therapy. Active research is ongoing to identify additional targeted therapies for patients with resistant carcinoids.
Collapse
Affiliation(s)
- Catherine H. Davis
- Division of Surgical Oncology, Baylor University Medical Center, Dallas, Texas, USA
- Texas A&M University School of Medicine, Dallas, Texas, USA
| | - Amanda M. Laird
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey, USA
| | - Steven K. Libutti
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Passhak M, McNamara MG, Hubner RA, Ben-Aharon I, Valle JW. Choosing the best systemic treatment sequence for control of tumour growth in gastro-enteropancreatic neuroendocrine tumours (GEP-NETs): What is the recent evidence? Best Pract Res Clin Endocrinol Metab 2023; 37:101836. [PMID: 37914565 DOI: 10.1016/j.beem.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Gastro-enteropancreatic neuroendocrine tumours (GEP-NETs) represent a rare and highly heterogeneous entity with increasing incidence. Based on the results obtained from several trials performed in the last decade, various therapeutic options have been established for the treatment of patients with GEP-NETs. The options include somatostatin analogues, targeted therapies (sunitinib and everolimus), chemotherapy (with temozolomide or streptozocin-based regimens), and peptide receptor radionuclide therapy. The treatment choice is influenced by various clinico-pathological factors including tumour grade and morphology, the primary mass location, hormone secretion, the volume of the disease and the rate of tumour growth, as well as patient comorbidities and performance status. In this review, the efficacy and safety of treatment options for patients with GEP-NETs is discussed and the evidence to inform the best sequence of available therapies to control tumour growth, prolong patient survival, and to lower potential toxicity, while maintaining patient quality of life is explored.
Collapse
Affiliation(s)
- Maria Passhak
- Fishman Oncology Center, Rambam Health Care Campus, Haifa, Israel
| | - Mairéad G McNamara
- Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Richard A Hubner
- Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Irit Ben-Aharon
- Fishman Oncology Center, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK.
| |
Collapse
|
5
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
6
|
Wang Y, Wang F, Qin Y, Lou X, Ye Z, Zhang W, Gao H, Chen J, Xu X, Yu X, Ji S. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 2023; 80:266-282. [PMID: 36648608 DOI: 10.1007/s12020-023-03299-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Duarte DB, Febra J, Miranda HP, Amaral C. Tumeur neuroendocrine pancréatique métastatique sécrétant de la calcitonine : une entité tumorale rare. ANNALES D'ENDOCRINOLOGIE 2022; 83:149-151. [DOI: 10.1016/j.ando.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
8
|
Fernandez CJ, Agarwal M, Pottakkat B, Haroon NN, George AS, Pappachan JM. Gastroenteropancreatic neuroendocrine neoplasms: A clinical snapshot. World J Gastrointest Surg 2021; 13. [PMID: 33796213 PMCID: PMC7993001 DOI: 10.4240/wjgs.v13.i3.231&set/a 886074439+803088391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our understanding about the epidemiological aspects, pathogenesis, molecular diagnosis, and targeted therapies of neuroendocrine neoplasms (NENs) have drastically advanced in the past decade. Gastroenteropancreatic (GEP) NENs originate from the enteroendocrine cells of the embryonic gut which share common endocrine and neural differentiation factors. Most NENs are well-differentiated, and slow growing. Specific neuroendocrine biomarkers that are used in the diagnosis of functional NENs include insulin, glucagon, vasoactive intestinal polypeptide, gastrin, somatostatin, adrenocorticotropin, growth hormone releasing hormone, parathyroid hormone-related peptide, serotonin, histamine, and 5-hydroxy indole acetic acid (5-HIAA). Biomarkers such as pancreatic polypeptide, human chorionic gonadotrophin subunits, neurotensin, ghrelin, and calcitonin are used in the diagnosis of non-functional NENs. 5-HIAA levels correlate with tumour burden, prognosis and development of carcinoid heart disease and mesenteric fibrosis, however several diseases, medications and edible products can falsely elevate the 5-HIAA levels. Organ-specific transcription factors are useful in the differential diagnosis of metastasis from an unknown primary of well-differentiated NENs. Emerging novel biomarkers include circulating tumour cells, circulating tumour DNA, circulating micro-RNAs, and neuroendocrine neoplasms test (NETest) (simultaneous measurement of 51 neuroendocrine-specific marker genes in the peripheral blood). NETest has high sensitivity (85%-98%) and specificity (93%-97%) for the detection of gastrointestinal NENs, and is useful for monitoring treatment response, recurrence, and prognosis. In terms of management, surgery, radiofrequency ablation, symptom control with medications, chemotherapy and molecular targeted therapies are all considered as options. Surgery is the mainstay of treatment, but depends on factors including age of the individual, location, stage, grade, functional status, and the heredity of the tumour (sporadic vs inherited). Medical management is helpful to alleviate the symptoms, manage inoperable lesions, suppress postoperative tumour growth, and manage recurrences. Several molecular-targeted therapies are considered second line to somatostatin analogues. This review is a clinical update on the pathophysiological aspects, diagnostic algorithm, and management of GEP NENs.
Collapse
Affiliation(s)
- Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Mayuri Agarwal
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Nisha Nigil Haroon
- Department of Endocrinology and Internal Medicine, Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Annu Susan George
- Department of Medical Oncology, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT, Preston, The University of Manchester, Oxford Road M13 9PL, Manchester Metropolitan University, All Saints Building M15 6BH, Manchester, United Kingdom.
| |
Collapse
|
9
|
Fernandez CJ, Agarwal M, Pottakkat B, Haroon NN, George AS, Pappachan JM. Gastroenteropancreatic neuroendocrine neoplasms: A clinical snapshot. World J Gastrointest Surg 2021; 13:231-255. [PMID: 33796213 PMCID: PMC7993001 DOI: 10.4240/wjgs.v13.i3.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding about the epidemiological aspects, pathogenesis, molecular diagnosis, and targeted therapies of neuroendocrine neoplasms (NENs) have drastically advanced in the past decade. Gastroenteropancreatic (GEP) NENs originate from the enteroendocrine cells of the embryonic gut which share common endocrine and neural differentiation factors. Most NENs are well-differentiated, and slow growing. Specific neuroendocrine biomarkers that are used in the diagnosis of functional NENs include insulin, glucagon, vasoactive intestinal polypeptide, gastrin, somatostatin, adrenocorticotropin, growth hormone releasing hormone, parathyroid hormone-related peptide, serotonin, histamine, and 5-hydroxy indole acetic acid (5-HIAA). Biomarkers such as pancreatic polypeptide, human chorionic gonadotrophin subunits, neurotensin, ghrelin, and calcitonin are used in the diagnosis of non-functional NENs. 5-HIAA levels correlate with tumour burden, prognosis and development of carcinoid heart disease and mesenteric fibrosis, however several diseases, medications and edible products can falsely elevate the 5-HIAA levels. Organ-specific transcription factors are useful in the differential diagnosis of metastasis from an unknown primary of well-differentiated NENs. Emerging novel biomarkers include circulating tumour cells, circulating tumour DNA, circulating micro-RNAs, and neuroendocrine neoplasms test (NETest) (simultaneous measurement of 51 neuroendocrine-specific marker genes in the peripheral blood). NETest has high sensitivity (85%-98%) and specificity (93%-97%) for the detection of gastrointestinal NENs, and is useful for monitoring treatment response, recurrence, and prognosis. In terms of management, surgery, radiofrequency ablation, symptom control with medications, chemotherapy and molecular targeted therapies are all considered as options. Surgery is the mainstay of treatment, but depends on factors including age of the individual, location, stage, grade, functional status, and the heredity of the tumour (sporadic vs inherited). Medical management is helpful to alleviate the symptoms, manage inoperable lesions, suppress postoperative tumour growth, and manage recurrences. Several molecular-targeted therapies are considered second line to somatostatin analogues. This review is a clinical update on the pathophysiological aspects, diagnostic algorithm, and management of GEP NENs.
Collapse
Affiliation(s)
- Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Mayuri Agarwal
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Nisha Nigil Haroon
- Department of Endocrinology and Internal Medicine, Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Annu Susan George
- Department of Medical Oncology, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT, Preston, The University of Manchester, Oxford Road M13 9PL, Manchester Metropolitan University, All Saints Building M15 6BH, Manchester, United Kingdom
| |
Collapse
|
10
|
Kloker LD, Berchtold S, Smirnow I, Beil J, Krieg A, Sipos B, Lauer UM. Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 2020; 20:628. [PMID: 32631270 PMCID: PMC7339398 DOI: 10.1186/s12885-020-07121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Oncolytic virotherapy is an upcoming treatment option for many tumor entities. But so far, a first oncolytic virus only was approved for advanced stages of malignant melanomas. Neuroendocrine tumors (NETs) constitute a heterogenous group of tumors arising from the neuroendocrine system at diverse anatomic sites. Due to often slow growth rates and (in most cases) endocrine non-functionality, NETs are often detected only in a progressed metastatic situation, where therapy options are still severely limited. So far, immunotherapies and especially immunovirotherapies are not established as novel treatment modalities for NETs. Methods In this immunovirotherapy study, pancreatic NET (BON-1, QGP-1), lung NET (H727, UMC-11), as well as neuroendocrine carcinoma (NEC) cell lines (HROC-57, NEC-DUE1) were employed. The well characterized genetically engineered vaccinia virus GLV-1 h68, which has already been investigated in various clinical trials, was chosen as virotherapeutical treatment modality. Results Profound oncolytic efficiencies were found for NET/NEC tumor cells. Besides, NET/NEC tumor cell bound expression of GLV-1 h68-encoded marker genes was observed also. Furthermore, a highly efficient production of viral progenies was detected by sequential virus quantifications. Moreover, the mTOR inhibitor everolimus, licensed for treatment of metastatic NETs, was not found to interfere with GLV-1 h68 replication, making a combinatorial treatment of both feasible. Conclusions In summary, the oncolytic vaccinia virus GLV-1 h68 was found to exhibit promising antitumoral activities, replication capacities and a potential for future combinatorial approaches in cell lines originating from neuroendocrine neoplasms. Based on these preliminary findings, virotherapeutic effects now have to be further evaluated in animal models for treatment of Neuroendocrine neoplasms (NENs).
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Irina Smirnow
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany.
| |
Collapse
|
11
|
Alexandraki KI, Daskalakis K, Tsoli M, Grossman AB, Kaltsas GA. Endocrinological Toxicity Secondary to Treatment of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Trends Endocrinol Metab 2020. [DOI: 10.1016/j.tem.2019.11.003 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Alexandraki KI, Daskalakis K, Tsoli M, Grossman AB, Kaltsas GA. Endocrinological Toxicity Secondary to Treatment of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Trends Endocrinol Metab 2020; 31:239-255. [PMID: 31839442 DOI: 10.1016/j.tem.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are increasingly recognized, characterized by prolonged survival even with metastatic disease. Their medical treatment is complex involving various specialties, necessitating awareness of treatment-related adverse effects (AEs). As GEP-NENs express somatostatin receptors (SSTRs), long-acting somatostatin analogs (SSAs) that are used for secretory syndrome and tumor control may lead to altered glucose metabolism. Everolimus and sunitinib are molecular targeted agents that affect glucose and lipid metabolism and may induce hypothyroidism or hypocalcemia, respectively. Chemotherapeutic drugs can affect the reproductive system and water homeostasis, whereas immunotherapeutic agents can cause hypophysitis and thyroiditis or other immune-mediated disorders. Treatment with radiopeptides may temporarily lead to radiation-induced hormone disturbances. As drugs targeting GEP-NENs are increasingly introduced, recognition and management of endocrine-related AEs may improve compliance and the quality of life of these patients.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- National and Kapodistrian University of Athens, Athens, Greece; EKPA-LAIKO ENETS Center of Excellence, Athens, Greece.
| | - Kosmas Daskalakis
- National and Kapodistrian University of Athens, Athens, Greece; Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; EKPA-LAIKO ENETS Center of Excellence, Athens, Greece
| | - Marina Tsoli
- National and Kapodistrian University of Athens, Athens, Greece; EKPA-LAIKO ENETS Center of Excellence, Athens, Greece
| | - Ashley B Grossman
- University of Oxford, Oxford, UK; Green Templeton College, Oxford, UK; Royal Free London, London, UK; Barts and the London School of Medicine, London, UK
| | - Gregory A Kaltsas
- National and Kapodistrian University of Athens, Athens, Greece; EKPA-LAIKO ENETS Center of Excellence, Athens, Greece
| |
Collapse
|