1
|
Li Y, Xu S, Luo L, Yang J. Role of Enzymes Capable of Transporting Phosphatidylserine in Brain Development and Brain Diseases. ACS OMEGA 2024; 9:34243-34249. [PMID: 39157110 PMCID: PMC11325426 DOI: 10.1021/acsomega.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Phosphatidylserine (PS) is a common type of phospholipid, typically located in the inner leaflet of the cell membrane, especially abundant in the nervous system. It is an important component of the neuronal membrane and is considered to play a regulatory role in various brain functions, including memory and emotional stability, because its exposure to the outer leaflet of the neuronal membrane can result in abnormalities in various neurobiological processes such as synaptic transmission and neuronal apoptosis. Recently, research on two types of membrane proteins that synergistically mediate the transmembrane transport of phospholipid molecules in eukaryotic cells has become more in-depth and detailed. This review mainly explores the regulation of the expression of phosphatidylserine transporters and their impact on brain development and diseases.
Collapse
Affiliation(s)
- Yiying Li
- Class
3 Grade 2023, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Siqi Xu
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Li Luo
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Medical Association, Guangzhou, Guangdong 510180, China
| | - Junhua Yang
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Belleville AE, Thomas JD, Tonnies J, Gabel AM, Borrero Rossi A, Singh P, Queitsch C, Bradley RK. An autoregulatory poison exon in Smndc1 is conserved across kingdoms and influences organism growth. PLoS Genet 2024; 20:e1011363. [PMID: 39150991 PMCID: PMC11357089 DOI: 10.1371/journal.pgen.1011363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/28/2024] [Accepted: 07/08/2024] [Indexed: 08/18/2024] Open
Abstract
Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.
Collapse
Affiliation(s)
- Andrea E. Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - James D. Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Biology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Andrea Borrero Rossi
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Priti Singh
- Preclinical Modeling Core, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Boyling A, Perez-Siles G, Kennerson ML. Structural Variation at a Disease Mutation Hotspot: Strategies to Investigate Gene Regulation and the 3D Genome. Front Genet 2022; 13:842860. [PMID: 35401663 PMCID: PMC8990796 DOI: 10.3389/fgene.2022.842860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
A rare form of X-linked Charcot-Marie-Tooth neuropathy, CMTX3, is caused by an interchromosomal insertion occurring at chromosome Xq27.1. Interestingly, eight other disease phenotypes have been associated with insertions (or insertion-deletions) occurring at the same genetic locus. To date, the pathogenic mechanism underlying most of these diseases remains unsolved, although local gene dysregulation has clearly been implicated in at least two phenotypes. The challenges of accessing disease-relevant tissue and modelling these complex genomic rearrangements has led to this research impasse. We argue that recent technological advancements can overcome many of these challenges, particularly induced pluripotent stem cells (iPSC) and their capacity to provide access to patient-derived disease-relevant tissue. However, to date these valuable tools have not been utilized to investigate the disease-associated insertions at chromosome Xq27.1. Therefore, using CMTX3 as a reference disease, we propose an experimental approach that can be used to explore these complex mutations, as well as similar structural variants located elsewhere in the genome. The mutational hotspot at Xq27.1 is a valuable disease paradigm with the potential to improve our understanding of the pathogenic consequences of complex structural variation, and more broadly, refine our knowledge of the multifaceted process of long-range gene regulation. Intergenic structural variation is a critically understudied class of mutation, although it is likely to contribute significantly to unsolved genetic disease.
Collapse
Affiliation(s)
- Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| |
Collapse
|
4
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Snetkova V, Ypsilanti AR, Akiyama JA, Mannion BJ, Plajzer-Frick I, Novak CS, Harrington AN, Pham QT, Kato M, Zhu Y, Godoy J, Meky E, Hunter RD, Shi M, Kvon EZ, Afzal V, Tran S, Rubenstein JLR, Visel A, Pennacchio LA, Dickel DE. Ultraconserved enhancer function does not require perfect sequence conservation. Nat Genet 2021; 53:521-528. [PMID: 33782603 PMCID: PMC8038972 DOI: 10.1038/s41588-021-00812-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brandon J Mannion
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anne N Harrington
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Quan T Pham
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janeth Godoy
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eman Meky
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marie Shi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Evgeny Z Kvon
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Developmental & Cell Biology, Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|