1
|
Chen X, Hu M, Du T, Yang L, Li Y, Feng L, Luo J, Yao H, Chen X. Homozygous mutation of KISS1 receptor ( KISS1R) gene identified in a Chinese patient with congenital hypogonadotropic hypogonadism (CHH): case report and literature review. J Pediatr Endocrinol Metab 2024; 37:999-1008. [PMID: 39262158 DOI: 10.1515/jpem-2024-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Congenital hypogonadotropic hypogonadism (CHH) is a rare condition caused by a defect in the production, secretion or action of gonadotropin-releasing hormone. The absence of puberty and varying degrees of gonadotropic deficiency are common symptoms of this disorder. Heterogeneity exists in the clinical presentation of the different clinical subtypes and multiple genes have been implicated in CHH. A number of genetic defects have been identified as causes normosmic CHH, including mutations of GnRHR, GNRH1, KISS1R, KISS1, TACR3 and TAC3. Loss-of-function mutations in KISS1R gene are a rare cause of normosmic CHH. CASE PRESENTATION We described an 11.5 years old Chinese patient who presented at birth with micropenis, microorchidia and bilateral cryptorchidism. Whole-exome sequencing was also performed and identified a homozygous mutation of KISS1R gene, c.1010_1028del (p.V337Afs*82). The variant was predicted as "deleterious" and classified as "likely pathogenic". This variant has never been reported in patients with CHH. Furthermore, we summarized the clinical presentations and analyzed the phenotype-genotype correlation between CHH and KISS1R mutations in previous reports. CONCLUSIONS This study details the clinical phenotypes and hormone levels of the patient and expands the spectrum of mutations in the KISS1R gene associated with CHH.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Hu
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Du
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luhong Yang
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yakun Li
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifang Feng
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Luo
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yao
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Chen
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Radomsky T, Anderson RC, Millar RP, Newton CL. Restoring function to inactivating G protein-coupled receptor variants in the hypothalamic-pituitary-gonadal axis 1. J Neuroendocrinol 2024; 36:e13418. [PMID: 38852954 DOI: 10.1111/jne.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are central to the functioning of the hypothalamic-pituitary-gonadal axis (HPG axis) and include the rhodopsin-like GPCR family members, neurokinin 3 receptor, kappa-opioid receptor, kisspeptin 1 receptor, gonadotropin-releasing hormone receptor, and the gonadotropin receptors, luteinizing hormone/choriogonadotropin receptor and follicle-stimulating hormone receptor. Unsurprisingly, inactivating variants of these receptors have been implicated in a spectrum of reproductive phenotypes, including failure to undergo puberty, and infertility. Clinical induction of puberty in patients harbouring such variants is possible, but restoration of fertility is not always a realisable outcome, particularly for those patients suffering from primary hypogonadism. Thus, novel pharmaceuticals and/or a fundamental change in approach to treating these patients are required. The increasing wealth of data describing the effects of coding-region genetic variants on GPCR function has highlighted that the majority appear to be dysfunctional as a result of misfolding of the encoded receptor protein, which, in turn, results in impaired receptor trafficking through the secretory pathway to the cell surface. As such, these intracellularly retained receptors may be amenable to 'rescue' using a pharmacological chaperone (PC)-based approach. PCs are small, cell permeant molecules hypothesised to interact with misfolded intracellularly retained proteins, stabilising their folding and promoting their trafficking through the secretory pathway. In support of the use of this approach as a viable therapeutic option, it has been observed that many rescued variant GPCRs retain at least a degree of functionality when 'rescued' to the cell surface. In this review, we examine the GPCR PC research landscape, focussing on the rescue of inactivating variant GPCRs with important roles in the HPG axis, and describe what is known regarding the mechanisms by which PCs restore trafficking and function. We also discuss some of the merits and obstacles associated with taking this approach forward into a clinical setting.
Collapse
Affiliation(s)
- Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Nalbantoğlu Ö, Arslan G, Köprülü Ö, Hazan F, Gürsoy S, Özkan B. Three Siblings with Idiopathic Hypogonadotropic Hypogonadism in a Nonconsanguineous Family: A Novel KISS1R/GPR54 Loss-of-Function Mutation. J Clin Res Pediatr Endocrinol 2019; 11:444-448. [PMID: 30905142 PMCID: PMC6878343 DOI: 10.4274/jcrpe.galenos.2019.2018.0230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease caused by defects in the secretion of gonadotropin releasing hormone (GnRH) or the action of GnRH on the pituitary gonadotrophes. KISS1R is one of the genes which, when mutated, cause IHH and mutations of this gene are responsible for about 2-5% of patients with normosmic IHH (NIHH). In this report, we present three siblings with NIHH due to a compound heterozygous KISS1R mutation. Genetic studies were carried out in the 14 year old index case with IHH and three siblings, two of whom were prepubertal. Genomic DNA was extracted from peripheral leukocytes and KISS1R gene was sequenced by using standard polymerase chain reaction amplification procedures. In molecular analysis of the index case, a compound heterozygous mutation was determined in KISS1R gene c.969C>A (p.Y323X) (known pathogenic) and c.170T>C (p.L57P) (novel). Mutation c.170T>C (p.L57P) was inherited from the mother while c.969C>A (p.Y323X) was inherited from the father. The same genotype was also found in two of the three siblings. A compound heterozygous mutation of the KISS1 gene, including one novel mutation, was found to cause NIHH and also incomplete puberty in a non-consanguineous family.
Collapse
Affiliation(s)
- Özlem Nalbantoğlu
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Gülçin Arslan
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey Phone: +90 555 811 95 77 E-mail:
| | - Özge Köprülü
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Filiz Hazan
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Genetics, İzmir, Turkey
| | - Semra Gürsoy
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Genetics, İzmir, Turkey
| | - Behzat Özkan
- Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| |
Collapse
|
4
|
Moalla M, Hadj Kacem F, Al-Mutery AF, Mahfood M, Mejdoub-Rekik N, Abid M, Mnif-Feki M, Hadj Kacem H. Nonstop mutation in the Kisspeptin 1 receptor (KISS1R) gene causes normosmic congenital hypogonadotropic hypogonadism. J Assist Reprod Genet 2019; 36:1273-1280. [PMID: 31073722 DOI: 10.1007/s10815-019-01468-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder mostly characterized by gonadotropins release and/or action deficiencies. Both isolated (idiopathic hypogonadotropic hypogonadism) and syndromic (Kallmann) forms are identified depending on the olfactory ability. Clinical and genetic heterogeneities of CHH have been widely explored, thus improving our understanding of the disease's pathophysiology. This work aims to (1) provide a detailed clinical and hormonal description of normosmic CHH patients and (2) identify the mutation linked to the studied phenotype. PARTICIPANTS AND METHODS We investigated three affected patients with normosmic CHH, belonging to a consanguineous Tunisian family. Patients underwent an insulin-induced hypoglycemia test. We performed whole exome sequencing to identify the causal mutation. RESULTS At first diagnosis, a total gonadotropic deficiency was identified in all patients. The insulin-induced hypoglycemia test has also revealed a reduced cortisol secretion and complete growth hormone deficiency. At 20.8 years, one female exhibited a spontaneous recovery of the hypothalamic-pituitary-adrenal axis function, unlike her affected siblings who still depend on corticosteroid replacement therapy. Herein, we identified a novel homozygous nonstop mutation (c.1195T>C) in KISS1R gene in all affected subjects. This mutation led to the substitution of the physiologic stop codon by an arginine (p.X399R). CONCLUSIONS Our study highlights the importance of the KISS1R signaling, in gonadotropin-releasing hormone neurons, in the control of reproductive function. Additionally, our data suggests a complex central and peripheral metabolic control of puberty, through the hypothalamic KISS1R signaling. We suggest a mutual link between the hypothalamic-pituitary-gonadal, -adrenal, and -somatotropic axes.
Collapse
Affiliation(s)
- Mariam Moalla
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | | | - Abdullah Fahad Al-Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohamed Abid
- Endocrinology Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Endocrinology Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia. .,Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Hugon-Rodin J, Yoshii K, Lahlou N, Flandrin J, Gompel A, de Roux N. Complete Kisspeptin Receptor Inactivation Does Not Impede Exogenous GnRH-Induced LH Surge in Humans. J Clin Endocrinol Metab 2018; 103:4482-4490. [PMID: 30124894 DOI: 10.1210/jc.2018-00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/13/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Mutations in the kisspeptin receptor (KISS1R) gene have been reported in a few patients with normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). OBJECTIVES To describe a female patient with nCHH and a novel homozygous KISS1R mutation and to assess the role of kisspeptin pathway to induce an ovulation by GnRH pulse therapy. DESIGN, SETTING, AND INTERVENTION Observational study of a patient including genetic and kisspeptin receptor functions and treatment efficiency using a GnRH pump. MAIN OUTCOME MEASURE Response to pulsatile GnRH therapy. RESULTS A partial isolated gonadotropic deficiency was diagnosed in a 28-year-old woman with primary amenorrhea and no breast development. A novel homozygous c.953T>C variant was identified in KISS1R. This mutation led to substitution of leucine 318 for proline (p.Leu318Pro) in the seventh transmembrane domain of KISS1R. Signaling via the mutated receptor was profoundly impaired in HEK293-transfected cells. The mutated receptor was not detected on the membrane of HEK293-transfected cells. After several pulsatile GnRH therapy cycles, an LH surge with ovulation and pregnancy was obtained. CONCLUSION GnRH pulsatile therapy can induce an LH surge in a woman with a mutated KISS1R, which was previously thought to be completely inactivated in vivo.
Collapse
Affiliation(s)
- Justine Hugon-Rodin
- Paris Descartes University, Gynecology Endocrinology Unit, Port-Royal Teaching Hospital, AP-HP, Paris, France
| | - Keisuke Yoshii
- Paris Diderot University, Sorbonne Paris Cité, U1141, Inserm, Paris, France
| | | | - Jennifer Flandrin
- Paris Descartes University, Gynecology Endocrinology Unit, Port-Royal Teaching Hospital, AP-HP, Paris, France
| | - Anne Gompel
- Paris Descartes University, Gynecology Endocrinology Unit, Port-Royal Teaching Hospital, AP-HP, Paris, France
| | - Nicolas de Roux
- Paris Diderot University, Sorbonne Paris Cité, U1141, Inserm, Paris, France
- AP-HP, Biochemistry Laboratory, Robert Debré Teaching Hospital, Paris, France
| |
Collapse
|
6
|
Chelaghma N, Rajkanna J, Trotman J, Fuller G, Elsey T, Park SM, Oyibo SO. Normosmic idiopathic hypogonadotrophic hypogonadism due to a rare KISS1R gene mutation. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM180028. [PMID: 29692902 PMCID: PMC5911663 DOI: 10.1530/edm-18-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Hypogonadotrophic hypogonadism is due to impaired or reduced gonadotrophin secretion from the pituitary gland. In the absence of any anatomical or functional lesions of the pituitary or hypothalamic gland, the hypogonadotrophic hypogonadism is referred to as idiopathic hypogonadotrophic hypogonadism (IHH). We present a case of a young lady born to consanguineous parents who was found to have IHH due to a rare gene mutation.
Collapse
Affiliation(s)
- N Chelaghma
- Department of Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - J Rajkanna
- Department of Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - J Trotman
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - G Fuller
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - T Elsey
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - S M Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - S O Oyibo
- Department of Endocrinology, Peterborough City Hospital, Peterborough, UK
| |
Collapse
|
7
|
Shahab M, Lippincott M, Chan YM, Davies A, Merino PM, Plummer L, Mericq V, Seminara S. Discordance in the Dependence on Kisspeptin Signaling in Mini Puberty vs Adolescent Puberty: Human Genetic Evidence. J Clin Endocrinol Metab 2018; 103:1273-1276. [PMID: 29452377 PMCID: PMC6276658 DOI: 10.1210/jc.2017-02636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypothalamic kisspeptin signaling plays a critical role in the initiation and maintenance of reproductive function. Biallelic mutations in the coding sequence of KISS1R (GPR54) have been identified in patients with idiopathic hypogonadotropic hypogonadism, but it is unknown whether biallelic variants can also be associated with related reproductive disorders. CASE DESCRIPTION A missense homozygous variant (c.890G>T p.R297L) in KISS1R was identified in a child who presented with microphallus and bilateral cryptorchidism. This variant has been reported to reduce, but not abolish, postreceptor signaling in vitro. Biochemical evaluation during the neonatal period revealed low testosterone levels. By 11 years and 8 months, the boy began demonstrating increases in testicular volume. By 17 years and 3 months, his testicular volume was 20 mL; his penile length was 7.3 cm; and he had adult levels of circulating gonadotropins and testosterone. CONCLUSION This case report associates biallelic loss-of-function mutations in KISS1R with normal timing of adolescent puberty. Because these coding sequence variants occurred in a patient with microphallus and cryptorchidism, they demonstrate different levels of dependence of the hypothalamic-pituitary-gonadal cascade on kisspeptin signaling at distinct times in the reproductive life span. The suppression of the hypothalamic-pituitary-gonadal cascade during early life but not adolescence suggests that the mini puberty of infancy depends more on kisspeptin-induced, gonadotropin-releasing hormone-induced luteinizing hormone secretion than does adolescent puberty.
Collapse
Affiliation(s)
- Muhammad Shahab
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit,
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Margaret Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit,
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital,
Boston, Massachusetts
| | - Addie Davies
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit,
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Paulina M Merino
- Institute of Maternal and Child Research, University of Chile, Santiago,
Chile
| | - Lacey Plummer
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit,
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Veronica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago,
Chile
| | - Stephanie Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit,
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Correspondence and Reprint Requests: Stephanie Seminara, MD, Reproductive Endocrine Unit, Massachusetts General
Hospital, 55 Fruit Street, Boston, Massachusetts 02114. E-mail:
| |
Collapse
|
8
|
Mechaly AS, Tovar Bohórquez MO, Mechaly AE, Suku E, Pérez MR, Giorgetti A, Ortí G, Viñas J, Somoza GM. Evidence of Alternative Splicing as a Regulatory Mechanism for Kissr2 in Pejerrey Fish. Front Endocrinol (Lausanne) 2018; 9:604. [PMID: 30386295 PMCID: PMC6200147 DOI: 10.3389/fendo.2018.00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Kisspeptin receptors are G-Protein-Coupled Receptors that regulate GnRH synthesis and release in vertebrates. Here, we report the gene structure of two kisspeptin receptors (kissr2 and kissr3) in pejerrey fish. Genomic analysis exposed a gene structure with 5 exons and 4 introns for kissr2 and 6 exons and 5 introns for kissr3. Two alternative variants for both genes, named kissr2_v1 and _v2, and kissr3_v1 and v2, were revealed by gene expression analyses of several tissues. For both receptors, these variants were originated by alternative splicing retaining intron 3 and intron 4 for kissr2_v2 and kissr3_v2, respectively. In the case of kissr2, the intron retention introduced two stop codons leading to a putatively truncated protein whereas for kissr3, the intron retention produced a reading shift leading to a stop codon in exon 5. Modeling and structural analysis of Kissr2 and Kissr3 spliced variants revealed that truncation of the proteins may lead to non-functional proteins, as the structural elements missing are critical for receptor function. To understand the functional significance of splicing variants, the expression pattern for kissr2 was characterized on fish subjected to different diets. Fasting induced an up-regulation of kissr2_v1 in the hypothalamus, a brain region implicated in control of reproduction and food intake, with no expression of kissr2_v2. On the other hand, fasting did not elicit differential expression in testes and habenula. These results suggest that alternative splicing may play a role in regulating Kissr2 function in pejerrey.
Collapse
Affiliation(s)
- Alejandro S. Mechaly
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
- *Correspondence: Alejandro S. Mechaly
| | - M. Oswaldo Tovar Bohórquez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
| | - Ariel E. Mechaly
- Institut Pasteur, Platforme de Cristallographie and CNRS UMR 3528, Paris, France
| | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, Italy
| | - María Rita Pérez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
| | | | - Guillermo Ortí
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Gustavo M. Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
- Gustavo M. Somoza
| |
Collapse
|
9
|
Beymer M, Henningsen J, Bahougne T, Simonneaux V. The role of kisspeptin and RFRP in the circadian control of female reproduction. Mol Cell Endocrinol 2016; 438:89-99. [PMID: 27364888 DOI: 10.1016/j.mce.2016.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 12/14/2022]
Abstract
In female mammals, reproduction shows ovarian and daily rhythms ensuring that the timing of the greatest fertility coincides with maximal activity and arousal. The ovarian cycle, which lasts from a few days to a few weeks, depends on the rhythm of follicle maturation and ovarian hormone production, whereas the daily cycle depends on a network of circadian clocks of which the main one is located in the suprachiasmatic nuclei (SCN). In the last ten years, major progress has been made in the understanding of the neuronal mechanisms governing mammalian reproduction with the finding that two hypothalamic Arg-Phe-amide peptides, kisspeptin (Kp) and RFRP, regulate GnRH neurons. In this review we discuss the pivotal role of Kp and RFRP neurons at the interface between the SCN clock signal and GnRH neurons to properly time gonadotropin-induced ovulation. We also report recent findings indicating that these neurons may be part of the multi-oscillatory circadian system that times female fertility. Finally, we will discuss recent investigations indicating a role, and putative therapeutic use, of these neuropeptides in human reproduction.
Collapse
Affiliation(s)
- Matthew Beymer
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Jo Henningsen
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), 5 rue Blaise Pascal, 67084 Strasbourg, France; Service d'Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), 5 rue Blaise Pascal, 67084 Strasbourg, France.
| |
Collapse
|
10
|
Francou B, Paul C, Amazit L, Cartes A, Bouvattier C, Albarel F, Maiter D, Chanson P, Trabado S, Brailly-Tabard S, Brue T, Guiochon-Mantel A, Young J, Bouligand J. Prevalence ofKISS1 Receptormutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: a single-centre study. Hum Reprod 2016; 31:1363-74. [DOI: 10.1093/humrep/dew073] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
|
11
|
Clarke H, Dhillo WS, Jayasena CN. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol Metab (Seoul) 2015; 30:124-41. [PMID: 26194072 PMCID: PMC4508256 DOI: 10.3803/enm.2015.30.2.124] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin has recently emerged as a key regulator of the mammalian reproductive axis. It is known that kisspeptin, acting centrally via the kisspeptin receptor, stimulates secretion of gonadotrophin releasing hormone (GnRH). Loss of kisspeptin signaling causes hypogonadotrophic hypogonadism in humans and other mammals. Kisspeptin interacts with other neuropeptides such as neurokinin B and dynorphin, to regulate GnRH pulse generation. In addition, a growing body of evidence suggests that kisspeptin signaling be regulated by nutritional status and stress. Kisspeptin may also represent a novel potential therapeutic target in the treatment of fertility disorders. Early human studies suggest that peripheral exogenous kisspeptin administration stimulates gonadotrophin release in healthy adults and in patients with certain forms of infertility. This review aims to concisely summarize what is known about kisspeptin as a regulator of reproductive function, and provide an update on recent advances within this field.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
12
|
Lippincott MF, True C, Seminara SB. Use of genetic models of idiopathic hypogonadotrophic hypogonadism in mice and men to understand the mechanisms of disease. Exp Physiol 2013; 98:1522-7. [PMID: 23955308 DOI: 10.1113/expphysiol.2013.071910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in the genes encoding the neuropeptides kisspeptin and neurokinin B, as well as their receptors, are associated with gonadotrophin-releasing hormone (GnRH) deficiency and a failure to initiate and/or progress through puberty. Although the total number of patients studied to date is small, mutations in the kisspeptin pathway appear to result in lifelong GnRH deficiency. Mice with mutations in kisspeptin and the kisspeptin receptor, Kiss1(-/-) and Kiss1r(-/-), respectively, appear to be phenocopies of the human with abnormal sexual maturation and infertility. In contrast, mutations in the neurokinin B pathway lead to a more variable adult reproductive phenotype, with a subset of hypogonadotrophic individuals demonstrating paradoxical recovery of reproductive function later in life. While 'reversal' remains poorly understood, the ability to recover reproductive function indicates that neurokinin B may play different roles in the initiation of sexual maturation compared with the maintenance of adult reproductive function. Mice with mutations in the gene encoding the neurokinin B receptor, Tacr3, have abnormal oestrous cycles and subfertility but, similar to their human counterparts, appear less severely affected than mice with kisspeptin deficiency. Further investigations into the interaction between the kisspeptin and neurokinin B pathways will reveal key insights into how GnRH neuronal modulation occurs at puberty and throughout reproductive life.
Collapse
Affiliation(s)
- Margaret F Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
13
|
Chevrier L, de Brevern A, Hernandez E, Leprince J, Vaudry H, Guedj AM, de Roux N. PRR repeats in the intracellular domain of KISS1R are important for its export to cell membrane. Mol Endocrinol 2013; 27:1004-14. [PMID: 23608644 DOI: 10.1210/me.2012-1386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inactivating mutations of KISS-1 receptor (KISS1R) have been recently described as a rare cause of isolated hypogonadotropic hypogonadism transmitted as a recessive trait. Few mutations have been described, and the structure-function relationship of KISS1R remains poorly understood. Here, we have taken advantage of the discovery of a novel mutation of KISS1R to characterize the structure and function of an uncommon protein motif composed of 3 proline-arginine-arginine (PRR) repeats located within the intracellular domain. A heterozygous insertion of 1 PRR repeat in-frame with 3 PRR repeats leading to synthesis of a receptor bearing 4 PRR repeats (PRR-KISS1R) was found in the index case. Functional analysis of PRR-KISS1R showed a decrease of the maximal response to kisspeptin stimulation, associated to a lower cell surface expression without modification of total expression. PRR-KISS1R exerts a dominant negative effect on the synthesis of the wild-type (WT)-KISS1R. This effect was due to the nature of inserted residues but also to the difference of the length of the intracellular domain between PRR-KISS1R and WT-KISS1R. A molecular dynamic analysis showed that the additional PRR constrained this arginine-rich region into a polyproline type II helix. Altogether, this study shows that a heterozygous insertion in KISS1R may lead to hypogonadotropic hypogonadism by a dominant negative effect on the WT receptor. An additional PRR repeat into a proline-arginine-rich motif can dramatically changed the conformation of the intracellular domain of KISS1R and its probable interaction with partner proteins.
Collapse
Affiliation(s)
- Lucie Chevrier
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 676, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Brioude F, Bouligand J, Francou B, Fagart J, Roussel R, Viengchareun S, Combettes L, Brailly-Tabard S, Lombès M, Young J, Guiochon-Mantel A. Two families with normosmic congenital hypogonadotropic hypogonadism and biallelic mutations in KISS1R (KISS1 receptor): clinical evaluation and molecular characterization of a novel mutation. PLoS One 2013; 8:e53896. [PMID: 23349759 PMCID: PMC3548821 DOI: 10.1371/journal.pone.0053896] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Context KISS1R mutations have been reported in few patients with normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). Objective To describe in detail nCHH patients with biallelic KISS1R mutations belonging to 2 unrelated families, and to functionally characterize a novel KISS1R mutation. Results An original mutant, p.Tyr313His, was found in the homozygous state in 3 affected kindred (2 females and 1 male) from a consanguineous Portuguese family. This mutation, located in the seventh transmembrane domain, affects a highly conserved amino acid, perturbs the conformation of the transmembrane segment, and impairs MAP kinase signaling and intracellular calcium release. In the second family, a French Caucasian male patient with nCHH was found to carry two recurrent mutations in the compound heterozygous state (p.Leu102Pro/Stop399Arg). In this man, pulsatile GnRH (Gonadotropin Releasing Hormone) administration restored pulsatile LH (Luteinizing Hormone) secretion and testicular hormone secretion. Later, long-term combined gonadotropin therapy induced spermatogenesis, enabling 3 successive pregnancies that resulted in 2 miscarriages and the birth of a healthy boy. Conclusion We show that a novel loss-of-function mutation (p.Tyr313His) in the KISS1R gene can cause familial nCHH, revealing the crucial role of this amino acid in KISS1R function. The observed restoration of gonadotropin secretion by exogenous GnRH administration further supports, in humans, the hypothalamic origin of the gonadotropin deficiency in this genetic form of nCHH.
Collapse
Affiliation(s)
- Frédéric Brioude
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Bruno Francou
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Jérôme Fagart
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
| | - Ronan Roussel
- Université Paris–Diderot, Paris 7, Paris, France
- Département d'Endocrinologie Diabétologie et Nutrition, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Say Viengchareun
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
| | - Laurent Combettes
- Faculté des Sciences, INSERM UMR-S757, Univ Paris-Sud, Orsay, France
| | - Sylvie Brailly-Tabard
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Marc Lombès
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacques Young
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris, France
- * E-mail: (JY); (AGM)
| | - Anne Guiochon-Mantel
- Faculté de Médecine Paris-Sud UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, France
- INSERM U693, IFR93, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
- * E-mail: (JY); (AGM)
| |
Collapse
|
15
|
Bianco SDC, Kaiser UB. Molecular biology of the kisspeptin receptor: signaling, function, and mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:133-58. [PMID: 23550005 DOI: 10.1007/978-1-4614-6199-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptin receptor (KISS1R) signaling is essential for the hallmark increase in pulsatile GnRH secretion characteristic of the onset of puberty in humans and experimental animals. Loss-of-function mutations in KISS1R are associated with idiopathic hypogonadotropic hypogonadism in humans. Also, mutations with confirmed association with idiopathic central precocious puberty were identified in kisspeptin and KISS1R. These observations underscore the role of KISS1R signaling for normal pubertal development. Moreover, investigation of the mechanisms underlying the gain-of-function mutation in KISS1R indicates that the duration of KISS1R signaling is critical for the role of this receptor in timing the onset of puberty in humans. These findings further endorse the need to uncover the mechanisms, as well as yet-unknown proteins, involved in each step of KISS1R signaling. This knowledge is expected to advance our understanding of normal and abnormal pubertal development, as well as to help uncover the role of KISS1R signaling in non-hypothalamic tissues such as the placenta. This chapter discusses recent advances in the investigation of KISS1R signaling and function, as well as potential pathophysiological implications of naturally occurring mutations in this receptor identified in humans with reproductive disorders.
Collapse
|