1
|
Faron M, Naman A, Delahousse J, Hescot S, Hadoux J, Castinetti F, Drui D, Renoult-Pierre P, Libe R, Lamartina L, Leboulleux S, Al-Ghuzlan A, Lombès M, Paci A, Baudin E. Prognostic value of total, free and lipoprotein fraction-bound plasma mitotane levels in advanced adrenocortical carcinoma: a prospective study of the ENDOCAN-COMETE-Cancer network. J Endocrinol Invest 2024:10.1007/s40618-024-02439-7. [PMID: 39172357 DOI: 10.1007/s40618-024-02439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Mitotane is the only approved treatment for metastatic adrenocortical carcinoma (ACC). Monitoring plasma levels is recommended, but its predictive value is insufficient. METHODS This prospective study of the French ENDOCAN-COMETE network aimed to investigate the prognostic role of plasma mitotane levels pharmacokinetics and free or bound to lipoprotein fraction measurements during six consecutive months. Lipoprotein fractions were isolated by ultracentrifugation, and mitotane level was determined by HPLC-UV. Total, free, and lipoprotein fraction bound plasma mitotane were monitored every two months for six months with morphological assessment. The primary endpoint was overall survival (OS). RESULTS 21 patients with metastatic ACC were included. Median overall survival was 23 months. The median free mitotane level per patient was 12% (± 7%), and the majority (88%) was bound to lipoprotein fractions. Several pharmacokinetics measures of total mitotane were related to OS: first level at one month (p = 0.026), mean level (p = 0.055), and area under the curve (AUC) (p = 0.048), with higher exposure associated to longer OS. Free mitotane (not bounded) and mitotane bounded to lipoprotein subfraction added no prognostic values. The relationship between the mitotane level and OS suggested a minimum "effective" threshold of 10-15 mg/L or an area under the curve above 100 mg/L/month with no individualized maximum value. CONCLUSION This prospective study did not identify any added prognostic value of free mitotane level over the total level. Early total mitotane level measurements (before 3-6 months) were related to OS with a higher and faster exposure related to more prolonged survival.
Collapse
Affiliation(s)
- M Faron
- Department of Surgical Oncology, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
- INSERM 1018 CESP ONCOSTAT Team, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
| | - A Naman
- Nuclear Medicine and Endocrine Unit, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - J Delahousse
- Pharmacology Department, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| | - S Hescot
- Nuclear Medicine Unit, Institut Curie, 35 Rue Dailly, 92210, Saint Cloud, France
| | - J Hadoux
- Nuclear Medicine and Endocrine Unit, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - F Castinetti
- Department of Endocrinology, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de La Conception, 147 Boulevard Baille, 13005, Marseille, France
| | - D Drui
- Department of Endocrinology, L'institut du Thorax, CHU Nantes, Bd J Monod Saint Herblain, 44093, Nantes Cedex 1, France
| | - P Renoult-Pierre
- CHRU de Tours Hopital Bretonneau, 2 Boulevard Tonnellée, 37000, Tours, France
| | - R Libe
- Endocan-Comete Network Coordinator, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - L Lamartina
- Nuclear Medicine and Endocrine Unit, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - S Leboulleux
- Nuclear Medicine and Endocrine Unit, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - A Al-Ghuzlan
- Department of Biology and Pathology, Institut Gustave Roussy, 94805, Villejuif, France
| | - M Lombès
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, 63 Rue Gabriel Péri, 94276, Le Kremlin Bicêtre, France
| | - A Paci
- Pharmacology Department, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| | - E Baudin
- Nuclear Medicine and Endocrine Unit, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| |
Collapse
|
2
|
Seibold J, Hönemann M, Tönjes A, Sandner B. Safe long-term therapy of Cushing's syndrome over 37 years with mitotane. Front Endocrinol (Lausanne) 2024; 15:1294415. [PMID: 38440784 PMCID: PMC10911286 DOI: 10.3389/fendo.2024.1294415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
While suggested, surgery is not always possible as a first-line treatment of Cushing's Disease (CD). In such cases, patients require medical therapy in order to prevent complications resulting from hypercortisolism. Although there has been a wide expansion in pharmacological options in recent years, mitotane was the agent of choice for treating hypercortisolism decades ago. Due to the introduction of other therapies, long-term experience with mitotane remains limited. Here, we report the case of a woman with CD who was treated with mitotane for 37 years. During the treatment period, biochemical and clinical disease control was achieved and the patient had two uncomplicated pregnancies. Drug-related side effects remained moderate and could be controlled by several dose adjustments. Our case highlights the ability of mitotane to allow an effective control of hypercortisolism and to represent a safe treatment option in special situations where CD requires an alternative therapeutic approach. Furthermore, we provide a literature review of the long-term use of mitotane and reported cases of pregnancy in the context of mitotane therapy.
Collapse
Affiliation(s)
- Jonas Seibold
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mario Hönemann
- Institute of Medical Microbiology and Virology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Benjamin Sandner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Bach C, Corso CR, Veiga ADA, Paraizo MM, de Souza LM. Effects of o,p'-DDE, a Mitotane Metabolite, in an Adrenocortical Carcinoma Cell Line. Pharmaceuticals (Basel) 2022; 15:ph15121486. [PMID: 36558937 PMCID: PMC9784234 DOI: 10.3390/ph15121486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In South Brazil, the incidence of pediatric adrenocortical carcinoma (ACC) is higher than in other regions and countries worldwide. The ACC treatment includes therapy with mitotane, the only adrenolytic drug approved by the FDA. The mitotane metabolism occurs via two main reactions: the β-hydroxylation, which yields the final product o,p'-DDA, and the α-hydroxylation, which will give the final product o,p'-DDE. It is speculated that o,p'-DDE may be an active metabolite since it has a cytotoxic effect on adrenocortical carcinoma cells (H295R). No further studies have been conducted to confirm this hypothesis; however, it was found that mitotane and its metabolites are present at significantly different concentrations in the plasma of the patients. Our study aimed to assess the in vitro effects of o,p'-DDE and o,p'-DDD in cell death pathways, oxidative parameters, and interaction with adrenal CYP's involved in the steroidogenic process in the H295R cell line. It was found that o,p'-DDE had a different effect than the o,p'-DDD on apoptosis, inhibiting this cell death pathway, but it promotes cell necrosis at higher concentrations. In contrast to o,p'-DDD, the o,p'-DDE did not have effects on the different oxidative parameters evaluated, but exhibited stimulatory interactions with steroidogenic CYP's, at intermediate concentrations. Therefore, we demonstrated important cell effects of o,p'-DDE; its plasma levels during mitotane therapy should be monitored as an important therapeutic parameter.
Collapse
Affiliation(s)
- Camila Bach
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632-Água Verde, Curitiba CEP 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333-Rebouças, Curitiba CEP 80230-020, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632-Água Verde, Curitiba CEP 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333-Rebouças, Curitiba CEP 80230-020, PR, Brazil
| | - Alan de Almeida Veiga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632-Água Verde, Curitiba CEP 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333-Rebouças, Curitiba CEP 80230-020, PR, Brazil
| | - Mariana Martins Paraizo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632-Água Verde, Curitiba CEP 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333-Rebouças, Curitiba CEP 80230-020, PR, Brazil
| | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632-Água Verde, Curitiba CEP 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333-Rebouças, Curitiba CEP 80230-020, PR, Brazil
- Correspondence: ; Tel.: +55-41-3310-1035
| |
Collapse
|
4
|
Langer C, Köll-Weber M, Holzer M, Hantel C, Süss R. Mitotane Nanocarriers for the Treatment of Adrenocortical Carcinoma: Evaluation of Albumin-Stabilized Nanoparticles and Liposomes in a Preclinical In Vitro Study with 3D Spheroids. Pharmaceutics 2022; 14:pharmaceutics14091891. [PMID: 36145639 PMCID: PMC9501383 DOI: 10.3390/pharmaceutics14091891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a heterogeneous malignancy related to poor prognosis and limited treatment options. The orphan drug mitotane (MT) is still a cornerstone in ACC therapy, however, its application is characterized by low aqueous solubility, poor bioavailability, and unfavorable pharmacokinetics, often resulting in below-target plasma concentrations or toxic side effects. Throughout the last decades, nanoparticulate formulations have become attractive carriers to improve anticancer therapy. In this study, injectable MT liposomes (DOPC-MT) and albumin-stabilized MT nanoparticles (BSA-MT) were investigated in depth with respect to their physicochemical properties, and their colloidal and therapeutical stability upon storage. Furthermore, in vitro cytotoxicity was evaluated using the ACC model cell line NCI-H295R for preparing multicellular tumor spheroids, and was compared to non-malignant human dermal fibroblasts. Our results clearly demonstrate that BSA-MT, unlike DOPC-MT, represents a stable and storable MT formulation with a high drug concentration in an aqueous medium. Dual centrifugation was established as a reproducible method for nanoparticle preparation. Although an efficient cytotoxic effect on ACC tumor spheroids was demonstrated, concomitant low toxicity to fibroblasts suggests that higher drug concentrations may be tolerated in vivo. Consequently, BSA-MT is a novel and promising therapeutical approach to address key challenges in MT treatment.
Collapse
Affiliation(s)
- Carolin Langer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-2034899
| | - Monika Köll-Weber
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Martin Holzer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Warde KM, Lim YJ, Ribes Martinez E, Beuschlein F, O'Shea P, Hantel C, Dennedy MC. Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma. Endocrinology 2022; 163:6633639. [PMID: 35797592 PMCID: PMC9342684 DOI: 10.1210/endocr/bqac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare aggressive cancer with low overall survival. Adjuvant mitotane improves survival but is limited by poor response rates and resistance. Mitotane's efficacy is attributed to the accumulation of toxic free cholesterol, predominantly through cholesterol storage inhibition. However, targeting this pathway has proven unsuccessful. We hypothesize that mitotane-induced free-cholesterol accumulation is also mediated through enhanced breakdown of lipid droplets. METHODOLOGY ATCC-H295R (mitotane-sensitive) and MUC-1 (mitotane-resistant) ACC cells were evaluated for lipid content using specific BODIPY dyes. Protein expression was evaluated by immunoblotting and flow cytometry. Cell viability was measured by quantifying propidium iodide-positive cells following mitotane treatment and pharmacological inhibitors of lipolysis. RESULTS H295R and MUC-1 cells demonstrated similar neutral lipid droplet numbers at baseline. However, evaluation of lipid machinery demonstrated distinct profiles in each model. Analysis of intracellular lipid droplet content showed H295R cells preferentially store cholesteryl esters, whereas MUC-1 cells store triacylglycerol. Decreased lipid droplets were associated with increased lipolysis in H295R and in MUC-1 at toxic mitotane concentrations. Pharmacological inhibition of lipolysis attenuated mitotane-induced toxicity in both models. CONCLUSION We highlight that lipid droplet breakdown and activation of lipolysis represent a putative additional mechanism for mitotane-induced cytotoxicity in ACC. Further understanding of cholesterol and lipids in ACC offers potential novel therapeutic exploitation, especially in mitotane-resistant disease.
Collapse
Affiliation(s)
- Kate M Warde
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Yi Jan Lim
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eduardo Ribes Martinez
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Paula O'Shea
- Department of Clinical Biochemistry, Galway University Hospitals, Saolta Hospitals Group, Newcastle Road, Galway, H91 RW28, Ireland
| | - Constanze Hantel
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Germany
| | - Michael Conall Dennedy
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| |
Collapse
|
6
|
Gagnon N, Bernard S, Paquette M, Alguire C, Lacroix A, Hétu PO, Olney HJ, Bourdeau I. Characterization of hyperlipidemia secondary to mitotane in adrenocortical carcinoma. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:1-8. [PMID: 37435450 PMCID: PMC10259324 DOI: 10.1530/eo-21-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 07/13/2023]
Abstract
Background This study examined the magnitude of changes and the time required to observe maximal changes in LDL-c, HDL-c, triglycerides (Tg) and non-HDL-c after the introduction of mitotane. Methods Retrospective study of 45 patients with adrenocortical carcinoma who were treated at the Centre hospitalier de l'Université de Montréal. Clinical and biochemical data were collected, including lipid profiles before and during the first year of treatment with mitotane. Results Among the 45 studied patients, 26 (58%) had a complete lipid profile before the introduction of mitotane and at least 1 lipid profile during the first year of treatment, and 19 patients (42%) had a lipid profile following initiation of the treatment. Among the 26 patients who had lipid profiles before and after the introduction of mitotane, the increase of LDL-c was 2.19 mmol/L (76%) (P< 0.0001), HDL-c was 0.54 mmol/L (35%) (P= 0.0002), Tg was 1.80 mmol/L (129%) (P< 0.0001) and non-HDL-c was 2.73 mmol/L (79%) (P< 0.0001). Between the first and the sixth month of mitotane treatment, peak values (n = 45) of LDL-c and non-HDL-c were reached in 42 patients (93%) and 37 patients (82%), respectively, whereas peak values of HDL-c were reached after 6 months of mitotane treatment in 29 patients (66%). The peak value of Tg was almost equal throughout the first year. The mean peak values of HDL-c, Tg and non-HDL-c showed significant associations with their respective mitotane concentrations (β = 0.352, P= 0.03; β = 0.406, P= 0.02 and β = 0.339, P= 0.05). Conclusion The introduction of mitotane produces a clinically significant elevation of lipid parameters (LDL-c, HDL-c, Tg and non-HDL-c) during the first year of treatment.
Collapse
Affiliation(s)
- Nadia Gagnon
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Sophie Bernard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Martine Paquette
- Lipids, Nutrition and Cardiovascular Prevention Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Catherine Alguire
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Pierre-Olivier Hétu
- Department of Biochemistry, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Harold J Olney
- Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
7
|
The Challenging Pharmacokinetics of Mitotane: An Old Drug in Need of New Packaging. Eur J Drug Metab Pharmacokinet 2021; 46:575-593. [PMID: 34287806 PMCID: PMC8397669 DOI: 10.1007/s13318-021-00700-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 01/10/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant tumor originating from the adrenal gland cortex with a heterogeneous but overall dismal prognosis in advanced stages. For more than 50 years, mitotane has remained a cornerstone for the treatment of ACC as adjuvant and palliative therapy. It has a very poor aqueous solubility of 0.1 mg/l and high partition coefficient in octanol/water (log P) value of 6. The commercially available dosage form is 500 mg tablets (Lysodren®). Even at doses up to 6 g/day (12 tablets in divided doses) for several months, > 50% patients do not achieve therapeutic plasma concentration > 14 mg/l due to poor water solubility, large volume of distribution and inter/intra-individual variability in bioavailability. This article aims to give a concise update of the clinical challenges associated with the administration of high-dose mitotane oral therapy which encompass the issues of poor bioavailability, difficult-to-predict pharmacokinetics and associated adverse events. Moreover, we present recent efforts to improve mitotane formulations. Their success has been limited, and we therefore propose an injectable mitotane formulation instead of oral administration, which could bypass many of the main issues associated with high-dose oral mitotane therapy. A parenteral administration of mitotane could not only help to alleviate the adverse effects but also circumvent the variable oral absorption, give better control over therapeutic plasma mitotane concentration and potentially shorten the time to achieve therapeutic drug plasma concentrations considerably. Mitotane as tablet form is currently the standard treatment for adrenocortical carcinoma. It has been used for 5 decades but suffers from highly variable responses in patients, subsequent adverse effects and overall lower response rate. This can be fundamentally linked to the exceedingly poor water solubility of mitotane itself. In terms of enhancing water solubility, a few research groups have attempted to develop better formulations of mitotane to overcome the issues associated with tablet dosage form. However, the success rate was limited, and these formulations did not make it into the clinics. In this article, we have comprehensively reviewed the properties of these formulations and discuss the reasons for their limited utility. Furthermore, we discuss a recently developed mitotane nanoformulation that led us to propose a novel approach to mitotane therapy, where intravenous delivery supplements the standard oral administration. With this article, we combine the current state of knowledge as a single piece of information about the various problems associated with the use of mitotane tablets, and herein we postulate the development of a new injectable mitotane formulation, which can potentially circumvent the major problems associated to mitotane's poor water solubility.
Collapse
|
8
|
Steenaard RV, Ettaieb MHT, Kerkhofs TMA, Haak HR. How close are we to personalized mitotane dosing in the treatment of adrenocortical carcinoma? State of the art and future perspectives. Expert Opin Drug Metab Toxicol 2021; 17:677-683. [PMID: 33886381 DOI: 10.1080/17425255.2021.1921146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Mitotane is the only drug registered specifically for adrenocortical carcinoma. Finding the optimal dose for a patient is difficult due to large differences in bioavailability, toxicity and effect. We therefore look to improve personalized dosing of mitotane. AREAS COVERED We searched PubMed for studies related to mitotane dosing, pharmacokinetics, pharmacogenetics and combination therapy. Comparison of different dosing strategies have not resulted in an optimal advice. Several computerized pharmacokinetic models have been proposed to predict plasma levels. The current pharmacokinetic models do not explain the full variance in plasma levels. Pharmacogenetics have been proposed to find the unexplained variance. Studies on combination therapy have not yet led to a potential dose adjustment for mitotane. EXPERT OPINION Computerized pharmacokinetics models are promising tools to predict plasma levels, further validation is needed. Pharmacogenetics are introduced in these models, but more research is required before clinical application. We believe that in the near future, personalized mitotane dosage will be aided by a validated web-based pharmacokinetic model with good predictive ability based primarily on clinical characteristics, adjustable for actual plasma levels and dosage.
Collapse
Affiliation(s)
- Rebecca V Steenaard
- Department of Internal Medicine, Máxima MC, Veldhoven, Eindhoven, The Netherlands.,Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht, The Netherlands
| | - Madeleine H T Ettaieb
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Thomas M A Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Harm R Haak
- Department of Internal Medicine, Máxima MC, Veldhoven, Eindhoven, The Netherlands.,Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht, The Netherlands.,Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Goyzueta Mamani LD, de Carvalho JC, Bonatto SJR, Tanobe VAO, Soccol CR. In vitro cytotoxic effect of a chitin-like polysaccharide produced by Mortierella alpina on adrenocortical carcinoma cells H295R, and its use as mitotane adjuvant. In Vitro Cell Dev Biol Anim 2021; 57:395-403. [PMID: 33904018 DOI: 10.1007/s11626-021-00560-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/11/2021] [Indexed: 11/29/2022]
Abstract
This study presents an in vitro evaluation of the antitumor potential of a chitin-like exopolysaccharide (EPS, produced by Mortierella alpina) on Adrenocortical carcinoma cells (ACC) compared to mitotane, a commercial drug commonly used in ACC treatment, and known for its side effects. Techniques of cellular viability determination such as MTT and fluorescence were used to measure the cytotoxic effects of the EPS and mitotane in tumoral cells (H295R) and non-tumoral cells (VERO), observing high cytotoxicity of mitotane and a 10% superior pro-apoptotic effect of the EPS compared to mitotane (p < 0.05). The cytotoxic effect of the EPS was similar to the effect of 50 μM mitotane on tumoral cells (p < 0.05). A decrement of the lysosomal volume was also noted in tumoral cells treated with the EPS. To enhance the antitumor effect, a combination of mitotane at a lower dosage and the EPS (as adjuvant) was also tested, showing a slight improvement of the cytotoxicity effect on tumoral cells. Therefore, the results indicate a cytotoxic effect of the EPS produced by Mortierella alpina on adrenocortical carcinoma, and a possible application in biomedical formulations or additional treatments.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta Mamani
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, P.O. box 19011, Curitiba, Paraná, 81531-990, Brazil
| | - Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, P.O. box 19011, Curitiba, Paraná, 81531-990, Brazil.
| | | | - Valcineide A O Tanobe
- Department of Chemistry, Centro Universitario de Ciencias Exactas e Ingenierías-CUCEI. C.P.44430, Guadalajara University, Guadalajara, Jalisco, Mexico
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, P.O. box 19011, Curitiba, Paraná, 81531-990, Brazil
| |
Collapse
|
10
|
Corso CR, Acco A, Bach C, Bonatto SJR, de Figueiredo BC, de Souza LM. Pharmacological profile and effects of mitotane in adrenocortical carcinoma. Br J Clin Pharmacol 2021; 87:2698-2710. [PMID: 33382119 DOI: 10.1111/bcp.14721] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Mitotane is the only adrenolytic drug approved by the Food and Drug Administration for treating adrenocortical carcinoma (ACC). This drug has cytotoxic effects on tumour tissues; it induces cell death and antisecretory effects on adrenal cells by inhibiting the synthesis of adrenocortical steroids, which are involved in the pathogenesis of ACC. However, high doses of mitotane are usually necessary to reach the therapeutic plasma concentration, which may result in several adverse effects. This suggests that important pharmacological processes, such as first pass metabolism, tissue accumulation and extensive time for drug elimination, are associated with mitotane administration. Few studies have reported the pharmacological aspects and therapeutic effects of mitotane. Therefore, the aim of this review was to summarize the chemistry, pharmacokinetics and pharmacodynamics, and therapeutic and toxic effects of mitotane. This review also discusses new perspectives of mitotane formulation that are currently under investigation. Understanding the pharmacological profile of mitotane can improve the monitoring and efficacy of this drug in ACC treatment and can provide useful information for the development of new drugs with specific action against ACC with fewer adverse effects.
Collapse
Affiliation(s)
- Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Alexandra Acco
- Pharmacology Department, Federal University of Paraná, Curitiba, Brazil
| | - Camila Bach
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Sandro José Ribeiro Bonatto
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | | | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
11
|
Seidel E, Walenda G, Messerschmidt C, Obermayer B, Peitzsch M, Wallace P, Bahethi R, Yoo T, Choi M, Schrade P, Bachmann S, Liebisch G, Eisenhofer G, Beule D, Scholl UI. Generation and characterization of a mitotane-resistant adrenocortical cell line. Endocr Connect 2020; 9:122-134. [PMID: 31910152 PMCID: PMC6993260 DOI: 10.1530/ec-19-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Mitotane is the only drug approved for the therapy of adrenocortical carcinoma (ACC). Its clinical use is limited by the occurrence of relapse during therapy. To investigate the underlying mechanisms in vitro, we here generated mitotane-resistant cell lines. After long-term pulsed treatment of HAC-15 human adrenocortical carcinoma cells with 70 µM mitotane, we isolated monoclonal cell populations of treated cells and controls and assessed their respective mitotane sensitivities by MTT assay. We performed exome sequencing and electron microscopy, conducted gene expression microarray analysis and determined intracellular lipid concentrations in the presence and absence of mitotane. Clonal cell lines established after pulsed treatment were resistant to mitotane (IC50 of 102.2 ± 7.3 µM (n = 12) vs 39.4 ± 6.2 µM (n = 6) in controls (biological replicates, mean ± s.d., P = 0.0001)). Unlike nonresistant clones, resistant clones maintained normal mitochondrial and nucleolar morphology during mitotane treatment. Resistant clones largely shared structural and single nucleotide variants, suggesting a common cell of origin. Resistance depended, in part, on extracellular lipoproteins and was associated with alterations in intracellular lipid homeostasis, including levels of free cholesterol, as well as decreased steroid production. By gene expression analysis, resistant cells showed profound alterations in pathways including steroid metabolism and transport, apoptosis, cell growth and Wnt signaling. These studies establish an in vitro model of mitotane resistance in ACC and point to underlying molecular mechanisms. They may enable future studies to overcome resistance in vitro and improve ACC treatment in vivo.
Collapse
Affiliation(s)
- Eric Seidel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, BCRT – Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gudrun Walenda
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Clemens Messerschmidt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Benedikt Obermayer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paal Wallace
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rohini Bahethi
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Petra Schrade
- Charité – Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Vegetative Anatomie, Berlin, Germany
| | - Sebastian Bachmann
- Charité – Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Vegetative Anatomie, Berlin, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ute I Scholl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, BCRT – Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Population Pharmacokinetics Modelling and Simulation of Mitotane in Patients with Adrenocortical Carcinoma: An Individualized Dose Regimen to Target All Patients at Three Months? Pharmaceutics 2019; 11:pharmaceutics11110566. [PMID: 31683663 PMCID: PMC6920765 DOI: 10.3390/pharmaceutics11110566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mitotane is the most effective agent in post-operative treatment of adrenocortical carcinoma. In adults, the starting dose is 2–3 g/day and should be slightly increased to reach the therapeutic index of 14–20 mg/L. This study developed a population PK model for mitotane and to simulate recommended/high dosing regimens. We retrospectively analyzed the data files of 38 patients with 503 plasma concentrations for the pharmacokinetic analysis. Monolix version 2019R1 was used for non-linear mixed-effects modelling. Monte Carlo simulations were performed to evaluate the probability of target attainment (PTA ≥ 14 mg/L) at one month and at three months. Mitotane concentration data were best described by a linear one-compartment model. The estimated PK parameters (between-subject variability) were: 8900 L (90.4%) for central volume of distribution (V) and 70 L·h−1 (29.3%) for clearance (Cl). HDL, Triglyceride (Tg) and a latent covariate were found to influence Cl. The PTA at three months for 3, 6, 9, and 12 g per day was 10%, 55%, 76%, and 85%, respectively. For a loading dose of 15 g/day for one month then 5 g/day, the PTA in the first and third months was 57 and 69%, respectively. This is the first PKpop model of mitotane highlighting the effect of HDL and Tg covariates on the clearance as well as a subpopulation of ultrafast metabolizer. The simulations suggest that recommended dose regimens are not enough to target the therapeutic threshold in the third month.
Collapse
|
13
|
Haider MS, Schreiner J, Kendl S, Kroiss M, Luxenhofer R. A Micellar Mitotane Formulation with High Drug-Loading and Solubility: Physico-Chemical Characterization and Cytotoxicity Studies in 2D and 3D In Vitro Tumor Models. Macromol Biosci 2019; 20:e1900178. [PMID: 31596553 DOI: 10.1002/mabi.201900178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/16/2019] [Indexed: 01/26/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare tumor and prognosis is overall poor but heterogeneous. Mitotane (MT) has been used for treatment of ACC for decades, either alone or in combination with cytotoxic chemotherapy. Even at doses up to 6 g per day, more than half of the patients do not achieve targeted plasma concentration (14-20 mg L-1 ) even after many months of treatment due to low water solubility, bioavailability, and unfavorable pharmacokinetic profile. Here a novel MT nanoformulation with very high MT concentrations in physiological aqueous media is reported. The MT-loaded nanoformulations are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction which confirms the amorphous nature of the drug. The polymer itself does not show any cytotoxicity in adrenal and liver cell lines. By using the ACC model cell line NCI-H295 both in monolayers and tumor cell spheroids, micellar MT is demonstrated to exhibit comparable efficacy to its ethanol solution. It is postulated that this formulation will be suitable for i.v. application and rapid attainment of therapeutic plasma concentrations. In conclusion, the micellar formulation is considered a promising tool to alleviate major drawbacks of current MT treatment while retaining bioactivity toward ACC in vitro.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Faculty of Chemistry and Pharmacy, University of Würzburg and Bavarian Polymer Institute, Röntgenring 11, 97070, Würzburg, Germany
| | - Jochen Schreiner
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sabine Kendl
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology/Diabetology, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Material Synthesis, Faculty of Chemistry and Pharmacy, University of Würzburg and Bavarian Polymer Institute, Röntgenring 11, 97070, Würzburg, Germany
| |
Collapse
|
14
|
Arshad U, Taubert M, Kurlbaum M, Frechen S, Herterich S, Megerle F, Hamacher S, Fassnacht M, Fuhr U, Kroiss M. Enzyme autoinduction by mitotane supported by population pharmacokinetic modelling in a large cohort of adrenocortical carcinoma patients. Eur J Endocrinol 2018; 179:287-297. [PMID: 30087117 DOI: 10.1530/eje-18-0342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Mitotane is used for the treatment of adrenocortical carcinoma. High oral daily doses of typically 1- 6 g are required to attain therapeutic concentrations. The drug has a narrow therapeutic index and patient management is difficult because of a high volume of distribution, very long elimination half-life, and drug interaction through induction of metabolizing enzymes. The present evaluation aimed at the development of a population pharmacokinetic model of mitotane to facilitate therapeutic drug monitoring. METHODS Appropriate dosing information, plasma concentrations (1137 data points) and covariates were available from therapeutic drug monitoring (TDM) of 76 adrenocortical carcinoma patients treated with mitotane. Using nonlinear mixed effects modeling, a simple structural model was first developed, with subsequent introduction of metabolic autoinduction. Covariate data were analyzed to improve overall model predictability. Simulations were performed to assess the attainment of therapeutic concentrations with clinical dosing schedules. RESULTS A one-compartment pharmacokinetic model with first order absorption was found suitable to describe the data, with an estimated central volume of distribution of 6086 L related to a high interindividual variability of 81.5%. Increase in clearance of mitotane during treatment could be modeled by a linear enzyme autoinduction process. Body mass index was found to have an influence upon disposition kinetics of mitotane. Model simulations favor a high dose regimen to rapidly attain therapeutic concentrations, with the first TDM suggested on day 16 of treatment to avoid systemic toxicity. CONCLUSION The proposed model describes mitotane pharmacokinetics and can be used to facilitate therapy by predicting plasma concentrations.
Collapse
Affiliation(s)
- U Arshad
- Department I of Pharmacology, University Hospital Cologne, Cologne, Germany
| | - M Taubert
- Department I of Pharmacology, University Hospital Cologne, Cologne, Germany
| | - M Kurlbaum
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - S Frechen
- Department I of Pharmacology, University Hospital Cologne, Cologne, Germany
| | - S Herterich
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
| | - F Megerle
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - S Hamacher
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - M Fassnacht
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - U Fuhr
- Department I of Pharmacology, University Hospital Cologne, Cologne, Germany
| | - M Kroiss
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Abstract
Careful morphological evaluation forms the basis of the workup of an adrenal cortical neoplasm. However, the adoption of immunohistochemical biomarkers has added tremendous value to enhance diagnostic accuracy. The authors provide a brief review of immunohistochemical biomarkers that have been used in the confirmation of adrenal cortical origin and in the detection of the source of functional adrenal cortical proliferations, as well as diagnostic, predictive, and prognostic biomarkers of adrenal cortical carcinoma. In addition, a brief section on potential novel theranostic biomarkers in the prediction of treatment response to mitotane and other relevant chemotherapeutic agents is also provided. In the era of precision and personalized medical practice, adoption of combined morphology and immunohistochemistry provides a new approach to the diagnostic workup of adrenal cortical neoplasms, reflecting the evolution of clinical responsibility of pathologists.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
| | - Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
| | - Thomas J Giordano
- Departments of Pathology and Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Mauro Papotti
- Department of Pathology, Turin University at Molinette Hospital, Turin, Italy
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, Turin University, Orbassano, Turin, Italy
| |
Collapse
|
16
|
Kroiss M, Sbiera S, Kendl S, Kurlbaum M, Fassnacht M. Drug Synergism of Proteasome Inhibitors and Mitotane by Complementary Activation of ER Stress in Adrenocortical Carcinoma Cells. Discov Oncol 2016; 7:345-355. [PMID: 27631436 DOI: 10.1007/s12672-016-0273-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/12/2022] Open
Abstract
Mitotane is the only drug approved for treatment of the orphan disease adrenocortical carcinoma (ACC) and was recently shown to be the first clinically used drug acting through endoplasmic reticulum (ER)-stress induced by toxic lipids. Since mitotane has limited clinical activity as monotherapy, we here study the potential of activating ER-stress through alternative pathways. The single reliable NCI-H295 cell culture model for ACC was used to study the impact MG132, bortezomib (BTZ) and carfilzomib (CFZ) on mRNA and protein expression of ER-stress markers, cell viability and steroid hormone secretion. We found all proteasome inhibitors alone to trigger expression of mRNA (spliced X-box protein 1, XBP1) and protein markers indicative of the inositol-requiring enzyme 1 (IRE1) dependent pathway of ER-stress but not phosphorylation of eukaryotic initiation factor 2α (eIF2α), a marker of the PRKR-like endoplasmic reticulum kinase (PERK)-dependent pathway. Whereas mitotane alone activated both pathways, combination of BTZ and CFZ with low-dose mitotane blocked mitotane-induced eIF2α phosphorylation but increased XBP1-mRNA splicing indicating that proteasome inhibitors can commit signalling towards a single ER-stress pathway in ACC cells. By applying the median effect model of drug combinations using cell viability as a read out, we determined significant drug synergism between mitotane and both BTZ and CFZ. In conclusion, combination of mitotane with activators of ER-stress through the unfolded protein response is synergistic in an ACC cell culture model. Since proteasome inhibitors are readily available clinically, they are attractive candidates to study for ACC treatment in clinical trials in combination with mitotane.
Collapse
Affiliation(s)
- Matthias Kroiss
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Oberrdürrbacher-Strasse 6, 97080, Würzburg, Germany
| | - Sabine Kendl
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Oberrdürrbacher-Strasse 6, 97080, Würzburg, Germany.,Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.,Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Oberrdürrbacher-Strasse 6, 97080, Würzburg, Germany.,Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Scheidt HA, Haralampiev I, Theisgen S, Schirbel A, Sbiera S, Huster D, Kroiss M, Müller P. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Mol Cell Endocrinol 2016; 428:68-81. [PMID: 27002491 DOI: 10.1016/j.mce.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
Abstract
Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.
Collapse
Affiliation(s)
- Holger A Scheidt
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Ivan Haralampiev
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Stephan Theisgen
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Andreas Schirbel
- University Hospital Würzburg, Department of Nuclear Medicine, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Silviu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Endocrinology and Diabetes Unit, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Daniel Huster
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Endocrinology and Diabetes Unit, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|