1
|
Ornstrup MJ, Høst C, Rittig N, Gravholt CH. Acute effects of testosterone on whole body protein metabolism in hypogonadal and eugonadal conditions: a randomized, placebo-controlled, crossover study. J Appl Physiol (1985) 2024; 136:1460-1467. [PMID: 38634506 DOI: 10.1152/japplphysiol.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Chronic testosterone (T) substitution and short-term T administration positively affect protein metabolism, however, data on acute effects in humans are sparse. This study aimed to investigate T's acute effects on whole body protein metabolism in hypogonadal and eugonadal conditions. We designed a randomized, double-blind, placebo-controlled, crossover study, including 12 healthy young males. Whole body protein metabolism was evaluated during 1) eugonadism, and after medically induced hypogonadism, with application of a gel on each trial day containing either 2) placebo, 3) T 50 mg, or 4) T 150 mg; under basal (5-h basal period) and insulin-stimulated conditions (3-h clamp). The main outcome measure was a change in net protein balance. The net protein loss was 62% larger in the placebo-treated hypogonadal state compared with the eugonadal state during the basal period (-5.5 ± 3.5 µmol/kg/h vs. -3.4 ± 1.2 µmol/kg/h, P = 0.038), but not during the clamp (P = 0.06). Also, hypogonadism resulted in a 25% increase in whole body urea flux (P = 0.006). However, T did not result in any significant changes in protein breakdown, synthesis, or net balance during either the basal period or clamp (all P > 0.05). Protein breakdown was reduced during clamp compared with the basal period regardless of gonadal status or T exposure (all P ≤ 0.001). In conclusion, the application of transdermal T did not counteract the negative effects of hypogonadism with no effects on protein metabolism within 5 h of administration. Insulin (during clamp) mitigated the effects of hypogonadism. This study is the first to investigate acute protein metabolic effects of T in hypogonadal men.NEW & NOTEWORTHY In a model of medically induced hypogonadism in male volunteers, we found increased whole body urea flux and net protein loss as an expected consequence of hypogonadism. Our study demonstrates the novel finding that the application of transdermal testosterone had no acute effects on whole body protein metabolism under eugonadal conditions, nor could it mitigate the hypogonadism-induced changes in protein metabolism. In contrast, insulin (during clamp) mitigated the effects of hypogonadism on protein metabolism.
Collapse
Affiliation(s)
- Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Høst
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Sarri L, Balcells J, Seradj AR, de la Fuente G. Protein turnover in pigs: A review of interacting factors. J Anim Physiol Anim Nutr (Berl) 2024; 108:451-469. [PMID: 37975299 DOI: 10.1111/jpn.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Protein turnover defines the balance between two continuous and complex processes of protein metabolism, synthesis and degradation, which determine their deposition in tissues. Although the liver and intestine have been studied extensively for their important roles in protein digestion, absorption and metabolism, the study of protein metabolism has focused mainly on skeletal muscle tissue to understand the basis for its growth. Due to the high adaptability of skeletal muscle, its protein turnover is greatly affected by different internal and external factors, contributing to carcass lean-yield and animal growth. Amino acid (AA) labelling and tracking using isotope tracer methodology, together with the study of myofiber type profiling, signal transduction pathways and gene expression, has allowed the analysis of these mechanisms from different perspectives. Positive stimuli such as increased nutrient availability in the diet (e.g., AA), physical activity, the presence of certain hormones (e.g., testosterone) or a more oxidative myofiber profile in certain muscles or pig genotypes promote increased upregulation of translation and transcription-related genes, activation of mTORC1 signalling mechanisms and increased abundance of satellite cells, allowing for more efficient protein synthesis. However, fasting, animal aging, inactivity and stress, inflammation or sepsis produce the opposite effect. Deepening the understanding of modifying factors and their possible interaction may contribute to the design of optimal strategies to better control tissue growth and nutrient use (i.e., protein and AA), and thus advance the precision feeding strategy.
Collapse
Affiliation(s)
- Laura Sarri
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Joaquim Balcells
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Ahmad Reza Seradj
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Gabriel de la Fuente
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| |
Collapse
|
3
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Whittaker J, Harris M. Low-carbohydrate diets and men's cortisol and testosterone: Systematic review and meta-analysis. Nutr Health 2022; 28:543-554. [PMID: 35254136 PMCID: PMC9716400 DOI: 10.1177/02601060221083079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Low-carbohydrate diets may have endocrine effects, although individual studies are conflicting. Therefore, a review was conducted on the effects of low- versus high-carbohydrate diets on men's testosterone and cortisol. Methods: The review was registered on PROSPERO (CRD42021255957). The inclusion criteria were: intervention study, healthy adult males, and low-carbohydrate diet: ≤35% carbohydrate. Eight databases were searched from conception to May 2021. Cochrane's risk of bias tool was used for quality assessment. Random-effects, meta-analyses using standardized mean differences and 95% confidence intervals, were performed with Review Manager. Subgroup analyses were conducted for diet duration, protein intake, and exercise duration. Results: Twenty-seven studies were included, with a total of 309 participants. Short-term (<3 weeks), low- versus high-carbohydrate diets moderately increased resting cortisol (0.41 [0.16, 0.66], p < 0.01). Whereas, long-term (≥3 weeks), low-carbohydrate diets had no consistent effect on resting cortisol. Low- versus high-carbohydrate diets resulted in much higher post-exercise cortisol, after long-duration exercise (≥20 min): 0 h (0.78 [0.47, 1.1], p < 0.01), 1 h (0.81 [0.31, 1.31], p < 0.01), and 2 h (0.82 [0.33, 1.3], p < 0.01). Moderate-protein (<35%), low-carbohydrate diets had no consistent effect on resting total testosterone, however high-protein (≥35%), low-carbohydrate diets greatly decreased resting (-1.08 [-1.67, -0.48], p < 0.01) and post-exercise total testosterone (-1.01 [-2, -0.01] p = 0.05). Conclusions: Resting and post-exercise cortisol increase during the first 3 weeks of a low-carbohydrate diet. Afterwards, resting cortisol appears to return to baseline, whilst post-exercise cortisol remains elevated. High-protein diets cause a large decrease in resting total testosterone (∼5.23 nmol/L).
Collapse
Affiliation(s)
- Joseph Whittaker
- The School of Allied Health and Community,
University
of Worcester, Worcester, UK
| | - Miranda Harris
- The School of Allied Health and Community,
University
of Worcester, Worcester, UK
| |
Collapse
|
5
|
Abstract
A recent meta-analysis found low-carbohydrate, high-protein diets (> 3.4 g/kg of bodyweight/day) (g/kg/day) decreased men's total testosterone (∼5.23 nmol/L) [Whittaker and Harris (2022) Low-carbohydrate diets and men's cortisol and testosterone: systematic review and meta-analysis. Nutrition and Health. DOI: 10.1177/02601060221083079]. This finding has generated substantial discussion, however, it has often lacked clarity and context, with the term 'high-protein' being used unqualified. Firstly, diets < 3.4 g/kg/day are not associated with a consistent decrease in testosterone. Secondly, the average protein intake is ∼1.3 g/kg/day, conventional 'high-protein' diets are ∼1.8-3 g/kg/day and the vast majority of athletes are < 3.4 g/kg/day; meaning very few individuals will ever surpass 3.4 g/kg/day. To avoid such confusion in the future, the following definitions are proposed: very high (> 3.4 g/kg/day), high (1.9-3.4 g/kg/day), moderate (1.25-1.9 g/kg/day) and low (<1.25 g/kg/day). Using these, very high-protein diets (> 3.4 g/kg/day) appear to decrease testosterone, however high- and moderate-protein diets (1.25-3.4 g/kg/day) do not.
Collapse
Affiliation(s)
- Joseph Whittaker
- The School of Allied Health and Community, 8709University of Worcester, UK
| |
Collapse
|
6
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Tayachew B, Vanden Brink H, Garcia-Reyes Y, Rahat H, D'Alessandro A, Frank DN, Robertson CE, Silveira L, Kelsey M, Pyle L, Cree-Green M. Combined Oral Contraceptive Treatment Does Not Alter the Gut Microbiome but Affects Amino Acid Metabolism in Sera of Obese Girls With Polycystic Ovary Syndrome. Front Physiol 2022; 13:887077. [PMID: 35800349 PMCID: PMC9255376 DOI: 10.3389/fphys.2022.887077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Background: The gut microbiome is altered in obese adolescents with polycystic ovary syndrome (PCOS), and is associated with free testosterone, metabolic markers, and insulin resistance. Combined oral contraceptives (OCP) are a primary treatment for PCOS and decrease testosterone, but the effect on the serum metabolome or gut microbiome in obese adolescents with PCOS is unknown. Objective: Contrast gut microbiome profiles, targeted serum metabolomics, hormone levels, and metabolic measures in adolescents with PCOS and obesity with and without OCP treatment. Methods: Adolescent girls with obesity and PCOS underwent stool and fasting blood collection and MRI for hepatic fat fraction. Fecal bacteria were profiled by high-throughput 16S rRNA gene sequencing and fasting serum metabolomics performed with high resolution mass spectrometry. Groups were contrasted using t-tests and principle least squares discrimination analysis (PLS-DA). Associations between bacterial taxa, baseline metabolic measures, hormone levels and the metabolome were conducted using Spearman analysis. Analyses were adjusted for false discovery rate. Results: 29 adolescents with obesity [Untreated N = 21, 16 ± 1.2 years, BMI%ile 36.5 ± 3.0; OCP N = 8, 15.5 ± 0.9 years, BMI%ile 32.5 ± 3.9] participated. Of the untreated adolescents, N = 14 contributed serum for metabolomic analysis. Participants on OCP therapy had lower free testosterone and free androgen index (p < 0.001) and higher sex hormone binding globulin. There was no difference in measures of fasting glucose, insulin, lipids or HOMA-IR between groups. PLS-DA of serum metabolomics showed discrimination between the groups, secondary amino acid changes. Untreated and OCP had similar stool microbiome α-diversity based on evenness (p = 0.28), richness (p = 0.39), and Shannon diversity (p = 0.24) and global microbial composition (β-diversity, p = 0.56). There were no differences in % relative abundance at any level. Bacterial α-diversity was negatively associated with serum long chain fatty acids and branched chain amino acids. A higher %relative abundance of family Ruminococcaceae was significantly associated with serum bile acids and HOMA-IR. Conclusion: Despite hormone and serum amino acid differences, girls treated with OCP had similar metabolic and gut microbiome profiles compared to the untreated PCOS group. The association between bacterial α-diversity, Ruminococcaceae, clinical markers and long chain fatty acids suggests a potential role of the gut microbiome in the pathogenesis of the metabolic comorbidities in PCOS.
Collapse
Affiliation(s)
- Beza Tayachew
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heidi Vanden Brink
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Yesenia Garcia-Reyes
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Haseeb Rahat
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori Silveira
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Megan Kelsey
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Melanie Cree-Green,
| |
Collapse
|
8
|
The Association between Serum Testosterone and Hyperuricemia in Males. J Clin Med 2022; 11:jcm11102743. [PMID: 35628869 PMCID: PMC9148059 DOI: 10.3390/jcm11102743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022] Open
Abstract
Gout is a common systemic inflammatory disease with a male predominance. This study aimed to determine the relationship between serum total testosterone level and hyperuricemia. Data on 1899 men, collected from 2007 to 2017, were included in the analysis. Serum testosterone and urate (SU) were measured on enrolment. The primary endpoints were SU levels ≥ 7 mg/dL and ≥9 mg/dL. On enrolment, participants had a mean age of 45.6 years and mean total testosterone and SU levels of 510 ng/dL and 6.6 mg/dL, respectively. The mean total testosterone levels were 533 and 470 ng/dL in patients with SU levels < 7 mg/dL and ≥7 mg/dL, respectively (p < 0.001); and 515 and 425 ng/dL in patients with SU levels < 9 mg/dL and ≥9 mg/dL, respectively (p < 0.001). After adjusting for age, body mass index, creatinine, serum lipid, fasting blood glucose, systolic blood pressure, and diastolic blood pressure, low testosterone level (<400 ng/dL) was significantly associated with an SU level ≥ 7 mg/dL (hazard ratio: 1.182, 95% confidence interval: 1.005−1.39) and ≥9 mg/dL (hazard ratio: 1.905, 95% confidence interval: 1.239−2.928). In men, a low testosterone level may be associated with an increased risk of hyperuricemia.
Collapse
|
9
|
Kure A, Tsukimi T, Ishii C, Aw W, Obana N, Nakato G, Hirayama A, Kawano H, China T, Shimizu F, Nagata M, Isotani S, Muto S, Horie S, Fukuda S. Gut environment changes due to androgen deprivation therapy in patients with prostate cancer. Prostate Cancer Prostatic Dis 2022:10.1038/s41391-022-00536-3. [PMID: 35418210 DOI: 10.1038/s41391-022-00536-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND It is estimated that by 2040 there will be 1,017,712 new cases of prostate cancer worldwide. Androgen deprivation therapy (ADT) is widely used as a treatment option for all disease stages. ADT, and the resulting decline in androgen levels, may indirectly affect gut microbiota. Factors affecting gut microbiota are wide-ranging; however, literature is scarce on the effects of ADT on gut microbiota and metabolome profiles in patients with prostate cancer. METHODS To study the changes of gut microbiome by ADT, this 24-week observational study investigated the relationship between testosterone levels and changes in gut microbiota in Japanese patients with prostate cancer undergoing ADT. Sequential faecal samples were collected 1 and 2 weeks before ADT, and 1, 4, 12, and 24 weeks after ADT. Blood samples were collected at almost the same times. Bacterial 16 S rRNA gene-based microbiome analyses and capillary electrophoresis-time-of-flight mass spectrometry-based metabolome analyses were performed. RESULTS In total, 23 patients completed the study. The α- and ß-diversity of gut microbiota decreased significantly at 24 weeks after ADT (p = 0.017, p < 0.001, respectively). Relative abundances of Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonas, and concentrations of urea, lactate, butyrate, 2-hydroxyisobutyrate and S-adenosylmethionine changed significantly after ADT (p < 0.05). There was a significant positive correlation between the abundance of Proteobacteria, a known indicator of dysbiosis, and the concentration of lactate (R = 0.49, p < 0.01). CONCLUSIONS The decline in testosterone levels resulted in detrimental changes in gut microbiota. This dysbiosis may contribute to an increase in frailty and an increased risk of adverse outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Akimasa Kure
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.,Transborder Medical Research Centre, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoya Tsukimi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.,Systems Biology Programme, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.,Systems Biology Programme, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Wanping Aw
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.,Systems Biology Programme, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Nozomu Obana
- Transborder Medical Research Centre, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Gaku Nakato
- Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Centre (LiSE) 4th floor Room 4C-6, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.,Systems Biology Programme, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiyuki China
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumitaka Shimizu
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masayoshi Nagata
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinji Isotani
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Department of Advanced Informatics for Genetic Diseases, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan. .,Transborder Medical Research Centre, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Systems Biology Programme, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan. .,Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Centre (LiSE) 4th floor Room 4C-6, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan.
| |
Collapse
|
10
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
11
|
Rhee H, Navaratnam A, Oleinikova I, Gilroy D, Scuderi Y, Heathcote P, Nguyen T, Wood S, Ho KKY. A Novel Liver-targeted Testosterone Therapy for Sarcopenia in Androgen Deprived Men With Prostate Cancer. J Endocr Soc 2021; 5:bvab116. [PMID: 34308090 PMCID: PMC8294688 DOI: 10.1210/jendso/bvab116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Androgen deprivation therapy (ADT) reduces muscle and bone mass, increasing frailty in men with prostate cancer. The liver mediates the whole body anabolic effects of testosterone. Based on first-pass metabolism, liver-targeted testosterone treatment (LTTT) entails oral delivery of a small dose of testosterone that does not raise peripheral blood testosterone levels. LTTT reduces blood urea and stimulates protein anabolism in hypogonadal men and postmenopausal women. We investigated whether LTTT prevents loss of lean and bone mass during ADT. Method A 6-month, double-blind, placebo-controlled study of testosterone 40 mg/day in 50 men. Primary outcome measures were lean mass and bone mineral content (BMC). Testosterone, urea and prostate-specific antigen (PSA) were monitored. Patients were withdrawn if PSA exceeded 4 ng/mL. Results 42 patients completed the study. Mean (95% CI) testosterone rose during LTTT but not placebo treatment [∆ 2.2 (1.3-3.0) vs -0.7 (-1.5 to 0.2) nmol/L; P < 0.01]. Mean PSA level did not change significantly during either treatment. Blood urea fell [∆ -0.4 (-0.9 to -0.1) mmol/L] during LTTT but not placebo [∆ 0.05 (-0.8 to 0.9) mmol/L]. BMC [∆ 49 (5 to 93) g; P < 0.02] and lean mass [∆ 0.8 (-0.1 to 1.7) kg; P = 0.04) increased compared to placebo. Five patients on LTTT withdrew from increased PSA levels, all returning to baseline levels. Conclusion LTTT shows promise as a simple therapy for preventing sarcopenia and bone loss during ADT. LTTT may induce reversible PSA rise in some patients. Further studies are required to optimize LTTT dose in ADT. LTTT has potential application in other catabolic states in men and women.
Collapse
Affiliation(s)
- Handoo Rhee
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia.,Faculty of Medicine, the University of Queensland, Brisbane, Australia
| | - Anojan Navaratnam
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Irina Oleinikova
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Deborah Gilroy
- Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Yolanda Scuderi
- Department of Pharmacy, Princess Alexandra Hospital, Brisbane, Australia
| | - Peter Heathcote
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Tuan Nguyen
- School of Biomedical Engineering, University of Technology, Sydney, Australia.,Garvan Institute of Medical Research and the Faculty of Medicine, the University of New South Wales, Sydney, Australia
| | - Simon Wood
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia.,Faculty of Medicine, the University of Queensland, Brisbane, Australia
| | - Ken K Y Ho
- Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia.,The Translational Research Institute, Brisbane, Australia.,Faculty of Medicine, the University of Queensland, Brisbane, Australia.,Garvan Institute of Medical Research and the Faculty of Medicine, the University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Okun JG, Rusu PM, Chan AY, Wu Y, Yap YW, Sharkie T, Schumacher J, Schmidt KV, Roberts-Thomson KM, Russell RD, Zota A, Hille S, Jungmann A, Maggi L, Lee Y, Blüher M, Herzig S, Keske MA, Heikenwalder M, Müller OJ, Rose AJ. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat Metab 2021; 3:394-409. [PMID: 33758419 DOI: 10.1038/s42255-021-00369-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Andrea Y Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yuqin Wu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yann W Yap
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Thomas Sharkie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Jonas Schumacher
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin V Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Annika Zota
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Andreas Jungmann
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Ludovico Maggi
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Whon TW, Kim HS, Shin N, Jung ES, Tak EJ, Sung H, Jung M, Jeong Y, Hyun D, Kim PS, Jang YK, Lee CH, Bae J. Male castration increases adiposity via small intestinal microbial alterations. EMBO Rep 2021; 22:e50663. [PMID: 33225575 PMCID: PMC7788444 DOI: 10.15252/embr.202050663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Castration of young males is widely used in the cattle industry to improve meat quality, but the mechanism linking hypogonadism and host metabolism is not clear. Here, we use metataxonomic and metabolomic approaches to evaluate the intestinal microbiota and host metabolism in male, castrated male (CtM), and female cattle. After pubescence, the CtM cattle harbor distinct ileal microbiota dominated by the family Peptostreptococcaceae and exhibit distinct serum and muscle amino acid profiles (i.e., highly abundant branched-chain amino acids), with increased extra- and intramuscular fat storage. We also evaluate the causative factor(s) that underpin the alteration of the intestinal microbiota and host metabolic phenotype in response to hypogonadism. Castration of male mice phenocopies both the intestinal microbial alterations and obese-prone metabolism observed in cattle. Antibiotic treatment and fecal microbiota transplantation experiments in a mouse model confirm that the intestinal microbial alterations associated with hypogonadism are a key contributor to the obese phenotype in the CtM animals. Collectively, targeting the gut microbiota is a potential therapeutic strategy for the treatment of both hypogonadism and obesity.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
- Present address:
Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuKorea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Na‐Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
- Present address:
Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐si, Jeollabuk‐doKorea
| | - Eun Sung Jung
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Mi‐Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Yun‐Seok Jeong
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Dong‐Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Yu Kyung Jang
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Jin‐Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| |
Collapse
|
14
|
Sahlin KB, Pla I, Sanchez A, Pawłowski K, Leijonhufvud I, Appelqvist R, Marko-Varga G, Giwercman A, Malm J. Short-term effect of pharmacologically induced alterations in testosterone levels on common blood biomarkers in a controlled healthy human model. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 80:25-31. [PMID: 31738571 DOI: 10.1080/00365513.2019.1689429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Testosterone deficiency in males is associated with serious comorbidities such as cardiovascular disease, diabetes type two, and also an increased risk of premature death. The pathogenetic mechanism behind this association, however, has not yet been clarified and is potentially bidirectional. The aim of this clinical trial was to gain insight into the short-term effect of changes in testosterone on blood analytes in healthy young men. Thirty healthy young male volunteers were recruited and monitored in our designed human model. Blood sampling was performed prior to and 3 weeks after pharmacological castration with a gonadotropin-releasing hormone antagonist. Subsequently, testosterone replacement with 1000 mg testosterone undecanoate was given and additional blood samples were collected 2 weeks later. The alterations in the levels of 37 routine biomarkers were statistically analysed. Eight biomarkers changed significantly in a similar manner as testosterone between the time points (e.g. prostate specific antigen, creatinine and magnesium), whereas seven other markers changed in the inverse manner as testosterone, including sexual hormone-binding globulin, urea, aspartate aminotransferase and alanine aminotransferase. Most of our results were supported by data from other studies. The designed controlled human model yielded changes in known biomarkers suggesting that low testosterone has a negative effect on health in young healthy men.
Collapse
Affiliation(s)
- K Barbara Sahlin
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Krzysztof Pawłowski
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Irene Leijonhufvud
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Roger Appelqvist
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Lam T, McLean M, Hayden A, Poljak A, Cheema B, Gurney H, Stone G, Bahl N, Reddy N, Shahidipour H, Birzniece V. A potent liver-mediated mechanism for loss of muscle mass during androgen deprivation therapy. Endocr Connect 2019; 8:605-615. [PMID: 30991356 PMCID: PMC6510709 DOI: 10.1530/ec-19-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Androgen deprivation therapy (ADT) in prostate cancer results in muscular atrophy, due to loss of the anabolic actions of testosterone. Recently, we discovered that testosterone acts on the hepatic urea cycle to reduce amino acid nitrogen elimination. We now hypothesize that ADT enhances protein oxidative losses by increasing hepatic urea production, resulting in muscle catabolism. We also investigated whether progressive resistance training (PRT) can offset ADT-induced changes in protein metabolism. OBJECTIVE To investigate the effect of ADT on whole-body protein metabolism and hepatic urea production with and without a home-based PRT program. DESIGN A randomized controlled trial. PATIENTS AND INTERVENTION Twenty-four prostate cancer patients were studied before and after 6 weeks of ADT. Patients were randomized into either usual care (UC) (n = 11) or PRT (n = 13) starting immediately after ADT. MAIN OUTCOME MEASURES The rate of hepatic urea production was measured by the urea turnover technique using 15N2-urea. Whole-body leucine turnover was measured, and leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, was calculated. RESULTS ADT resulted in a significant mean increase in hepatic urea production (from 427.6 ± 18.8 to 486.5 ± 21.3; P < 0.01) regardless of the exercise intervention. Net protein loss, as measured by Lox/Lra, increased by 12.6 ± 4.9% (P < 0.05). PRT preserved lean body mass without affecting hepatic urea production. CONCLUSION As early as 6 weeks after initiation of ADT, the suppression of testosterone increases protein loss through elevated hepatic urea production. Short-term PRT was unable to offset changes in protein metabolism during a state of profound testosterone deficiency.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- Correspondence should be addressed to T Lam:
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Amy Hayden
- Department of Radiation Oncology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility and School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Birinder Cheema
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glenn Stone
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales, Australia
| | - Neha Bahl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Haleh Shahidipour
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| |
Collapse
|
16
|
Garratt M, Lagerborg KA, Tsai YM, Galecki A, Jain M, Miller RA. Male lifespan extension with 17-α estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 2018; 17:e12786. [PMID: 29806096 PMCID: PMC6052402 DOI: 10.1111/acel.12786] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
Longevity in mammals is influenced by sex, and lifespan extension in response to anti‐aging interventions is often sex‐specific, although the mechanisms underlying these sexual dimorphisms are largely unknown. Treatment of mice with 17‐α estradiol (17aE2) results in sex‐specific lifespan extension, with an increase in median survival in males of 19% and no survival effect in females. Given the links between lifespan extension and metabolism, we performed untargeted metabolomics analysis of liver, skeletal muscle and plasma from male and female mice treated with 17aE2 for eight months. We find that 17aE2 generates distinct sex‐specific changes in the metabolomic profile of liver and plasma. In males, 17aE2 treatment raised the abundance of several amino acids in the liver, and this was further associated with elevations in metabolites involved in urea cycling, suggesting altered amino acid metabolism. In females, amino acids and urea cycling metabolites were unaffected by 17aE2. 17aE2 also results in male‐specific elevations in a second estrogenic steroid—estriol‐3‐sulfate—suggesting different metabolism of this drug in males and females. To understand the underlying endocrine causes for these sexual dimorphisms, we castrated males and ovariectomized females prior to 17aE2 treatment, and found that virtually all the male‐specific metabolite responses to 17aE2 are inhibited or reduced by male castration. These results suggest novel metabolic pathways linked to male‐specific lifespan extension and show that the male‐specific metabolomic response to 17aE2 depends on the production of testicular hormones in adult life.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Kim A. Lagerborg
- Departments of Medicine & Pharmacology; University of California San Diego; San Diego California
| | - Yi-Miau Tsai
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| | - Andrzej Galecki
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| | - Mohit Jain
- Departments of Medicine & Pharmacology; University of California San Diego; San Diego California
| | - Richard A. Miller
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on hepatic actions of androgens in the regulation of protein, lipid and glucose metabolism. The rationale for liver-targeted testosterone use will be provided. RECENT FINDINGS Liver-targeted testosterone administration, via the oral route, induces protein anabolic effect by reducing the rate of protein oxidation to a similar extent to that of systemic testosterone administration. Recent evidence indicates that testosterone exerts whole-body anabolic effect through inhibition of nitrogen loss via the hepatic urea cycle. Several hepatic effects of androgens, particularly on glucose metabolism, are direct and take place before any changes in body composition occur. This includes an increase in insulin secretion and sensitivity, and reduction in hepatic glucose output by testosterone. Furthermore, lack of testosterone in the liver exacerbates diet-induced impairment in glucose metabolism. In the liver, androgens induce the full spectrum of metabolic changes through interaction with growth hormone or aromatization to estradiol. SUMMARY Liver-targeted testosterone therapy may open up a new approach to achieve whole-body anabolism without systemic side-effects. Aromatizable androgens may be superior to nonaromatizable androgens in inducing a complex spectrum of direct, estrogen-mediated and other hormone-mediated effects of androgens.
Collapse
Affiliation(s)
- Vita Birzniece
- School of Medicine, Western Sydney University, Sydney
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown
- Garvan Institute of Medical Research, Sydney
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|