1
|
Lauricella E, Chaoul N, D'Angelo G, Giglio A, Cafiero C, Porta C, Palmirotta R. Neuroendocrine Tumors: Germline Genetics and Hereditary Syndromes. Curr Treat Options Oncol 2025; 26:55-71. [PMID: 39821711 DOI: 10.1007/s11864-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
OPINION STATEMENT The vast majority of neuroendocrine 'neoplasms (NENs) are sporadic, although recent evidence has indicated that a subset of these cancers may also originate as a result of genetic germline mutations. To date, 10% of these cancers can be linked to an inherited genetic syndrome. Genetic diagnosis is crucial for patients with a suspected hereditary NEN syndrome, as it recognizes patients carrying germline mutations and allows for personalized clinical follow-up, considering the higher risk of developing other tumours. The potential for early genetic detection has significant implications for the treatment of patients with hereditary NEN syndrome, as it may facilitate the delivery of precision therapy that differs from that typically provided to other patients. Thus, the integration of genotypic and phenotypic diagnostic methods help clinicians to provide more informed treatment and to extend appropriate prevention to family members.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, Via Per Martina Franca, 74010, Taranto, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
2
|
Lu YT, Rejiepu B, Zhang D, Cai DC, Yang KQ, Tian T, Zhou XL, Fan P. Childhood-Onset Refractory Hypertension Results from Neurofibromatosis Type 1 Caused by a Splicing NF1 Mutation. Kidney Blood Press Res 2023; 48:568-577. [PMID: 37562365 PMCID: PMC10614435 DOI: 10.1159/000533144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF-1) is caused by mutations in the NF1 gene that encodes neurofibromin, a negative regulator of RAS proto-oncogene. Approximately one-third of the reported pathogenic mutations in NF1 are splicing mutations, but most consequences are unclear. The objective of this study was to identify the pathogenicity of splicing mutation in a Chinese family with NF-1 and determine the effects of the pre-mRNA splicing mutation by in vitro functional analysis. METHODS Next-generation sequencing was used to screen candidate mutations. We performed a minigene splicing assay to determine the effect of the splicing mutation on NF1 expression, and three-dimensional structure models of neurofibromin were generated using SWISS-MODEL and PROCHECK methods, respectively. RESULTS A pathogenic splicing mutation c.479+1G>C in NF1 was found in the proband characterized by childhood-onset refractory hypertension. In vitro analysis demonstrated that c.479+1G>C mutation caused the skipping of exon 4, leading to a glutamine-to-valine substitution at position 97 in neurofibromin and an open reading frame shift terminating at codon 108. Protein modeling showed that several major domains were missing in the truncated neurofibromin protein. CONCLUSION The splicing mutation c.479+1G>C identified in a Chinese patient with NF-1 and childhood-onset refractory hypertension caused the skipping of exon 4 and a truncated protein. Our findings offer new evidence for the molecular diagnosis of NF-1.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Buweimairemu Rejiepu
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong-Cheng Cai
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Mellid S, Gil E, Letón R, Caleiras E, Honrado E, Richter S, Palacios N, Lahera M, Galofré JC, López-Fernández A, Calatayud M, Herrera-Martínez AD, Galvez MA, Matias-Guiu X, Balbín M, Korpershoek E, Lim ES, Maletta F, Lider S, Fliedner SMJ, Bechmann N, Eisenhofer G, Canu L, Rapizzi E, Bancos I, Robledo M, Cascón A. Co-occurrence of mutations in NF1 and other susceptibility genes in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 13:1070074. [PMID: 36760809 PMCID: PMC9905101 DOI: 10.3389/fendo.2022.1070074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction The percentage of patients diagnosed with pheochromocytoma and paraganglioma (altogether PPGL) carrying known germline mutations in one of the over fifteen susceptibility genes identified to date has dramatically increased during the last two decades, accounting for up to 35-40% of PPGL patients. Moreover, the application of NGS to the diagnosis of PPGL detects unexpected co-occurrences of pathogenic allelic variants in different susceptibility genes. Methods Herein we uncover several cases with dual mutations in NF1 and other PPGL genes by targeted sequencing. We studied the molecular characteristics of the tumours with co-occurrent mutations, using omic tools to gain insight into the role of these events in tumour development. Results Amongst 23 patients carrying germline NF1 mutations, targeted sequencing revealed additional pathogenic germline variants in DLST (n=1) and MDH2 (n=2), and two somatic mutations in H3-3A and PRKAR1A. Three additional patients, with somatic mutations in NF1 were found carrying germline pathogenic mutations in SDHB or DLST, and a somatic truncating mutation in ATRX. Two of the cases with dual germline mutations showed multiple pheochromocytomas or extra-adrenal paragangliomas - an extremely rare clinical finding in NF1 patients. Transcriptional and methylation profiling and metabolite assessment showed an "intermediate signature" to suggest that both variants had a pathological role in tumour development. Discussion In conclusion, mutations affecting genes involved in different pathways (pseudohypoxic and receptor tyrosine kinase signalling) co-occurring in the same patient could provide a selective advantage for the development of PPGL, and explain the variable expressivity and incomplete penetrance observed in some patients.
Collapse
Affiliation(s)
- Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nuria Palacios
- Endocrinology Department, University Hospital Puerta de Hierro, Madrid, Spain
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Spain
| | - Juan C. Galofré
- Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Adriá López-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Calatayud
- Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - María A. Galvez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Bellvitge University Hospital, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Milagros Balbín
- Molecular Oncology Laboratory, Instituto Universitario de Oncologia del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Esther Korpershoek
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Eugénie S. Lim
- Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Maletta
- Pathology Unit , Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sofia Lider
- Endocrinology Department, National Institute of Endocrinology, Bucharest, Romania
| | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Bang B, Eisfeldt J, Barbany G, Harila-Saari A, Heyman M, Zachariadis V, Taylan F, Nordgren A. A somatic UBA2 variant preceded ETV6-RUNX1 in the concordant BCP-ALL of monozygotic twins. Blood Adv 2022; 6:2275-2289. [PMID: 34982829 PMCID: PMC9006272 DOI: 10.1182/bloodadvances.2021005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic analysis of leukemic clones in monozygotic twins with concordant acute lymphoblastic leukemia (ALL) has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole-genome sequencing, we characterized constitutional and somatic single nucleotide variants/insertion-deletions (indels) and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1+ B-cell precursor ALL (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis, and remission. A shared somatic complex rearrangement involving chromosomes 11, 12, and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of 3 genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP, and RAG1/RAG2), providing evidence of a convergent clonal evolution only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in Small Ubiquitin-like Modifier (SUMO) attachment (SUMOylation), regulating nearly all physiological and pathological cellular processes such as DNA-repair by nonhomologous end joining, may hold a mechanistic explanation for the predisposition.
Collapse
Affiliation(s)
- Benedicte Bang
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Heyman
- Department of Women’s and Children’s Health, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Vasilios Zachariadis
- Department of Oncology-Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Pipitprapat W, Pattanaprateep O, Iemwimangsa N, Sensorn I, Panthan B, Jiaranai P, Chantratita W, Sorapipatcharoen K, Poomthavorn P, Mahachoklertwattana P, Sura T, Tunteeratum A, Srichan K, Sriphrapradang C. Cost-minimization analysis of sequential genetic testing versus targeted next-generation sequencing gene panels in patients with pheochromocytoma and paraganglioma. Ann Med 2021; 53:1244-1256. [PMID: 34309460 PMCID: PMC8317928 DOI: 10.1080/07853890.2021.1956687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Pheochromocytomas and paragangliomas (PPGLs) are highly heritable tumours, with up to 40% of cases carrying germline variants. Current guidelines recommend genetic testing for all patients with PPGLs. Next-generation sequencing (NGS) enables accurate, fast, and inexpensive genetic testing. This study aimed to compare the costs related to PPGL genetic testing between the sequential testing using the decisional algorithm proposed in the 2014 Endocrine Society guidelines and targeted NGS gene panels. METHODS Patients with proven PPGLs were enrolled. A gene list covering 17 susceptibility genes related to hereditary PPGLs was developed for targeted sequencing. Validation was carried out by Sanger sequencing. We simulated the diagnostic workflow to examine the anticipated costs based on each strategy for genetic testing. RESULTS Twenty-nine patients were included, among whom a germline variant was identified in 34.5%. A total of 22.7% with apparently sporadic PPGL carried a variant. Five genes were involved (RET, n = 3; SDHB, n = 3; SDHD, n = 2; EGLN1, n = 1; and NF1, n = 1). According to the diagnostic workflow, the average cost of the targeted NGS (534.7 US dollars per patient) is lower than that of the sequential testing (734.5 US dollars per patient). The targeted NGS can also reduce the number of hospital visits from 4.1 to 1 per person. The cost can be further reduced to 496.24 US dollars per person (32% reduction) if we apply a new syndromic-driven diagnostic algorithm to establish priorities for specific genetic testing for syndromic and selected cases, and targeted NGS for non-syndromic patients. CONCLUSIONS Targeted NGS can reduce both the cost of PPGL genetic testing and the number of hospital visits, compared with the conventional approach. Our proposed algorithm is the preferred approach due to its significant reduction of the cost of genetic testing.Key messagePheochromocytomas and paragangliomas are highly heritable neoplasms.The targeted next-generation sequencing (NGS) gene panels have proven to be fast, accurate, and inexpensive for the genetic analysis.According to this cost analysis, it is economically reasonable to use targeted NGS gene panels for genetic screening.
Collapse
Affiliation(s)
- Weenita Pipitprapat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Oraluck Pattanaprateep
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhakbhoom Panthan
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poramate Jiaranai
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kinnaree Sorapipatcharoen
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Preamrudee Poomthavorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pat Mahachoklertwattana
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyachai Sura
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Atchara Tunteeratum
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanoknan Srichan
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chutintorn Sriphrapradang
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Wang W, Wei CJ, Cui XW, Li YH, Gu YH, Gu B, Li QF, Wang ZC. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front Neurol 2021; 12:704639. [PMID: 34566848 PMCID: PMC8455870 DOI: 10.3389/fneur.2021.704639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Demir Gündoğan B, Sağcan F, Tuğ Bozdoğan S, Balcı Y, Tuncel Daloğlu F, Çıtak EC. Vandetanib in a Child Affected by Neurofibromatosis Type 1 and Medullary Thyroid Carcinoma with Both NF1 and Homozygous RET Proto-oncogen Germ-line Mutations. J Clin Res Pediatr Endocrinol 2021; 13:342-346. [PMID: 32702947 PMCID: PMC8388045 DOI: 10.4274/jcrpe.galenos.2020.2020.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cases of neurofibromatosis type 1 (NF1)-associated medullary thyroid carcinoma (MTC) or C-cell hyperplasia are rarely associated with other endocrine tumors or cases with a multiple endocrine neoplasia type 2. In these patients, mutations were detected in the NF1 gene but no mutations were detected in the RET gene. Although vandetanib has been shown to improve progression-free survival in adults with advanced MTC, data in pediatric patients are limited. Herein, we report the use and outcome of vandetanib in a pediatric MTC case in which NF1 gene and RET proto-oncogen mutation were identified together.
Collapse
Affiliation(s)
| | - Fatih Sağcan
- Mersin University Faculty of Medicine, Department of Pediatric Oncology, Mersin, Turkey
| | - Sevcan Tuğ Bozdoğan
- Çukurova University Faculty of Medicine, Department of Medical Genetics, Adana, Turkey
| | - Yüksel Balcı
- Mersin University Faculty of Medicine, Department of Radiology, Mersin, Turkey
| | | | - Elvan Cağlar Çıtak
- Mersin University Faculty of Medicine, Department of Pediatric Oncology, Mersin, Turkey,* Address for Correspondence: Mersin University Faculty of Medicine, Department of Pediatric Oncology, Mersin, Turkey E-mail:
| |
Collapse
|
8
|
Lou H, Zhai C, Gong L, Pan H, Pan H, Zhang Y, Yang M, Hu Z. NF1 germline mutation in a Chinese family with colon cancer. J Int Med Res 2020; 48:300060519896435. [PMID: 32814491 PMCID: PMC7444156 DOI: 10.1177/0300060519896435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Recent advances in genomic medicine have identified novel gene mutations that contribute to an increased risk of CRC. Here, we describe a diagnosis of colon cancer in a 63-year-old woman and also in her brother. Next-generation sequencing showed that both patients harbored a germline mutation in NF1. The female patient also carried co-mutations in KRAS and NRAS. Furthermore, the NF1 germline mutation was identified in a healthy offspring of the brother. The female patient received three cycles of bevacizumab plus capecitabine/oxaliplatin therapy and achieved stable disease of the primary lesion in the colon and partial response of metastasis in the right abdominal cavity. This study highlights the association of NF1 germline mutations with colon cancer.
Collapse
Affiliation(s)
- Haizhou Lou
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chongya Zhai
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | - Zimin Hu
- Department of Respiratory Disease, Cixi Sixth Hospital, Ningbo, China
- Zimin Hu, Department of Respiratory Disease, Cixi Sixth Hospital, 100 Youth Palace South Road, Ningbo 315300, China.
| |
Collapse
|
9
|
Kluwe L, Friedrich RE, Farschtschi SC, Hagel C, Kehrer-Sawatzki H, Mautner VF. Null phenotype of neurofibromatosis type 1 in a carrier of a heterozygous atypical NF1 deletion due to mosaicism. Hum Mutat 2020; 41:1226-1231. [PMID: 32248581 DOI: 10.1002/humu.24022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/11/2022]
Abstract
We coincidently detected an atypical deletion of at least 1.3-Mb, encompassing the NF1 tumor suppressor gene and several adjacent genes at an apparent heterozygous level in the blood of a 65-year-old female patient. She had multiple subcutaneous tumors that appeared with a certain similarity of subcutaneous neurofibromas, which, however, was revealed as lipomas by histological examination. Comprehensive and exhaustive clinical and radiological examinations did not detect any neurofibromatosis type 1-related clinical symptoms in the patient. Multiplex ligation-dependent probe amplification detected no or only very low level of the 1.3-Mb NF1 deletion in six lipomas and two skin biopsies. Digital polymerase chain reaction estimated the proportion of cells carrying a heterozygous NF1 deletion at 87% in the blood, and 8%, 10%, 13%, 17%, and 20%, respectively, in the five lipomas investigated by this method, confirming our hypothesis of mosaicism. Our findings suggest that de novo cases of genetic disease are potentially mosaic regardless of finding the mutation at an apparently heterozygous level in the blood and that the possibility of mosaicism should be considered in genotype-phenotype studies and genetic counseling.
Collapse
Affiliation(s)
- Lan Kluwe
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said C Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo AP. An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2020; 34:101416. [PMID: 32295730 DOI: 10.1016/j.beem.2020.101416] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paragangliomas and pheochromocytomas (PPGL) are rare neuroendocrine tumours characterized by a strong genetic determinism. Over the past 20 years, evolution of PPGL genetics has revealed that around 40% of PPGL are genetically determined, secondary to a germline mutation in one of more than twenty susceptibility genes reported so far. More than half of the mutations occur in one of the SDHx genes (SDHA, SDHB, SDHC, SDHD, SDHAF2), which encode the different subunits and assembly protein of a mitochondrial enzyme, succinate dehydrogenase. These susceptibility genes predispose to early forms (VHL, RET, SDHD, EPAS1, DLST), syndromic (RET, VHL, EPAS1, NF1, FH), multiple (SDHD, TMEM127, MAX, DLST, MDH2, GOT2) or malignant (SDHB, FH, SLC25A11) PPGL. The discovery of a germline mutation in one of these genes changes the patient's follow-up and allows genetic screening of affected families and the presymptomatic follow-up of relatives carrying a mutation.
Collapse
Affiliation(s)
- Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France.
| | - Nelly Burnichon
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France
| |
Collapse
|
11
|
Dinter H, Bohnenberger H, Beck J, Bornemann-Kolatzki K, Schütz E, Küffer S, Klein L, Franks TJ, Roden A, Emmert A, Hinterthaner M, Marino M, Brcic L, Popper H, Weis CA, Pelosi G, Marx A, Ströbel P. Molecular Classification of Neuroendocrine Tumors of the Thymus. J Thorac Oncol 2019; 14:1472-1483. [DOI: 10.1016/j.jtho.2019.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
|
12
|
Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers (Basel) 2019; 11:cancers11060809. [PMID: 31212687 PMCID: PMC6627084 DOI: 10.3390/cancers11060809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors with a strong hereditary background and a large genetic heterogeneity. Identification of the underlying genetic cause is crucial for the management of patients and their families as it aids differentiation between hereditary and sporadic cases. To improve diagnostics and clinical management we tailored an enrichment based comprehensive multi-gene next generation sequencing panel applicable to both analyses of tumor tissue and blood samples. We applied this panel to tumor samples and compared its performance to our current routine diagnostic approach. Routine diagnostic sequencing of 11 PPGL susceptibility genes was applied to blood samples of 65 unselected PPGL patients at a single center in Dresden, Germany. Predisposing germline mutations were identified in 19 (29.2%) patients. Analyses of 28 PPGL tumor tissues using the dedicated PPGL panel revealed pathogenic or likely pathogenic variants in known PPGL susceptibility genes in 21 (75%) cases, including mutations in IDH2, ATRX and HRAS. These mutations suggest sporadic tumor development. Our results imply a diagnostic benefit from extended molecular tumor testing of PPGLs and consequent improvement of patient management. The approach is promising for determination of prognostic biomarkers that support therapeutic decision-making.
Collapse
|
13
|
Ben Aim L, Pigny P, Castro-Vega LJ, Buffet A, Amar L, Bertherat J, Drui D, Guilhem I, Baudin E, Lussey-Lepoutre C, Corsini C, Chabrier G, Briet C, Faivre L, Cardot-Bauters C, Favier J, Gimenez-Roqueplo AP, Burnichon N. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet 2019; 56:513-520. [DOI: 10.1136/jmedgenet-2018-105714] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/29/2023]
Abstract
BackgroundKnowing the genetic status of patients affected by paragangliomas and pheochromocytomas (PPGL) is important for the guidance of their management and their relatives. Our objective was to improve the diagnostic performances of PPGL genetic testing by next-generation sequencing (NGS).MethodsWe developed a custom multigene panel, which includes 17 PPGL genes and is compatible with both germline and tumour DNA screening. The NGS assay was first validated in a retrospective cohort of 201 frozen tumour DNAs and then applied prospectively to 623 DNAs extracted from leucocytes, frozen or paraffin-embedded PPGL tumours.ResultsIn the retrospective cohort, the sensitivity of the NGS assay was evaluated at 100% for point and indels mutations and 86% for large rearrangements. The mutation rate was re-evaluated from 65% (132/202) to 78% (156/201) after NGS analysis. In the prospective cohort, NGS detected not only germline and somatic mutations but also co-occurring variants and mosaicism. A mutation was identified in 74% of patients for whom both germline and tumour DNA were available.ConclusionThe analysis of 824 DNAs from patients with PPGL demonstrated that NGS assay significantly improves the performances of PPGL genetic testing compared with conventional methods, increasing the rate of identified mutations and identifying rare genetic mechanisms.
Collapse
|
14
|
Parisien-La Salle S, Dumas N, Rondeau G, Latour M, Bourdeau I. Isolated Pheochromocytoma in a 73-Year-Old Man With No Clinical Manifestations of Type 1 Neurofibromatosis Carrying an Unsuspected Deletion of the Entire NF1 Gene. Front Endocrinol (Lausanne) 2019; 10:546. [PMID: 31551924 PMCID: PMC6736565 DOI: 10.3389/fendo.2019.00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas (PHEOs) are a rare cause of endocrine hypertension that requires genetic counseling since at least 30% of PHEOs are associated with a germline mutation in a susceptibility gene. Neurofibromatosis type 1, NF1 is amongst the 16 known causing genes for pheochromocytomas/paragangliomas. We report a case of a 73-year-old man with PHEO in whom genetic testing revealed a large pathogenic heterozygous deletion of 1.14 Mb encompassing the entire coding sequence of the NF1 gene while the patient showed no signs of clinical NF1.This case illustrates that the diagnosis of NF1 should not be excluded in patients with PHEO in the absence of clinical diagnosis of the disease and support that older patients with PHEO should also be offered genetic counseling.
Collapse
Affiliation(s)
- Stefanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Nadine Dumas
- Division of Genetics, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Geneviève Rondeau
- Division of Endocrinology, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- *Correspondence: Isabelle Bourdeau
| |
Collapse
|
15
|
Pujol P, Vande Perre P, Faivre L, Sanlaville D, Corsini C, Baertschi B, Anahory M, Vaur D, Olschwang S, Soufir N, Bastide N, Amar S, Vintraud M, Ingster O, Richard S, Le Coz P, Spano JP, Caron O, Hammel P, Luporsi E, Toledano A, Rebillard X, Cambon-Thomsen A, Putois O, Rey JM, Hervé C, Zorn C, Baudry K, Galibert V, Gligorov J, Azria D, Bressac-de Paillerets B, Burnichon N, Spielmann M, Zarca D, Coupier I, Cussenot O, Gimenez-Roqueplo AP, Giraud S, Lapointe AS, Niccoli P, Raingeard I, Le Bidan M, Frebourg T, Rafii A, Geneviève D. Guidelines for reporting secondary findings of genome sequencing in cancer genes: the SFMPP recommendations. Eur J Hum Genet 2018; 26:1732-1742. [PMID: 30089825 DOI: 10.1038/s41431-018-0224-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
In oncology, the expanding use of multi-gene panels to explore familial cancer predisposition and tumor genome analysis has led to increased secondary findings discoveries (SFs) and has given rise to important medical, ethical, and legal issues. The American College of Medical Genetics and Genomics published a policy statement for managing SFs for a list of genes, including 25 cancer-related genes. Currently, there are few recommendations in Europe. From June 2016 to May 2017, the French Society of Predictive and Personalized Medicine (SFMPP) established a working group of 47 experts to elaborate guidelines for managing information given on the SFs for genes related to cancers. A subgroup of ethicists, lawyers, patients' representatives, and psychologists provided ethical reflection, information guidelines, and materials (written consent form and video). A subgroup with medical expertise, including oncologists and clinical and molecular geneticists, provided independent evaluation and classification of 60 genes. The main criteria were the "actionability" of the genes (available screening or prevention strategies), the risk evaluation (severity, penetrance, and age of disease onset), and the level of evidence from published data. Genes were divided into three classes: for class 1 genes (n = 36), delivering the information on SFs was recommended; for class 2 genes (n = 5), delivering the information remained questionable because of insufficient data from the literature and/or level of evidence; and for class 3 genes (n = 19), delivering the information on SFs was not recommended. These guidelines for managing SFs for cancer-predisposing genes provide new insights for clinicians and laboratories to standardize clinical practices.
Collapse
Affiliation(s)
- Pascal Pujol
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France. .,Université de Montpellier, Montpellier, France.
| | - Pierre Vande Perre
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Laurence Faivre
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies Du Développement (TRANSLAD), Genomic and Immunotherapy Medical Institute (GIMI), Centre Hospitalier Universitaire Dijon, Centre Georges-Francois Leclerc (CGFL), Dijon, France
| | - Damien Sanlaville
- Department of Genetics, Lyon University Hospitals, Lyon, France.,Lyon Neuroscience Research Centre, CNRS UMR5292, Inserm U1028, Lyon, France.,Claude Bernard Lyon I University, Lyon, France
| | - Carole Corsini
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France
| | - Bernard Baertschi
- INSERM Ethics Committee, Paris, France.,University of Geneva, Geneva, Switzerland
| | - Michèle Anahory
- Pech de Laclause, Bathmanabane & Associés Law Firm, Paris, France
| | - Dominique Vaur
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,INSERM U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Sylviane Olschwang
- Aix Marseille Université, INSERM GMGF UMR S_910, Marseille, France.,Département de Génétique Médicale, Hôpital d'enfants de la Timone, Marseille, France.,Groupe Ramsay Générale de Santé, Hôpital Clairval, Marseille, France
| | - Nadem Soufir
- Department of Genetics, Bichat Hospital, Paris, France.,INSERM U976 Saint-Louis Hospital, Paris, France
| | | | - Sarah Amar
- Pech de Laclause, Bathmanabane & Associés Law Firm, Paris, France
| | - Michèle Vintraud
- Department of Radiotherapy, Hartmann Radiotherapy Center, Levallois-Perret, France
| | | | - Stéphane Richard
- Ecole Pratique des Hautes Etudes, PSL Research University; Réseau National pour Cancers Rares de l'Adulte PREDIR labellisé par l'INCa, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, et Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Pierre Le Coz
- UMR 7268-ADÉS, Faculté de Médecine de Marseille, Aix-Marseille Université-EFS-CNRS, Marseille, France
| | | | - Olivier Caron
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Pascal Hammel
- Department of Digestive Oncology, Beaujon University Hospital, AP-HP and University Paris 7 - Denis Diderot, Clichy, France
| | | | - Alain Toledano
- Department of Radiotherapy, Hartmann Radiotherapy Center, Levallois-Perret, France
| | - Xavier Rebillard
- Clinique Beau Soleil, EA2415, Association française d'urologie, Montpellier, France.,ICFuro, intergroupe coopérateur francophone de recherche en onco-urologie, 75017, Paris, France
| | - Anne Cambon-Thomsen
- UMR 1027, Inserm, Université Toulouse III-Paul Sabatier, Toulouse, France.,Plateforme Sociétale Genotoul, 37 allées Jules Guesde, Toulouse, France
| | - Olivier Putois
- SuLiSoM EA 3071, Department of Psychology, Strasbourg University, France; Department of Psychiatry, Mental Health and Addictology, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Marc Rey
- Laboratoire de Biopathologie Cellulaire et Tissulaire des Tumeurs, CHU Montpellier, Montpellier, France.,Réseau TenGen, Paris, France
| | - Christian Hervé
- Laboratoire d'Ethique Médicale et Médecine Légale EA4569, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | - Karen Baudry
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France
| | - Virginie Galibert
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France
| | - Joseph Gligorov
- APHP, INSERM U938, IUC-UPMC, Sorbonne Université, Paris, France
| | - David Azria
- Department of Radiation Oncology, Montpellier Cancer Institute (ICM), Univ. Montpellier, IRCM, INSERM U1194, Montpellier, France
| | | | - Nelly Burnichon
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.,Réseau TenGen, Paris, France.,Université Paris Descartes, PRES Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France
| | - Marc Spielmann
- Institut Français du Sein, 15 rue Jean Nicot, 75007, Paris, France
| | - Daniel Zarca
- Institut Français du Sein, 15 rue Jean Nicot, 75007, Paris, France
| | - Isabelle Coupier
- Department of Cancer Genetics, University of Montpellier and University Hospital (CHU), Montpellier, France.,Centre PREDIR, Hôpital de Bicêtre, AP-HP, Paris-Sud University, Le Kremlin-Bicêtre, France
| | - Olivier Cussenot
- Department of Urology, Tenon Academic Hospital, Assistance Publique-Hôpitaux de Paris, Pierre et Marie Curie Medical School, Sorbonne Universités, Paris, France.,Groupe de recherche clinique-UPMC No. 5, Oncotype-Uro, Institut Universitaire de Cancérologie de l'UPMC, Pierre and Marie Curie Medical School, Sorbonne Universités, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.,Réseau TenGen, Paris, France.,Université Paris Descartes, PRES Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France
| | - Sophie Giraud
- Réseau TenGen, Paris, France.,Service de Génétique, Groupement Hospitalier Est, Hospices civils de Lyon, France
| | - Anne-Sophie Lapointe
- Ethique médicale - EA 4569 - Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Coordination Associations Filières de Santé AnDDI-Rares, VML (Vaincre les Maladies Lysosomales) Association, Paris, France
| | - Patricia Niccoli
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 232 bd de Sainte Marguerite 13273 cdx 09 Marseille, France
| | - Isabelle Raingeard
- CHU Montpellier Service d'Endocrinologie, Diabète, Maladies métaboliques, Montpellier, France
| | | | - Thierry Frebourg
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Arash Rafii
- Department of Genetic Medicine, Weill-Cornell Medical College, New York, USA.,Stem Cells and Microenvironment Laboratory, Weill-Cornell Medical College in Qatar, Doha, Qatar
| | - David Geneviève
- Université de Montpellier, Montpellier, France.,Service de génétique clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Université Montpellier, Montpellier, France
| |
Collapse
|
16
|
Neumann HP, Young WF, Krauss T, Bayley JP, Schiavi F, Opocher G, Boedeker CC, Tirosh A, Castinetti F, Ruf J, Beltsevich D, Walz M, Groeben HT, von Dobschuetz E, Gimm O, Wohllk N, Pfeifer M, Lourenço DM, Peczkowska M, Patocs A, Ngeow J, Makay Ö, Shah NS, Tischler A, Leijon H, Pennelli G, Villar Gómez de Las Heras K, Links TP, Bausch B, Eng C. 65 YEARS OF THE DOUBLE HELIX: Genetics informs precision practice in the diagnosis and management of pheochromocytoma. Endocr Relat Cancer 2018; 25:T201-T219. [PMID: 29794110 DOI: 10.1530/erc-18-0085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic Yes! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with >35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.
Collapse
Affiliation(s)
- Hartmut P Neumann
- Section for Preventive MedicineUniversity Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - William F Young
- Division of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, New York, USA
| | - Tobias Krauss
- Department of RadiologyMedical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Pierre Bayley
- Department of Human GeneticsLeiden University Medical Center, Leiden, The Netherlands
| | - Francesca Schiavi
- Familial Cancer Clinic and OncoendocrinologyVeneto Institute of Oncology, IRCCS, Padova, Italy
| | - Giuseppe Opocher
- Familial Cancer Clinic and OncoendocrinologyVeneto Institute of Oncology, IRCCS, Padova, Italy
| | - Carsten C Boedeker
- Department of OtorhinolaryngologyHELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Amit Tirosh
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
| | - Frederic Castinetti
- Department of EndocrinologyAix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM)Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Juri Ruf
- Department of Nuclear MedicineFaculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | | | - Martin Walz
- Department of Surgery and Center of Minimally-Invasive SurgeryKliniken Essen-Mitte, Essen, Germany
| | | | - Ernst von Dobschuetz
- Section of Endocrine SurgeryClinic of General, Visceral and Thoracic Surgery, Krankenhaus Reinbek, Academic Teaching Hospital University of Hamburg, Reinbek, Germany
| | - Oliver Gimm
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping, Sweden
- Department of SurgeryRegion Östergötland, Linköping, Sweden
| | - Nelson Wohllk
- Endocrine SectionUniversidad de Chile, Hospital del Salvador, Santiago de Chile, Chile
| | - Marija Pfeifer
- Department of EndocrinologyUniversity Medical Center Ljubljana, Ljubljana, Slovenia
| | - Delmar M Lourenço
- Endocrine Genetics UnitEndocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine (FMUSP), Endocrine Oncology Division, Institute of Cancer of the State of São Paulo, FMUSP, São Paulo, Brazil
| | | | - Attila Patocs
- HSA-SE 'Lendület' Hereditary Endocrine Tumor Research GroupHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Joanne Ngeow
- Lee Kong Chian School of MedicineNanyang Technological University Singapore and Cancer Genetics Service, National Cancer Centre Singapore, Singapore, Singapore
| | - Özer Makay
- Division of Endocrine SurgeryDepartment of General Surgery, Ege University, Izmir, Turkey
| | - Nalini S Shah
- Department of EndocrinologySeth G S Medical College, K.E.M. Hospital, Parel, Mumbai, India
| | - Arthur Tischler
- Department of Pathology and Laboratory MedicineTufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Helena Leijon
- Department of PathologyUniversity of Helsinki, and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Gianmaria Pennelli
- Department of Medicine (DIMED)Surgical Pathology Unit, University of Padua, Padua, Italy
| | | | - Thera P Links
- Department of EndocrinologyUniversity of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Birke Bausch
- Department of Medicine IIMedical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet Med 2018; 21:705-717. [PMID: 30050099 PMCID: PMC6353556 DOI: 10.1038/s41436-018-0106-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose: Metabolic aberrations have been described in neoplasms with mutations
in the Krebs cycle genes encoding succinate dehydrogenase (SDH), fumarate
hydratase (FH) and isocitrate dehydrogenase (IDH). In turn, accumulation of
oncometabolites succinate, fumarate, and 2-hydroxyglutarate can be employed
to identify tumors with those mutations. Additionally, such metabolic
readouts may aid in genetic variant interpretation and improve
diagnostics. Methods: Using liquid-chromatography-mass-spectrometry, 395 pheochromocytomas
and paragangliomas (PPGLs) from 391 patients were screened for metabolites
to indicate Krebs cycle aberrations. Multi-gene panel-sequencing was applied
to detect driver mutations in cases with indicative metabolite profiles but
undetermined genetic drivers. Results: Aberrant Krebs cycle metabolomes identified rare cases of PPGLs with
germline mutations in FH and somatic mutations in
IDHx and SDHx, including the first
case of a somatic IDH2 mutation in PPGL. Metabolomics also
reliably identified PPGLs with SDHx loss-of-function (LOF)
mutations. Therefore we utilized tumor metabolite profiles to further
classify variants of unknown significance in SDHx, thereby
enabling missense-variants associated with SDHx LOF to be
distinguished from benign variants. Conclusion: We propose incorporation of metabolome data into the diagnostics
algorithm in PPGLs to guide genetic testing and variant interpretation and
to help identify rare cases with mutations in FH and
IDHx.
Collapse
|