1
|
Lefevre E, Chasseloup F, Hage M, Chanson P, Buchfelder M, Kamenický P. Clinical and therapeutic implications of cavernous sinus invasion in pituitary adenomas. Endocrine 2024; 85:1058-1065. [PMID: 38761347 DOI: 10.1007/s12020-024-03877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Invasion of the cavernous sinus by pituitary adenomas impedes complete surgical resection, compromises biochemical remission, and increases the risk of further tumor recurrence. Accurate preoperative MRI-based diagnosis or intraoperative direct inspection of cavernous sinus invasion are essential for optimal surgical planning and for tailoring postoperative therapeutic strategies, depending on whether a total resection has been achieved, or tumoral tissue has been left in surgically inaccessible locations. The molecular mechanisms underlying the invasive behavior of pituitary adenomas remain poorly understood, hindering the development of targeted therapies. Some studies have identified genes overexpressed in pituitary adenomas invading the cavernous sinus, offering insights into the acquisition of invasive behavior. Their main limitation however lies in comparing purely intrasellar specimens obtained from invasive and non-invasive adenomas. Further, precise anatomical knowledge of the medial wall of the cavernous sinus is crucial for grasping the mechanisms of invasion. Recently, alongside the standard intrasellar surgery, extended endoscopic intracavernous surgical procedures with systematic selective resection of the medial wall of the cavernous sinus have shown promising results for invasive secreting pituitary adenomas. The first- and second-generation somatostatin agonist ligands and cabergoline are used with variable efficacy to control secretory activity and/or growth of intracavernous remnants. Tumor regrowth usually requires surgical reintervention, sometimes combined with radiotherapy or radiosurgery which is applied despite their benign nature. Unraveling the molecular pathways driving invasive behavior of pituitary adenomas and their tropism to the cavernous sinuses is the key for developing efficient innovative treatment modalities that could reduce the need for repeated surgery or radiotherapy.
Collapse
Affiliation(s)
- Etienne Lefevre
- INSERM U1185, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France.
- Service de Neurochirurgie, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France.
| | - Fanny Chasseloup
- INSERM U1185, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des maladies Rares de l'Hypophyse, AP-HP, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre, France
| | - Mirella Hage
- INSERM U1185, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- INSERM U1185, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des maladies Rares de l'Hypophyse, AP-HP, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre, France
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Peter Kamenický
- INSERM U1185, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des maladies Rares de l'Hypophyse, AP-HP, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Lopes-Pinto M, Lacerda-Nobre E, Silva AL, Marques P. Therapeutical Usefulness of PD-1/PD-L1 Inhibitors in Aggressive or Metastatic Pituitary Tumours. Cancers (Basel) 2024; 16:3033. [PMID: 39272895 PMCID: PMC11394371 DOI: 10.3390/cancers16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic options for pituitary neuroendocrine tumours (PitNETs) refractory to temozolomide are scarce. Immune checkpoint inhibitors (ICIs), particularly inhibitors of the programmed cell death-1 (PD-1) pathway and its ligand (PD-L1), have been experimentally used in aggressive or metastatic PitNETs. We aimed to study the therapeutic usefulness of anti-PD-1 drugs in patients with aggressive or metastatic PitNETs. Published cases and case series involving patients with PitNETs treated with PD-1/PD-L1 inhibitors were reviewed. Demographic data, clinical-pathological features, previous therapies, drug dosage and posology, and the best radiological and biochemical responses, as well as survival data, were evaluated. We identified 29 cases of aggressive (n = 13) or metastatic (n = 16) PitNETs treated with PD-1/PD-L1 inhibitors. The hypersecretion of adrenocorticotropic hormone (ACTH) was documented in eighteen cases (62.1%), seven were prolactinomas (24.1%), and four were non-functioning PitNETs. All patients underwent various therapies prior to using ICIs. Overall, a positive radiological response (i.e., partial/complete radiological response and stable disease) was observed in eighteen of twenty-nine cases (62.1%), of which ten and four were ACTH- and prolactin-secreting PitNETs, respectively. Hormonal levels reduced or stabilised after using ICIs in 11 of the 17 functioning PitNET cases with available data (64.7%). The median survival of patients treated with ICIs was 13 months, with a maximum of 42 months in two ACTH-secreting tumours. Among 29 patients with PitNETs treated with PD-1/PD-L1 inhibitors, the positive radiological and biochemical response rates were 62.1% and 64.7%, respectively. Altogether, these data suggest a promising role of ICIs in patients with aggressive or metastatic PitNETs refractory to other treatment modalities.
Collapse
Affiliation(s)
- Mariana Lopes-Pinto
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, 1649-035 Lisbon, Portugal
| | - Ema Lacerda-Nobre
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, 1649-035 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Luísa Silva
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Pedro Marques
- Faculdade de Medicina, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
| |
Collapse
|
3
|
Unger N, Theodoropoulou M, Schilbach K. [Clinically active pituitary tumors]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:672-680. [PMID: 38869654 DOI: 10.1007/s00108-024-01729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of diagnostic imaging has led to an increase in the incidence of pituitary tumors. The majority of incidentalomas are hormone-inactive (HI) pituitary microadenomas. The most common clinically relevant pituitary adenomas are prolactin-secreting, followed by HI, and far less common are growth hormone (GH)-, adrenocorticotropic hormone (ACTH)- and thyroid-stimulating hormone (TSH)-secreting adenomas. Pituitary adenomas are usually benign, although aggressive growth and invasion occurs in individual cases. Very rarely, they give rise to metastases and are then termed pituitary carcinomas. All pituitary tumors require endocrine testing for pituitary hormone excess. In addition to the medical history and clinical examination, laboratory diagnostics are very important. Symptoms such as irregular menstruation, loss of libido or galactorrhea often lead to the timely diagnosis of prolactinomas, and hyperprolactinemia can easily confirm the diagnosis (considering the differential diagnoses). Diagnosis is more difficult for all other hormone-secreting pituitary adenomas (acromegaly, Cushing's disease, TSHoma), as the symptoms are often non-specific (i.e., headaches, weight gain, fatigue, joint pain). Furthermore, comorbidities such as hypertension, diabetes, and depression are such widespread diseases that pituitary adenomas are rarely considered as the underlying cause. Timely diagnosis and appropriate treatment have a significant impact on morbidity, mortality, and quality of life. Therefore, the role of primary care physicians is very important for achieving an early diagnosis. In addition, patients with pituitary adenomas should always be referred to endocrinologists to ensure optimal diagnosis as well as treatment.
Collapse
Affiliation(s)
- Nicole Unger
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Essen, Deutschland
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 5, 80336, München, Deutschland
| | - Katharina Schilbach
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 5, 80336, München, Deutschland.
- Technische Hochschule Deggendorf, Deggendorf, Deutschland.
| |
Collapse
|
4
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Lopes-Pinto M, Lacerda-Nobre E, Silva AL, Tortosa F, Marques P. The Role of Programmed Cell Death Ligand 1 Expression in Pituitary Tumours: Lessons from the Current Literature. Neuroendocrinology 2024; 114:709-720. [PMID: 38754394 DOI: 10.1159/000539345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Programmed cell death-1 (PD-1) and PD ligand-1 (PD-L1) expression predict the biological behaviour, aggressiveness, and response to immune checkpoint inhibitors in different cancers. We reviewed the published data on PD-L1 expression in pituitary tumours from the perspective of its biological role and prognostic usefulness. SUMMARY A literature review focused on PD-L1 expression in pituitary tumours was performed. Six immunohistochemistry-based studies which assessed PD-L1 positivity in pituitary tumours were included, encompassing 704 patients. The cohort consisted of 384 (54.5%) nonfunctioning tumours and 320 (43.5%) functioning pituitary tumours. PD-L1 expression was positive in 248 cases (35.2%). PD-L1 positivity rate was higher in functioning than in nonfunctioning tumours (46.3% vs. 26.0%; p < 0.001) but also higher in growth hormone-secreting tumours (56.7%) and prolactinomas (53.6%) than in thyrotroph (33.3%) or corticotroph tumours (20.6%). While proliferative pituitary tumours showed higher rate of PD-L1 positivity than non-proliferative tumours (p < 0.001), no association with invasion or recurrence was found. KEY MESSAGES PD-L1 is expressed in a substantial number of pituitary tumours, predominantly in the functioning ones. PD-L1 positivity rates were significantly higher in proliferative pituitary tumours in comparison to non-proliferative tumours, but no differences were found concerning invasive or recurrent pituitary tumours. More studies following homogeneous and standardised methodologies are needed to fully elucidate the role and usefulness of PD-L1 expression in pituitary tumours.
Collapse
Affiliation(s)
- Mariana Lopes-Pinto
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
| | - Ema Lacerda-Nobre
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Luísa Silva
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental da Faculdade de Medicina da Universidade de Lisboa (ISAMB-FMUL), Lisbon, Portugal
| | - Francisco Tortosa
- Pituitary Tumor Unit, Pathology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - Pedro Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
6
|
Kanzawa M, Shichi H, Kanie K, Yamamoto M, Yamamoto N, Tsujimoto Y, Bando H, Iguchi G, Kitano S, Inoshita N, Yamada S, Ogawa W, Itoh T, Fukuoka H. Effects of the Cortisol Milieu on Tumor-Infiltrating Immune Cells in Corticotroph Tumors. Endocrinology 2024; 165:bqae016. [PMID: 38340329 DOI: 10.1210/endocr/bqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
CONTEXT Corticotrophs are susceptible to lymphocyte cytotoxicity, as seen in hypophysitis, suggesting that an immunological approach may be a potential strategy for corticotroph-derived tumors. OBJECTIVE We aimed to clarify whether corticotroph tumors that induce hypercortisolemia (ACTHomas) could be targets for immunotherapy. METHODS Tumor-infiltrating immune cells were immunohistochemically analyzed. ACTHomas were compared with other pituitary tumors, and further divided into 3 different cortisol-exposed milieus: Naïve (ACTHomas without preoperative treatment), Met (ACTHomas with preoperative metyrapone), and SCA (silent corticotroph adenomas). A 3-dimensional cell culture of resected tumors was used to analyze the effects of immune checkpoint inhibitors. RESULTS The number of tumor-infiltrating lymphocytes (TILs) was low in ACTHomas. Among these, the number of CD8+ cells was lower in ACTHomas than in both somatotroph and gonadotroph tumors (both P < .01). Then we compared the differences in TILs among Naïve, Met, and SCA. The number of CD4+ cells, but not CD8+ cells, was higher in both Met and SCA than in Naïve. Next, we investigated tumor-associated macrophages, which could negatively affect T cell infiltration. The numbers of CD163+ and CD204+ cells were positively associated with cortisol levels. Moreover, tumor size was positively correlated with the number of CD204+ cells. CONCLUSION We found the possibility that ACTHomas were immunologically cold in a cortisol-independent manner. In contrast, the tumor infiltration of CD4+ cells and M2-macrophages were associated with the cortisol milieu. Future studies are needed to validate these results and develop effective immunotherapy while considering the cortisol milieu.
Collapse
Affiliation(s)
- Maki Kanzawa
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Hiroki Shichi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Naoki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Yasutaka Tsujimoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Genzo Iguchi
- Medical Center for Student Health, Kobe University, Kobe, 657-8501, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, 135-8550, Japan
| | - Naoko Inoshita
- Department of Diagnostic Pathology, Moriyama Memorial Hospital, Tokyo, 134-0088, Japan
| | - Shozo Yamada
- Pituitary Center, Moriyama Memorial Hospital, Tokyo, 134-0088, Japan
- Hypothalamic and Pituitary Center, Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, 650-0017, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, 650-0017, Japan
| |
Collapse
|
7
|
Dzialach L, Sobolewska J, Zak Z, Respondek W, Witek P. Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne) 2024; 15:1338345. [PMID: 38370355 PMCID: PMC10870150 DOI: 10.3389/fendo.2024.1338345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Prolactinomas (PRLomas) constitute approximately half of all pituitary adenomas and approximately one-fifth of them are diagnosed in males. The clinical presentation of PRLomas results from direct prolactin (PRL) action, duration and severity of hyperprolactinemia, and tumor mass effect. Male PRLomas, compared to females, tend to be larger and more invasive, are associated with higher PRL concentration at diagnosis, present higher proliferative potential, are more frequently resistant to standard pharmacotherapy, and thus may require multimodal approach, including surgical resection, radiotherapy, and alternative medical agents. Therefore, the management of PRLomas in men is challenging in many cases. Additionally, hyperprolactinemia is associated with a significant negative impact on men's health, including sexual function and fertility potential, bone health, cardiovascular and metabolic complications, leading to decreased quality of life. In this review, we highlight the differences in pathogenesis, clinical presentation and treatment of PRLomas concerning the male sex.
Collapse
Affiliation(s)
- Lukasz Dzialach
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Sobolewska
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Zak
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Wioleta Respondek
- Department of Internal Medicine, Endocrinology and Diabetes, Mazovian Brodnowski Hospital, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Shimon I. Prolactinomas Resistant to Dopamine Agonists: Pathophysiology and Treatment. Arch Med Res 2023; 54:102883. [PMID: 37689507 DOI: 10.1016/j.arcmed.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Prolactinomas are the most common functional pituitary tumors, accounting for 40% of all pituitary adenomas. Medical treatment with dopamine agonists (DA), mainly cabergoline, is considered the primary therapy for these patients. Prolactin normalization is achieved in 80-90% of prolactinomas treated with cabergoline. Patients resistant to the standard dose can escalate the dose of cabergoline up to the maximum tolerated dose. The expression of dopamine (D2) receptors and dopamine affinity is decreased in aggressive and resistant prolactinomas. Patients with aggressive and DA-resistant adenomas or with rare PRL-secreting carcinomas can be treated off-label with temozolomide (TMZ), a DNA alkylating agent. TMZ is effective in 40-50% of treated lactotroph tumors showing at least a partial response. However, patients tend to escape from the effect of TMZ after a limited time of response. Other therapeutic options include aromatase inhibitors, the somatostatin receptor ligand pasireotide, peptide receptor radionuclide therapy (PRRT), immune-checkpoint inhibitors, tyrosine-kinase inhibitors, or everolimus, the mammalian target of rapamycin inhibitor. These experimental treatments were effective in some patients carrying refractory prolactinomas showing usually partial tumor control. However, the number of treated patients with any of these new therapeutic options is very limited and treatment results are inconsistent, thus additional experience with more patients is required.
Collapse
Affiliation(s)
- Ilan Shimon
- Institute of Endocrinology, Beilinson Hospital, Petach-Tikva, and Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
9
|
Petersenn S, Fleseriu M, Casanueva FF, Giustina A, Biermasz N, Biller BMK, Bronstein M, Chanson P, Fukuoka H, Gadelha M, Greenman Y, Gurnell M, Ho KKY, Honegger J, Ioachimescu AG, Kaiser UB, Karavitaki N, Katznelson L, Lodish M, Maiter D, Marcus HJ, McCormack A, Molitch M, Muir CA, Neggers S, Pereira AM, Pivonello R, Post K, Raverot G, Salvatori R, Samson SL, Shimon I, Spencer-Segal J, Vila G, Wass J, Melmed S. Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat Rev Endocrinol 2023; 19:722-740. [PMID: 37670148 DOI: 10.1038/s41574-023-00886-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/07/2023]
Abstract
This Consensus Statement from an international, multidisciplinary workshop sponsored by the Pituitary Society offers evidence-based graded consensus recommendations and key summary points for clinical practice on the diagnosis and management of prolactinomas. Epidemiology and pathogenesis, clinical presentation of disordered pituitary hormone secretion, assessment of hyperprolactinaemia and biochemical evaluation, optimal use of imaging strategies and disease-related complications are addressed. In-depth discussions present the latest evidence on treatment of prolactinoma, including efficacy, adverse effects and options for withdrawal of dopamine agonist therapy, as well as indications for surgery, preoperative medical therapy and radiation therapy. Management of prolactinoma in special situations is discussed, including cystic lesions, mixed growth hormone-secreting and prolactin-secreting adenomas and giant and aggressive prolactinomas. Furthermore, considerations for pregnancy and fertility are outlined, as well as management of prolactinomas in children and adolescents, patients with an underlying psychiatric disorder, postmenopausal women, transgender individuals and patients with chronic kidney disease. The workshop concluded that, although treatment resistance is rare, there is a need for additional therapeutic options to address clinical challenges in treating these patients and a need to facilitate international registries to enable risk stratification and optimization of therapeutic strategies.
Collapse
Affiliation(s)
- Stephan Petersenn
- ENDOC Center for Endocrine Tumors, Hamburg, Germany.
- University of Duisburg-Essen, Essen, Germany.
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University, Milan, Italy
- IRCCS Hospital San Raffaele, Milan, Italy
| | | | | | | | - Philippe Chanson
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Monica Gadelha
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yona Greenman
- Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Mark Gurnell
- University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge, UK
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | - Ursula B Kaiser
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Maya Lodish
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Hani J Marcus
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ann McCormack
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Mark Molitch
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Alberto M Pereira
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Kalmon Post
- Mount Sinai Health System, New York, NY, USA
| | - Gerald Raverot
- Department of Endocrinology, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | | | | | - Ilan Shimon
- Tel Aviv University, Tel Aviv, Israel
- Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Greisa Vila
- Medical University of Vienna, Vienna, Austria
| | - John Wass
- University of Oxford, Oxford, UK
- Churchill Hospital, Oxford, UK
| | | |
Collapse
|
10
|
Tapoi DA, Popa ML, Tanase C, Derewicz D, Gheorghișan-Gălățeanu AA. Role of Tumor Microenvironment in Pituitary Neuroendocrine Tumors: New Approaches in Classification, Diagnosis and Therapy. Cancers (Basel) 2023; 15:5301. [PMID: 37958474 PMCID: PMC10649263 DOI: 10.3390/cancers15215301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Adenohypophysal pituitary tumors account for 10-15% of all intracranial tumors, and 25-55% display signs of invasiveness. Nevertheless, oncology still relies on histopathological examination to establish the diagnosis. Considering that the classification of pituitary tumors has changed significantly in recent years, we discuss the definition of aggressive and invasive tumors and the latest molecular criteria used for classifying these entities. The pituitary tumor microenvironment (TME) is essential for neoplastic development and progression. This review aims to reveal the impact of TME characteristics on stratifying these tumors in view of finding appropriate therapeutic approaches. The role of the pituitary tumor microenvironment and its main components, non-tumoral cells and soluble factors, has been addressed. The variable display of different immune cell types, tumor-associated fibroblasts, and folliculostellate cells is discussed in relation to tumor development and aggressiveness. The molecules secreted by both tumoral and non-tumoral cells, such as VEGF, FGF, EGF, IL6, TNFα, and immune checkpoint molecules, contribute to the crosstalk between the tumor and its microenvironment. They could be considered potential biomarkers for diagnosis and the invasiveness of these tumors, together with emerging non-coding RNA molecules. Therefore, assessing this complex network associated with pituitary neuroendocrine tumors could bring a new era in diagnosing and treating this pathology.
Collapse
Affiliation(s)
- Dana Antonia Tapoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Maria-Linda Popa
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Diana Derewicz
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pediatric Hematology and Oncology, Marie Sklodowska Curie Clinical Emergency Hospital, 041447 Bucharest, Romania
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
11
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
12
|
Ilie MD, De Alcubierre D, Carretti AL, Jouanneau E, Raverot G. Therapeutic targeting of the pituitary tumor microenvironment. Pharmacol Ther 2023; 250:108506. [PMID: 37562699 DOI: 10.1016/j.pharmthera.2023.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment (TME), the complex environment in which tumors develop, has been increasingly targeted for cancer treatment in recent years. Aggressive pituitary tumors and pituitary carcinomas have been so far targeted with immune-checkpoint inhibitors (28 cases, including a large cohort), and anti-angiogenic drugs (34 cases), specifically bevacizumab (30 cases), sunitinib (three cases), and apatinib (one case). Here, we reviewed all these cases, reporting tumor response, potential predictors of response, as well as adverse events. Given that the histological type could potentially influence treatment response, we present the existing data separately for each type. Briefly, under ICIs, complete response was noted in one case, partial response in a third of cases, stable disease in 10% of cases, while 54% of tumors progressed. Under BVZ monotherapy, most cases (57%) showed stable disease, while 36% of tumors progressed; partial response was reported in only one case. The three cases treated with sunitinib monotherapy progressed. Regarding predictive factors of response, the tumor type (aggressive pituitary tumor versus pituitary carcinoma) appears as the strongest predictor of response to ICIs. To date, no predictor of response to anti-angiogenic drugs in the treatment of pituitary carcinomas and aggressive pituitary tumors has been identified. The interest of BZV add-on to first- or second-line chemotherapy warrants further investigation. In addition, we discuss perspectives regarding the TME-targeting in aggressive pituitary tumors and pituitary carcinomas, including perspectives on immunotherapy, anti-angiogenic drugs, as well as on other TME components, namely stromal cells, extracellular matrix, and secreted molecules.
Collapse
Affiliation(s)
- Mirela-Diana Ilie
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Dario De Alcubierre
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Emmanuel Jouanneau
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Gérald Raverot
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
13
|
Cossu G, La Rosa S, Brouland JP, Pitteloud N, Harel E, Santoni F, Brunner M, Daniel RT, Messerer M. PD-L1 Expression in Pituitary Neuroendocrine Tumors/Pituitary Adenomas. Cancers (Basel) 2023; 15:4471. [PMID: 37760441 PMCID: PMC10526513 DOI: 10.3390/cancers15184471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND AIM About a third of Pituitary Neuroendocrine Tumors (PitNETs) may show aggressive behavior. Many efforts have been performed for identifying possible predictive factors to early determine the future behavior of PitNETs. Programmed cell death ligand 1 (PD-L1) expression was associated with a more aggressive biology in different solid tumors, but its role in PitNET is not well-established yet. Our study aims to analyze PD-L1 expression in a surgical cohort of PitNETs to determine its association with radiological invasion and pathology findings, as well as with long-term recurrence rates. METHODS We performed a retrospective analysis in a series of 86 PitNETs. Clinical presentation and radiological features of the preoperative period were collected, as well as pathological data and follow-up data. The rate of PD-L1 expression was immunohistochemically evaluated and expressed as a tumor proportion score (TPS). We assessed its relationship with cavernous sinus invasion and Trouillas' classification as primary outcomes. Secondary outcomes included the TPS' relationship with histopathological markers of proliferation, hormonal expression, tumor size and long-term recurrence rates. We calculated the optimal cut-point for the primary outcomes while maximizing the product of the sensitivity and specificity and then we evaluated the significance of secondary outcomes with logistic regression analysis. RESULTS Eighty-six patients were included in the analysis; 50 cases were non-functional PitNETs. The TPS for PD-L1 showed a highly right-skewed distribution in our sample, as 30.2% of patients scored 0. Using Trouillas' classification, we found that "proliferative" cases have a significantly higher probability to express PD-L1 in more than 30% of tumor cells (OR: 5.78; CI 95%: 1.80-18.4). This same cut-point was also associated with p53 expression. A positive association was found between PD-L1 expression and GH expression (p = 0.001; OR: 5.44; CI 95%: 1.98-14.98), while an inverse relationship was found with FSH/LH expression (p = 0.014; OR = 0.27, CI 95%: 0.10-0.76). No association was found with CS invasion, tumor size, bone erosion or dura invasion. We could not find any association between PD-L1 expression and recurrence. CONCLUSIONS PD-L1 expression was associated with proliferative grades of Trouillas' classification and p53 expression. We also confirmed a higher expression of PD-L1 in somatotroph tumors. Larger studies are necessary to investigate the relationship between PD-L1 expression and aggressive behaviors.
Collapse
Affiliation(s)
- Giulia Cossu
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Jean Philippe Brouland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Nelly Pitteloud
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Ethan Harel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Federico Santoni
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Maxime Brunner
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Roy Thomas Daniel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Mahmoud Messerer
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| |
Collapse
|
14
|
Luo M, Tang R, Wang H. Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset. J Neurooncol 2023; 163:663-674. [PMID: 37418134 DOI: 10.1007/s11060-023-04382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs) and application of current immunotherapy for refractory PitNETs remains debated. We aim to evaluate the immune landscape in different lineages of PitNETs and determine the potential role of pituitary transcription factors in reshaping the tumor immune microenvironment (TIME), thus promoting the application of current immunotherapy for aggressive and metastatic PitNETs. METHODS Immunocyte infiltration and expression patterns of immune checkpoint molecules in different lineages of PitNETs were estimated via in silico analysis and validated using an IHC validation cohort. The correlation between varying immune components with clinicopathological features was assessed in PIT1-lineage PitNETs. RESULTS Transcriptome profiles from 210 PitNETs/ 8 normal pituitaries (NPs) and immunohistochemical validations of 77 PitNETs/6 NPs revealed a significant increase in M2-macrophage infiltration in PIT1-lineage PitNETs, compared with the TPIT-lineage, SF1-lineage subsets and NPs. While CD68 + macrophage, CD4 + T cells, and CD8 + T cells were not different among them. Increased M2-macrophage infiltration was associated with tumor volume (p < 0.0001, r = 0.57) in PIT1-lineage PitNETs. Meanwhile, differentially expressed immune checkpoint molecules (PD-L1, PD1, and CTLA-4) were screened and validated in IHC cohorts. The results showed that PD-L1 was highly expressed in PIT1-lineage subsets, and PD-L1 overexpression showed a positive correlation with tumor volume (p = 0.04, r = 0.29) and cavernous sinus invasion (p < 0.0001) in PIT1-lineage PitNETs. CONCLUSION PIT1-lineage PitNETs exhibit a distinct immune profile with enrichment of M2 macrophage infiltration and PD-L1 expression, which may contribute to its clinical aggressiveness. Application of current immune checkpoint inhibitors and M2-targeted immunotherapy might be more beneficial to treat aggressive and metastatic PIT-lineage PitNETs.
Collapse
Affiliation(s)
- Mei Luo
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Shi M, Song Y, Zhang Y, Li L, Yu J, Hou A, Han S. PD-L1 and tumor-infiltrating CD8 + lymphocytes are correlated with clinical characteristics in pediatric and adolescent pituitary adenomas. Front Endocrinol (Lausanne) 2023; 14:1151714. [PMID: 37424874 PMCID: PMC10323746 DOI: 10.3389/fendo.2023.1151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Objective To investigate the levels of tumor-infiltrating CD8+ lymphocytes (CD8+ TILs) and the expression of programmed cell death receptor ligand 1 (PD-L1) in the tumor microenvironment (TME) of pediatric and adolescent pituitary adenomas (PAPAs) and analyze the correlation between their levels and the clinical characteristics. Methods A series of 43 PAPAs cases were enrolled over a period of 5 years. To compare the TME of PAPAs and adult PAs, 43 PAPAs cases were matched with 60 adult PAs cases (30 cases were between 20 and 40 years old, and 30 cases were older than 40 years) for main clinical characteristics. The expression of immune markers in PAPAs was detected by immunohistochemistry, and their correlation with the clinical outcomes was analyzed using statistical methods. Results In the PAPAs group, CD8+ TILs level was significantly lower (3.4 (5.7) vs. 6.1 (8.5), p = 0.001), and PD-L1 expression (0.040 (0.022) vs. 0.024 (0.024), p < 0.0001) was significantly higher as compared with the older group. The level of CD8+ TILs was negatively correlated with the expression of PD-L1 (r = -0.312, p = 0.042). Moreover, CD8+ TILs and PD-L1 levels were associated with Hardy (CD8, p = 0.014; PD-L1, p = 0.018) and Knosp (CD8, p = 0.02; PD-L1, p = 0.017) classification. CD8+ TILs level was associated with high-risk adenomas (p = 0.015), and it was associated with the recurrence of PAPAs (HR = 0.047, 95% CI 0.003-0.632, p = 0.021). Conclusion Compared with the TME in adult PAs, the TME in PAPAs was found to express a significantly altered level of CD8+ TILs and PD-L1. In PAPAs, CD8+ TILs and PD-L1 levels were associated with clinical characteristics.
Collapse
Affiliation(s)
- Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Longjie Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Juanhan Yu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Burman P, Casar-Borota O, Perez-Rivas LG, Dekkers OM. Aggressive Pituitary Tumors and Pituitary Carcinomas: From Pathology to Treatment. J Clin Endocrinol Metab 2023; 108:1585-1601. [PMID: 36856733 PMCID: PMC10271233 DOI: 10.1210/clinem/dgad098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs) are heterogeneous with regard to clinical presentation, proliferative markers, clinical course, and response to therapy. Half of them show an aggressive course only many years after the first apparently benign presentation. APTs and PCs share several properties, but a Ki67 index greater than or equal to 10% and extensive p53 expression are more prevalent in PCs. Mutations in TP53 and ATRX are the most common genetic alterations; their detection might be of value for early identification of aggressiveness. Treatment requires a multimodal approach including surgery, radiotherapy, and drugs. Temozolomide is the recommended first-line chemotherapy, with response rates of about 40%. Immune checkpoint inhibitors have emerged as second-line treatment in PCs, with currently no evidence for a superior effect of dual therapy compared to monotherapy with PD-1 blockers. Bevacizumab has resulted in partial response (PR) in few patients; tyrosine kinase inhibitors and everolimus have generally not been useful. The effect of peptide receptor radionuclide therapy is limited as well. Management of APT/PC is challenging and should be discussed within an expert team with consideration of clinical and pathological findings, age, and general condition of the patient. Considering that APT/PCs are rare, new therapies should preferably be evaluated in shared standardized protocols. Prognostic and predictive markers to guide treatment decisions are needed and are the scope of ongoing research.
Collapse
Affiliation(s)
- Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund
University, 205 02 Malmö, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics, and Pathology; Uppsala
University, 751 85 Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University
Hospital, 751 85 Uppsala, Sweden
| | - Luis Gustavo Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München,
Ludwig-Maximilians-Universität München, 80804
Munich, Germany
| | - Olaf M Dekkers
- Department of Internal Medicine (Section of Endocrinology & Clinical
Epidemiology), Leiden University Medical Centre, 2333 ZA
Leiden, The Netherlands
| |
Collapse
|
17
|
Marques P. The Effects of Peptide Receptor Radionuclide Therapy on the Neoplastic and Normal Pituitary. Cancers (Basel) 2023; 15:2710. [PMID: 37345047 PMCID: PMC10216433 DOI: 10.3390/cancers15102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Pituitary neuroendocrine tumours (PitNETs) are usually benign and slow-growing; however, in some cases, they may behave aggressively and become resistant to conventional treatments. Therapeutic options for aggressive or metastatic PitNETs are limited, and currently mainly consist of temozolomide, with little experience of other emerging approaches, including peptide receptor radionuclide therapy (PRRT). Somatostatin receptor expression in PitNETs explains the effectiveness of somatostatin analogues for treating PitNETs, particularly those hypersecreting pituitary hormones, such as growth hormone or adrenocorticotropic hormone. The expression of such receptors in pituitary tumour cells has provided the rationale for using PRRT to treat patients with aggressive or metastatic PitNETs. However, the PRRT efficacy in this setting remains unestablished, as knowledge on this today is based only on few case reports and small series of cases, which are reviewed here. A total of 30 PRRT-treated patients have been thus far reported: 23 aggressive PitNETs, 5 carcinomas, and 2 of malignancy status unspecified. Of the 27 published cases with information regarding the response to PRRT, 5 (18%) showed a partial response, 8 (30%) had stable disease, and 14 (52%) had progressive disease. No major adverse effects have been reported, and there is also no increased risk of clinically relevant hypopituitarism in patients with pituitary or non-pituitary neuroendocrine tumours following PRRT. PRRT may be regarded as a safe option for patients with aggressive or metastatic PitNETs if other treatment approaches are not feasible or have failed in controlling the disease progression, with tumour shrinkage occurring in up to a fifth of cases, while about a third of aggressive pituitary tumours may achieve stable disease. Here, the data on PRRT in the management of patients with aggressive pituitary tumours are reviewed, as well as the effects of PRRT on the pituitary function in other PRRT-treated cancer patients.
Collapse
Affiliation(s)
- Pedro Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal;
- Faculdade de Medicina, Universidade Católica Portuguesa, 2635-631 Lisbon, Portugal
| |
Collapse
|
18
|
Robertson IJ, Gregory TA, Waguespack SG, Penas-Prado M, Majd NK. Recent Therapeutic Advances in Pituitary Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:74-83. [PMID: 37214211 PMCID: PMC10195013 DOI: 10.36401/jipo-22-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 05/24/2023]
Abstract
Pituitary carcinoma (PC) is a rare, aggressive malignancy that comprises 0.1-0.2% of all pituitary tumors. PC is defined anatomically as a pituitary tumor that metastasizes outside the primary intrasellar location as noncontiguous lesions in the central nervous system or as metastases to other organs. Similar to pituitary adenoma, PC originates from various cell types of the pituitary gland and can be functioning or nonfunctioning, with the former constituting the majority of the cases. Compression of intricate skull-based structures, excessive hormonal secretion, impaired pituitary function from therapy, and systemic metastases lead to debilitating symptoms and a poor survival outcome in most cases. PC frequently recurs despite multimodality treatments, including surgical resection, radiotherapy, and biochemical and cytotoxic treatments. There is an unmet need to better understand the pathogenesis and molecular characterization of PC to improve therapeutic strategies. As our understanding of the role of signaling pathways in the tumorigenesis of and malignant transformation of PC evolves, efforts have focused on targeted therapy. In addition, recent advances in the use of immune checkpoint inhibitors to treat various solid cancers have led to an interest in exploring the role of immunotherapy for the treatment of aggressive refractory pituitary tumors. Here, we review our current understanding of the pathogenesis, molecular characterization, and treatment of PC. Particular attention is given to emerging treatment options, including targeted therapy, immunotherapy, and peptide receptor radionuclide therapy.
Collapse
Affiliation(s)
- Ian J. Robertson
- Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Timothy A. Gregory
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven G. Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Geer EB. Medical therapy for refractory pituitary adenomas. Pituitary 2023:10.1007/s11102-023-01320-9. [PMID: 37115295 DOI: 10.1007/s11102-023-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Refractory pituitary adenomas are those that have progressed following standard of care treatments. Medical therapy options for these challenging tumors are limited. PURPOSE To review the landscape of tumor directed medical therapies and off-label investigational approaches for refractory pituitary adenomas. METHODS Literature on medical therapies for refractory adenomas was reviewed. RESULTS The established first-line medical therapy for refractory adenomas is temozolomide, which importantly may increase survival, but clinical trial data are still needed to clearly establish its efficacy, identify biomarkers of response, and clarify eligibility and outcome criteria. Other therapies for refractory tumors have only been described in case reports and small case series. CONCLUSION There are currently no approved non-endocrine medical therapies for refractory pituitary tumors. There is an urgent need for identifying effective medical therapies and studying them in multi-center clinical trials.
Collapse
Affiliation(s)
- Eliza B Geer
- Departments of Medicine and Neurosurgery, Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, David H. Koch Center for Cancer Care, 530 East 74th Street, Box 19, New York, NY, 10021, USA.
| |
Collapse
|
20
|
Marques P, Korbonits M. Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Invest 2023; 46:1047-1063. [PMID: 37060402 DOI: 10.1007/s40618-023-02089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
The pituitary tumour microenvironment encompasses a spectrum of non-tumoural cells, such as immune, stromal or endothelial cells, as well as enzymes and signalling peptides like cytokines, chemokines and growth factors, which surround the tumour cells and may influence pituitary tumour behaviour and tumourigenic mechanisms. Recently, there has been intensive research activity in this field describing various pituitary tumour-infiltrating immune and stromal cell subpopulations, and immune- and microenvironment-related pathways. Key changes in oncological therapeutic avenues resulted in the recognition of pituitary as a target of adverse events for patients treated with immune checkpoint regulators. However, these phenomena can be turned into therapeutic advantage in severe cases of pituitary tumours. Therefore, unravelling the pituitary tumour microenvironment will allow a better understanding of the biology and behaviour of pituitary tumours and may provide further developments in terms of diagnosis and management of patients with aggressively growing or recurrent pituitary tumours.
Collapse
Affiliation(s)
- P Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal.
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal.
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Abstract
A small subset of lactotroph adenomas is resistant to dopamine agonists (DA) and can also demonstrate aggressive or even malignant behavior. The implicated mechanisms are not clearly defined. Management can be challenging and requires a multidisciplinary approach. In DA resistant prolactinomas, switching to another DA could be the first option to consider. Further strategies include surgery and radiotherapy used alone or in combination. In cases of aggressive or malignant prolactinomas, temozolomide could be offered. Immune checkpoint inhibitors have been also recently proposed as an alternative approach. The place of other treatments (e.g., metformin, selective estrogen modulators, somatostatin analogues, tyrosine kinase inhibitors, inhibitors of mammalian target of rapamycin and peptide radio-receptor therapy) remains to be carefully assessed.
Collapse
Affiliation(s)
- Sandrine A Urwyler
- Institute of Metabolism and Systems Research (ISMR), College of Medical and Dental Sciences, University of Birmingham, IBR Tower, Level 2, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research (ISMR), College of Medical and Dental Sciences, University of Birmingham, IBR Tower, Level 2, Birmingham, B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
22
|
Abstract
After temozolomide failure, no evidence-based treatment option is currently available for aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs). Moreover, once temozolomide has failed, the survival of these patients is very poor. The use of immune-checkpoint inhibitors (ICIs) has been so far reported in a large cohort, a small phase 2 clinical trial, and in another five isolated cases (24 cases in total). Here, we review the available evidence on the efficacy and potential predictors of response to ICIs in PCs and APTs, namely the histological type (corticotroph versus lactotroph), the tumor type (PC versus APT), the presence of uncontrolled endogenous hypercortisolism, the type of protocol (combined ICIs versus monotherapy), programmed death-ligand 1 (PD-L1) expression, CD8+ cell infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) status. We also discuss key clinical aspects that can already be implemented in the everyday practice and identify future research needs.
Collapse
Affiliation(s)
- Gérald Raverot
- Inserm U1052, CNRS UMR5286, Claude Bernard Lyon 1 University, Cancer Research Center of Lyon, Lyon, France; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France.
| | - Mirela Diana Ilie
- Inserm U1052, CNRS UMR5286, Claude Bernard Lyon 1 University, Cancer Research Center of Lyon, Lyon, France; Endocrinology Department, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania.
| |
Collapse
|
23
|
Chevalier B, Jannin A, Espiard S, Merlen E, Beron A, Lion G, Vantyghem MC, Huglo D, Cortet-Rudelli C, Baillet C. Pituitary adenoma & nuclear medicine: Recent outcomes and ongoing developments. Presse Med 2022; 51:104144. [PMID: 36334843 DOI: 10.1016/j.lpm.2022.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
In order to explore pituitary adenoma (PA), magnetic resonance imaging (MRI) remains the cornerstone. However, there are some limitations and MRI can be non-conclusive. The development of additional imaging modalities like nuclear medicine explorations may help to confirm PA diagnosis, guide management and follow up. Nuclear medicine uses radiopharmaceuticals for imaging with single photon emission computed tomography (SPECT), or positron emission tomography (PET), coupled to CT scan. Radiopharmaceuticals products target specific cellular elements which allow to explore several biological pathways. Nuclear medicine may also be used for therapeutic purposes and recent developments of approach based on Peptide Receptor Radionuclide Therapy (PRRT) for treatment of aggressive PA and pituitary carcinoma will be reviewed. Several radiotracers have been studied in the context of PA, and the aim of this paper is to discuss their respective performances and clinical interest.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France; University of Lille, F-59000 Lille, France.
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France; University of Lille, F-59000 Lille, France; University of Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Stephanie Espiard
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France; University of Lille, F-59000 Lille, France; INSERM U1190, European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Emilie Merlen
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France
| | - Amandine Beron
- Department of Nuclear Medicine, Lille University Hospital, F-59000 Lille, France
| | - Georges Lion
- Department of Nuclear Medicine, Lille University Hospital, F-59000 Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France; University of Lille, F-59000 Lille, France; INSERM U1190, European Genomic Institute for Diabetes, F-59000 Lille, France
| | - Damien Huglo
- University of Lille, F-59000 Lille, France; Department of Nuclear Medicine, Lille University Hospital, F-59000 Lille, France; INSERM U1189 OncoTHAI, avenue Oscar Lambret, 59000 Lille, France
| | - Christine Cortet-Rudelli
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, F-59000 Lille, France
| | - Clio Baillet
- Department of Nuclear Medicine, Lille University Hospital, F-59000 Lille, France
| |
Collapse
|