1
|
Kulkarni P, Basu R, Bonn T, Low B, Mazurek N, Kopchick JJ. Growth Hormone Upregulates Melanoma Drug Resistance and Migration via Melanoma-Derived Exosomes. Cancers (Basel) 2024; 16:2636. [PMID: 39123364 PMCID: PMC11311539 DOI: 10.3390/cancers16152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.
Collapse
Affiliation(s)
- Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
| | - Taylor Bonn
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Nutrition, Ohio University, Athens, OH 45701, USA
| | - Beckham Low
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Nathaniel Mazurek
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Wu G, Dong Y, Hu Q, Ma H, Xu Q, Xu K, Chen H, Yang Z, He M. HGH1 and the immune landscape: a novel prognostic marker for immune-desert tumor microenvironment identification and immunotherapy outcome prediction in human cancers. Cell Cycle 2023; 22:1969-1985. [PMID: 37811868 PMCID: PMC10761050 DOI: 10.1080/15384101.2023.2260163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
HGH1 homolog, a protein-coding gene, plays a crucial role in human growth and development. However, its role in human cancer remains unclear. For the first time, this study comprehensively evaluated the potential involvement of HGH1 in cancer prognosis and immunological function. To achieve this, data from various databases, including The Cancer Genome Atlas, Genotype Tissue Expression, Cancer Cell Lineage Encyclopedia, Human Protein Atlas, cBioPortal, Tumor Immune Estimation Resource and Immune Cell Abundance Identifier, were collated, as well as from one large clinical study, three immunotherapy cohorts and in vitro experiments. This study aims to elucidate the role of HGH1 expression in cancer prognosis and immune response. Our findings revealed a significant association between increased HGH1 expression and a worse prognosis across various cancer types. Predominantly, copy number variations were identified as the most common genetic mutations. Additionally, HGH1 was observed to not only regulate cell cycle-related functions to promote cell proliferation but also influence autoimmunity-related functions within both the innate and adaptive immune systems, along with other relevant immune-related signaling pathways. Gene set enrichment analysis and gene set variation analysis were used to substantiate these findings. HGH1 overexpression contributed to an immune-deficient (immune-desert) tumor microenvironment, which was characterized by a significant expression of immune-related features such as immune-related gene and pathway expression and the number of immune-infiltrating cells. Furthermore, the correlation between HGH1 expression and tumor mutational burden in four cancers and microsatellite instability in eight cancers was observed. This suggests that HGH1 has potential as an immunotherapeutic target. Immunotherapy data analysis supports this notion, demonstrating that patients with low HGH1 expression treated with immune checkpoint inhibitors exhibit improved survival rates and a higher likelihood of responding to immunotherapy than patients with high HGH1 expression. Collectively, these findings highlight the significant role of HGH1 in human cancers, illuminating its involvement in tumorigenesis and cancer immunity. Elevated HGH1 expression was identified to be indicative of an immune-desert tumor microenvironment. Consequently, the targeting of HGH1, particularly in combination with immune checkpoint inhibitor therapy, holds promise for enhancing therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yipeng Dong
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Hu
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Xu
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min He
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Wang Y, Kim M, Buckley C, Maynard HD, Langley RJ, Perry JK. Growth hormone receptor agonists and antagonists: From protein expression and purification to long-acting formulations. Protein Sci 2023; 32:e4727. [PMID: 37428391 PMCID: PMC10443362 DOI: 10.1002/pro.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human growth hormone (rhGH) and GH receptor antagonists (GHAs) are used clinically to treat a range of disorders associated with GH deficiency or hypersecretion, respectively. However, these biotherapeutics can be difficult and expensive to manufacture with multiple challenges from recombinant protein generation through to the development of long-acting formulations required to improve the circulating half-life of the drug. In this review, we summarize methodologies and approaches used for making and purifying recombinant GH and GHA proteins, and strategies to improve pharmacokinetic and pharmacodynamic properties, including PEGylation and fusion proteins. Therapeutics that are in clinical use or are currently under development are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Minah Kim
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Chantal Buckley
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and the California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ries J. Langley
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | - Jo K. Perry
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
4
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
5
|
Basu R, Qian Y, Mathes S, Terry J, Arnett N, Riddell T, Stevens A, Funk K, Bell S, Bokal Z, Batten C, Smith C, Mendez-Gibson I, Duran-Ortiz S, Lach G, Mora-Criollo PA, Kulkarni P, Davis E, Teaford E, Berryman DE, List EO, Neggers S, Kopchick JJ. Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Front Oncol 2022; 12:936145. [PMID: 35865483 PMCID: PMC9296106 DOI: 10.3389/fonc.2022.936145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023] Open
Abstract
Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Samuel Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Nathan Arnett
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Russ College of Engineering, Ohio University, Athens, OH, United States
| | - Trent Riddell
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Austin Stevens
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Stephen Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Zac Bokal
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Courtney Batten
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Cole Smith
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | | | | | - Grace Lach
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | | | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Elizabeth Teaford
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Sebastian Neggers
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Translational Biological Sciences Program, Ohio University, Athens, OH, United States
- *Correspondence: John J. Kopchick,
| |
Collapse
|
6
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
7
|
Growth Hormone Upregulates Mediators of Melanoma Drug Efflux and Epithelial-to-Mesenchymal Transition In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12123640. [PMID: 33291663 PMCID: PMC7761932 DOI: 10.3390/cancers12123640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Growth hormone (GH) action is strongly implicated in the progression and therapy resistance in several types of solid tumors which overexpress the GH receptor (GHR). The aim of our study was to characterize the effects of GH and its downstream effector insulin-like growth factor 1 (IGF-1) on melanoma using in vitro and in vivo models. We confirmed an IGF-1-independent role of elevated circulating GH in upregulating key mechanisms of therapy resistance and malignancy with analyses conducted at the molecular and cellular level. We identified that GH upregulates key mechanisms of therapy resistance and metastases in melanoma tumors in an IGF-1 dependent and independent manner by upregulating multidrug efflux pumps and EMT transcription factors. Our study reveals that GH action renders an intrinsic drug resistance phenotype to the melanoma tumors—a clinically crucial property of GH verifiable in other human cancers with GHR expression. Abstract Growth hormone (GH) and the GH receptor (GHR) are expressed in a wide range of malignant tumors including melanoma. However, the effect of GH/insulin-like growth factor (IGF) on melanoma in vivo has not yet been elucidated. Here we assessed the physical and molecular effects of GH on mouse melanoma B16-F10 and human melanoma SK-MEL-30 cells in vitro. We then corroborated these observations with syngeneic B16-F10 tumors in two mouse lines with different levels of GH/IGF: bovine GH transgenic mice (bGH; high GH, high IGF-1) and GHR gene-disrupted or knockout mice (GHRKO; high GH, low IGF-1). In vitro, GH treatment enhanced mouse and human melanoma cell growth, drug retention and cell invasion. While the in vivo tumor size was unaffected in both bGH and GHRKO mouse lines, multiple drug-efflux pumps were up regulated. This intrinsic capacity of therapy resistance appears to be GH dependent. Additionally, epithelial-to-mesenchymal transition (EMT) gene transcription markers were significantly upregulated in vivo supporting our current and recent in vitro observations. These syngeneic mouse melanoma models of differential GH/IGF action can be valuable tools in screening for therapeutic options where lowering GH/IGF-1 action is important.
Collapse
|
8
|
Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol 2020; 518:111003. [PMID: 32919021 DOI: 10.1016/j.mce.2020.111003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidence links the growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis to cancer development. While this putative correlation is of major translational relevance, most clinical and epidemiological reports to date found no causal linkage between GH therapy and enhanced cancer risk. Thus, it is generally agreed that GH therapy constitutes a safe pharmacological intervention. The present review focuses on a number of issues in the area of GH-IGF1 action in cancer development. Emphasis is given to the idea that GH and IGF1 do not conform to the definition of oncogenic factors. Specifically, these hormones, even at high pharmacological doses, are unable to induce malignant transformation. However, the GH-IGF1 axis is capable of 'pushing' already transformed cells through the various phases of the cell cycle. Viral and cellular oncogenes require an intact IGF1 signaling pathway in order to elicit transformation; in other words, oncogenic agents adopt the IGF1 pathway. This universal mechanism of action of oncogenes has broad implications in oncology. Our review provides an in-depth analysis of the interplay between the GH-IGF1 axis and cancer genes, including tumor suppressors p53 and BRCA1. Finally, the safety of GH therapy in both children and adults needs further long-term follow-up studies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel.
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| |
Collapse
|
9
|
Sorolla MA, Parisi E, Sorolla A. Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel) 2020; 12:E1906. [PMID: 32679719 PMCID: PMC7409033 DOI: 10.3390/cancers12071906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
10
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Wang X, Wang S, Wu H, Jiang M, Xue H, Zhu Y, Wang C, Zha X, Wen Y. Human growth hormone level decreased in women aged <60 years but increased in men aged >50 years. Medicine (Baltimore) 2020; 99:e18440. [PMID: 31914017 PMCID: PMC6959966 DOI: 10.1097/md.0000000000018440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To investigate the relationship amongst human growth hormone (HGH), sex, and age groups.A cross-sectional study was conducted on a health check-up population from Wannan area of China from 2014 to 2016. The study involved 6843 individuals aged 23 to 85 years. Logistic regression analysis and smooth curve were applied to determine the relationship amongst age, sex, and HGH.The average level of HGH in the population was 0.37 ± 0.59 ng/mL. There were significant differences in sex, age, body mass index (BMI), triglycerides (TG), total cholesterol (TC), systolic blood pressure (SBP), diastolic blood pressure (DBP), and glucose (GLU) amongst different quartiles of HGH (P < .001). A U-shape relationship was established between HGH and age. After sex stratification, the results showed that the thresholds of age were 60 years in women, and 50 years in men, after adjusting for body mass index, triglycerides, total cholesterol, blood pressure, and blood glucose. Logistic regression showed that HGH level decreased in women aged <60 years (OR = 1.472, P < .001) and increased in men aged >50 years (OR = 0.711, P < .001). So the distributive characteristics of HGH concentration vary with sex and age group.
Collapse
Affiliation(s)
| | | | - Huan Wu
- School of Laboratory Medicine
| | | | | | | | | | - Xiaojuan Zha
- First Affiliated Hospital, Wannan Medical College, Wuhu City, Anhui Province, China
| | | |
Collapse
|
12
|
Guo SS, Liu R, Wen YF, Liu LT, Yuan L, Li YX, Li Y, Hao WW, Peng JY, Chen DN, Tang QN, Sun XS, Guo L, Mo HY, Qian CN, Zeng MS, Bei JX, Sun SY, Chen QY, Tang LQ, Mai HQ. RETRACTED: Endogenous production of C-C motif chemokine ligand 2 by nasopharyngeal carcinoma cells drives radioresistance-associated metastasis. Cancer Lett 2020; 468:27-40. [PMID: 31604115 DOI: 10.1016/j.canlet.2019.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified by a concerned reader that the authors supplied duplicated images. Specifically, overlap in Figures 1C, 4A, 4B, 4D, and 5C. These concerns were also reported at PubPeer https://pubpeer.com/publications/CAC11E726E1C3E261A1F8BB90FF173. After review, the Editor found that duplication did occur and therefore the decision was made to retract the article. After re-examination of the entire paper, raw data and lab records, the authors have found that “pictures between different experiments were carelessly mixed. We want to apologize for all the inconvenience it caused to the editorial board, and to all our peers and to all the readers of our paper.”
Collapse
Affiliation(s)
- Shan-Shan Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Rui Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yue-Feng Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, PR China
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Li Yuan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yan-Xian Li
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yang Li
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China
| | - Wen-Wen Hao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jing-Yun Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Dan-Ni Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qing-Nan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ling Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Hao-Yuan Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chao-Nan Qian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Shu-Yang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| |
Collapse
|
13
|
Chesnokova V, Melmed S. Growth hormone in the tumor microenvironment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:568-575. [PMID: 31939481 PMCID: PMC7025769 DOI: 10.20945/2359-3997000000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Tumor development is a multistep process whereby local mechanisms enable somatic mutations during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of multiple cell types. Interactions between malignant and non-transformed cells and tissues create a tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and extracellular matrix. We review reports and present a hypothesis that postulates the involvement of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Basu R, Kulkarni P, Qian Y, Walsh C, Arora P, Davis E, Duran-Ortiz S, Funk K, Ibarra D, Kruse C, Mathes S, McHugh T, Brittain A, Berryman DE, List EO, Okada S, Kopchick JJ. Growth Hormone Upregulates Melanocyte-Inducing Transcription Factor Expression and Activity via JAK2-STAT5 and SRC Signaling in GH Receptor-Positive Human Melanoma. Cancers (Basel) 2019; 11:E1352. [PMID: 31547367 PMCID: PMC6769493 DOI: 10.3390/cancers11091352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Growth hormone (GH) facilitates therapy resistance in the cancers of breast, colon, endometrium, and melanoma. The GH-stimulated pathways responsible for this resistance were identified as suppression of apoptosis, induction of epithelial-to-mesenchymal transition (EMT), and upregulated drug efflux by increased expression of ATP-binding cassette containing multidrug efflux pumps (ABC-transporters). In extremely drug-resistant melanoma, ABC-transporters have also been reported to mediate drug sequestration in intracellular melanosomes, thereby reducing drug efficacy. Melanocyte-inducing transcription factor (MITF) is the master regulator of melanocyte and melanoma cell fate as well as the melanosomal machinery. MITF targets such as the oncogene MET, as well as MITF-mediated processes such as resistance to radiation therapy, are both known to be upregulated by GH. Therefore, we chose to query the direct effects of GH on MITF expression and activity towards conferring chemoresistance in melanoma. Here, we demonstrate that GH significantly upregulates MITF as well as the MITF target genes following treatment with multiple anticancer drug treatments such as chemotherapy, BRAF-inhibitors, as well as tyrosine-kinase inhibitors. GH action also upregulated MITF-regulated processes such as melanogenesis and tyrosinase activity. Significant elevation in MITF and MITF target gene expression was also observed in mouse B16F10 melanoma cells and xenografts in bovine GH transgenic (bGH) mice compared to wild-type littermates. Through pathway inhibitor analysis we identified that both the JAK2-STAT5 and SRC activities were critical for the observed effects. Additionally, a retrospective analysis of gene expression data from GTEx, NCI60, CCLE, and TCGA databases corroborated our observed correlation of MITF function and GH action. Therefore, we present in vitro, in vivo, and in silico evidence which strongly implicates the GH-GHR axis in inducing chemoresistance in human melanoma by driving MITF-regulated and ABC-transporter-mediated drug clearance pathways.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Christopher Walsh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Pranay Arora
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Colin Kruse
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Samuel Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Todd McHugh
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Alison Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Molecular and Cellular Biology (MCB) Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
16
|
Chesnokova V, Zonis S, Barrett RJ, Gleeson JP, Melmed S. Growth Hormone Induces Colon DNA Damage Independent of IGF-1. Endocrinology 2019; 160:1439-1447. [PMID: 31002310 PMCID: PMC6530523 DOI: 10.1210/en.2019-00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022]
Abstract
DNA damage occurs as a result of environmental insults and aging and, if unrepaired, may lead to chromosomal instability and tumorigenesis. Because GH suppresses ataxia-telangiectasia mutated kinase phosphorylation, decreases DNA repair, and increases DNA damage accumulation, we elucidated whether GH effects on DNA damage are mediated through induced IGF-1. In nontumorous human colon cells, GH, but not IGF-1, increased DNA damage. Stably disrupted IGF-1 receptor (IGF-1R) by lentivirus-expressing short hairpin RNA in vitro or treatment with the IGF-1R phosphorylation inhibitor picropodophyllotoxin (PPP) in vitro and in vivo led to markedly induced GH receptor (GHR) abundance, rendering cells more responsive to GH actions. Suppressing IGF-1R triggered DNA damage in both normal human colon cells and three-dimensional human intestinal organoids. DNA damage was further increased when cells with disrupted IGF-1R were treated with GH. Because GH induction of DNA damage accumulation appeared to be mediated not by IGF-1R but probably by more abundant GH receptor expression, we injected athymic mice with GH-secreting xenografts and then treated them with PPP. In these mice, high circulating GH levels were associated with increased colon DNA damage despite disrupted IGF-1R activity (P < 0.01), whereas GHR levels were also induced. Further confirming that GH effects on DNA damage are directly mediated by GHR signaling, GHR-/- mice injected with PPP did not show increased DNA damage, whereas wild-type mice with intact GHR exhibited increased colon DNA damage in the face of IGF-1 signaling suppression. The results indicate that GH directly induces DNA damage independent of IGF-1.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert J Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John P Gleeson
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence: Shlomo Melmed, MD, Academic Affairs, Room 2015, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048. E-mail:
| |
Collapse
|
17
|
Boguszewski CL, Boguszewski MCDS. Growth Hormone's Links to Cancer. Endocr Rev 2019; 40:558-574. [PMID: 30500870 DOI: 10.1210/er.2018-00166] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Several components of the GH axis are involved in tumor progression, and GH-induced intracellular signaling has been strongly associated with breast cancer susceptibility in genome-wide association studies. In the general population, high IGF-I levels and low IGF-binding protein-3 levels within the normal range are associated with the development of common malignancies, and components of the GH-IGF signaling system exhibit correlations with clinical, histopathological, and therapeutic parameters in cancer patients. Despite promising findings in preclinical studies, anticancer therapies targeting the GH-IGF signaling system have led to disappointing results in clinical trials. There is substantial evidence for some degree of protection against tumor development in several animal models and in patients with genetic defects associated with GH deficiency or resistance. In contrast, the link between GH excess and cancer risk in acromegaly patients is much less clear, and cancer screening in acromegaly has been a highly controversial issue. Recent studies have shown that increased life expectancy in acromegaly patients who attain normal GH and IGF-I levels is associated with more deaths due to age-related cancers. Replacement GH therapy in GH deficiency hypopituitary adults and short children has been shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in cancer survivors and in short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals.
Collapse
Affiliation(s)
- Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), University Hospital, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
18
|
Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther 2019; 4:3. [PMID: 30775002 PMCID: PMC6367471 DOI: 10.1038/s41392-019-0036-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Human growth hormone (GH) is a classical pituitary endocrine hormone that is essential for normal postnatal growth and has pleiotropic effects across multiple physiological systems. GH is also expressed in extrapituitary tissues and has localized autocrine/paracrine effects at these sites. In adults, hypersecretion of GH causes acromegaly, and strategies that block the release of GH or that inhibit GH receptor (GHR) activation are the primary forms of medical therapy for this disease. Overproduction of GH has also been linked to cancer and the microvascular complications that are associated with diabetes. However, studies to investigate the therapeutic potential of GHR antagonism in these diseases have been limited, most likely due to difficulty in accessing therapeutic tools to study the pharmacology of the receptor in vivo. This review will discuss current and emerging strategies for antagonizing GH function and the potential disease indications. Emerging therapies are offering an expanded toolkit for combatting the effects of human growth hormone overproduction. Human growth hormone (GH) is a major driver of postnatal growth; however, systemic or localized overproduction is implicated in the aberrant growth disease acromegaly, cancer, and diabetes. In this review, researchers led by Jo Perry, from the University of Auckland, New Zealand, discuss strategies that either inhibit GH production, block its systemic receptor, or interrupt its downstream signaling pathways. The only licensed GH receptor blocker is pegvisomant, but therapies are in development that include long-acting protein and antibody-based blockers, and nucleotide complexes that degrade GHR production have also shown promise. Studies investigating GHR antagonism are limited, partly due to difficulty in accessing therapeutic tools which block GHR function, but overcoming these obstacles may yield advances in alleviating chronic disease.
Collapse
Affiliation(s)
- Man Lu
- 1Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jack U Flanagan
- 2Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Ries J Langley
- 3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,4Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Michael P Hay
- 2Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jo K Perry
- 1Liggins Institute, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
19
|
Chesnokova V, Zonis S, Barrett R, Kameda H, Wawrowsky K, Ben-Shlomo A, Yamamoto M, Gleeson J, Bresee C, Gorbunova V, Melmed S. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI Insight 2019; 4:e125762. [PMID: 30728323 PMCID: PMC6413789 DOI: 10.1172/jci.insight.125762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which - if unrepaired - results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR-/- mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.
Collapse
Affiliation(s)
| | | | - Robert Barrett
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | | | | | | | | | - John Gleeson
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
20
|
Gadelha MR, Kasuki L, Lim DST, Fleseriu M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr Rev 2019; 40:268-332. [PMID: 30184064 DOI: 10.1210/er.2018-00115] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022]
Abstract
Acromegaly is a chronic systemic disease with many complications and is associated with increased mortality when not adequately treated. Substantial advances in acromegaly treatment, as well as in the treatment of many of its complications, mainly diabetes mellitus, heart failure, and arterial hypertension, were achieved in the last decades. These developments allowed change in both prevalence and severity of some acromegaly complications and furthermore resulted in a reduction of mortality. Currently, mortality seems to be similar to the general population in adequately treated patients with acromegaly. In this review, we update the knowledge in complications of acromegaly and detail the effects of different acromegaly treatment options on these complications. Incidence of mortality, its correlation with GH (cumulative exposure vs last value), and IGF-I levels and the shift in the main cause of mortality in patients with acromegaly are also addressed.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Dawn S T Lim
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Maria Fleseriu
- Department of Endocrinology, Diabetes and Metabolism, Oregon Health and Science University, Portland, Oregon.,Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon.,Northwest Pituitary Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
Coker-Gurkan A, Bulut D, Genc R, Arisan ED, Obakan-Yerlikaya P, Palavan-Unsal N. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol Biol Rep 2018; 46:355-369. [PMID: 30467667 DOI: 10.1007/s11033-018-4479-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Autocrine growth hormone (GH) signaling is a promoting factor for breast cancer via triggering abnormal cell growth, proliferation, and metastasis, drug resistance. Curcumin (diferuloylmethane), a polyphenol derived from turmeric (Curcuma longa), has anti-proliferative, anti-carcinogenic, anti-hormonal effect via acting on PI3K/Akt, NF-κB and JAK/STAT signaling. Forced GH expression induced epithelial mesenchymal transition (EMT) through stimulation of miR-182-96-183 cluster expression in breast cancer cells. This study aimed to investigate the role of NF-κB signaling and miR-182-96-183 cluster expression profile on autocrine GH-mediated curcumin resistance, which was prevented by time-dependent curcumin treatment in T47D breast cancer cells. Dose- and time-dependent effect of curcumin on T47D wt and GH+ breast cancer cells were evaluated by MTT cell viability and trypan blue assay. Apoptotic effect of curcumin was determined by PI and Annexin V/PI FACS flow analysis. Immunoblotting performed to investigate the effect of curcumin on PI3K/Akt/MAPK, NF-κB signaling. miR182-96-183 cluster expression profile was observed by qRT-PCR. Overexpression of GH triggered resistant profile against curcumin (20 µM) treatment for 24 h, but this resistance was accomplished following 48 h curcumin exposure. Concomitantly, forced GH induced invasion and metastasis through EMT and NF-κB activation were prevented by long-term curcumin exposure in T47D cells. Moreover, 48 h curcumin treatment prevented the autocrine GH-mediated miR-182-96-183 cluster expression stimulation in T47D cells. In consequence, curcumin treatment for 48 h, prevented autocrine GH-triggered invasion-metastasis, EMT activation through inhibiting NF-κB signaling and miR-182-96-183 cluster expression and induced apoptotic cell death by modulating Bcl-2 family members in T47D breast cancer cells.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Derya Bulut
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Recep Genc
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
22
|
Wang S, Gao P, Li N, Chen P, Wang J, He N, Ji K, Du L, Liu Q. Autocrine secretions enhance radioresistance in an exosome‑independent manner in NSCLC cells. Int J Oncol 2018; 54:229-238. [PMID: 30387839 DOI: 10.3892/ijo.2018.4620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/01/2018] [Indexed: 11/05/2022] Open
Abstract
Radiotherapy resistance in patient with non‑small cell lung cancer (NSCLC) reduces patient survival and remains a significant challenge for the treatment of NSCLC. Radiation resistance has been demonstrated to be affected by secreted factors, yet it remains unclear how autocrine secretions affect the radioresistance of NSCLC cells. In the present study, the NSCLC cell line, NCI‑H460, was irradiated with γ‑rays (4 Gy) and then cultured in medium from H460 cells or normal medium to examine the potential influence of cell secretions on the radiation resistance of H460 cells. Cell viability, accumulation of reactive oxygen species and DNA repair capacity were all markedly improved in the irradiated H460 cells that were cultured in conditioned medium (CM), compared with those cells cultured in normal medium. In addition, G2/M cell cycle arrest and upregulation of homologous recombination repair proteins were observed in the CM‑treated cells, while exosomes secreted by H460 cells had no influence on the radiation resistance of H460 cells. Taken together, these results indicate that autocrine secretions enhance the radiation resistance of γ‑irradiated H460 cells and that these secretions mainly affect the DNA repair process.
Collapse
Affiliation(s)
- Shuang Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Piaoyang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Na Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Ping Chen
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
23
|
Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB, Palavan-Unsal N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids 2018; 50:1045-1069. [PMID: 29770869 DOI: 10.1007/s00726-018-2581-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
Curcumin is assumed to be a plant-derived therapeutic drug that triggers apoptotic cell death in vitro and in vivo by affecting different molecular targets such as NF-κB. Phase I/II trial of curcumin alone or with chemotherapeutic drugs has been accomplished in pancreatic, colon, prostate and breast cancer cases. Recently, autocrine growth hormone (GH) signaling-induced cell growth, metastasis and drug resistance have been demonstrated in breast cancer. In this study, our aim was to investigate the potential therapeutic effect of curcumin by evaluating the molecular machinery of curcumin-triggered apoptotic cell death via focusing on NF-κB signaling and polyamine (PA) metabolism in autocrine GH-expressing MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells. For this purpose, a pcDNA3.1 (+) vector with a GH gene insert was transfected by a liposomal agent in all breast cancer cells and then selection was conducted in neomycin (G418) included media. Autocrine GH-induced curcumin resistance was overcome in a dose-dependent manner and curcumin inhibited cell proliferation, invasion-metastasis and phosphorylation of p65 (Ser536), and thereby partly prevented its DNA binding activity in breast cancer cells. Moreover, curcumin induced caspase-mediated apoptotic cell death by activating the PA catabolic enzyme expressions, which led to generation of toxic by-products such as H2O2 in MCF-7, MDA-MB-453 and MDA-MB-231 GH+ breast cancer cells. In addition, transient silencing of SSAT prevented curcumin-induced cell viability loss and apoptotic cell death in each breast cancer cells. In conclusion, curcumin could overcome the GH-mediated resistant phenotype via modulating cell survival, death-related signaling routes and activating PA catabolic pathway.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Merve Celik
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Merve Ugur
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Zeynep Begum Durdu
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
24
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
25
|
Kong X, Wu W, Yuan Y, Pandey V, Wu Z, Lu X, Zhang W, Chen Y, Wu M, Zhang M, Li G, Tan S, Qian P, Perry JK, Lobie PE, Zhu T. Human growth hormone and human prolactin function as autocrine/paracrine promoters of progression of hepatocellular carcinoma. Oncotarget 2017; 7:29465-79. [PMID: 27102295 PMCID: PMC5045410 DOI: 10.18632/oncotarget.8781] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/24/2016] [Indexed: 11/25/2022] Open
Abstract
The death rates of hepatocellular carcinoma (HCC) are extremely high due to the paucity of therapeutic options. Animal models and anecdotal clinical evidence indicate a potential role of hGH and hPRL in HCC. However, the prognostic relevance and the functional role of tumor expression of these hormones in human HCC are not defined. Herein, we analyzed the mRNA and protein expression of hGH and hPRL in histopathological samples of non-neoplastic liver and HCC by in situ hybridization, PCR and immunohistochemistry techniques. Increased mRNA and protein expression of both hormones was observed in HCC compared with non-neoplastic liver tissues. hGH expression was significantly associated with tumor size and tumor grade. No significant association was observed between the expression of hPRL and any histopathological features. Amplification of both hGH and hPRL genes in HCC was observed when compared to non-neoplastic tissue. Expression of both hGH and hPRL was associated with worse relapse-free and overall survival in HCC patients. In vitro and in vivo functional assays performed with HCC cell lines demonstrated that autocrine expression of hGH or hPRL in HCC cells increased STAT3 activation, oncogenicity and tumor growth while functional antagonism with hGH-G120R significantly reduced these parameters. Hence, tumor expression of hGH/hPRL is associated with a worse survival outcome for patients with HCC and hGH/hPRL function as autocrine/paracrine promoters of HCC progression.
Collapse
Affiliation(s)
- Xiangjun Kong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Wenyong Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Yuan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuefei Lu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Weijie Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Yijun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Mingming Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Min Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Gaopeng Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Sheng Tan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Pengxu Qian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.,National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| |
Collapse
|
26
|
Autocrine hGH stimulates oncogenicity, epithelial-mesenchymal transition and cancer stem cell-like behavior in human colorectal carcinoma. Oncotarget 2017; 8:103900-103918. [PMID: 29262609 PMCID: PMC5732775 DOI: 10.18632/oncotarget.21812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor derived human growth hormone (hGH) has been implicated in cancer development and progression. However, the specific functional role of autocrine/paracrine hGH in colorectal cancer (CRC) remains largely to be determined. Herein, we demonstrated a crucial oncogenic role of autocrine hGH in CRC progression. Elevated hGH expression was detected in CRC compared to normal colorectal tissue, and hGH expression in CRC was positively associated with tumor size and lymph node metastasis. Forced expression of hGH stimulated cell proliferation, survival, oncogenicity and epithelial to mesenchymal transition (EMT) of CRC cells, and promoted xenograft growth and local invasion in vivo. Autocrine hGH expression in CRC cells stimulated the activation of the ERK1/2 pathway, which in turn resulted in increased transcription of the mesenchymal marker FIBRONECTIN 1 and transcriptional repression of the epithelial marker E-CADHERIN. The autocrine hGH-stimulated increase in CRC cell proliferation, cell survival and EMT was abrogated upon ERK1/2 inhibition. Furthermore, autocrine hGH-stimulated CRC cell migration and invasion was dependent on the ERK1/2-mediated increase in FIBRONECTIN 1 expression and decrease in E-CADHERIN expression. Forced expression of hGH also enhanced CSC-like behavior of CRC cells, as characterized by increased colonosphere formation, ALDH-positive population and CSC marker expression. Autocrine hGH-enhanced cancer stem cell (CSC)-like behavior in CRC cells was also observed to be E-CADHERIN-dependent. Thus, autocrine hGH plays a critical role in CRC progression, and inhibition of hGH could be a promising targeted therapeutic approach to limit disease progression in metastatic CRC patients.
Collapse
|
27
|
Kandaz M, Ertekin MV, Karslıoğlu İ, Erdoğan F, Sezen O, Gepdiremen A, Gündoğdu C. Zinc Sulfate and/or Growth Hormone Administration for the Prevention of Radiation-Induced Dermatitis: a Placebo-Controlled Rat Model Study. Biol Trace Elem Res 2017; 179:110-116. [PMID: 28168533 DOI: 10.1007/s12011-017-0952-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) and zinc (Zn) were evaluated for their potential to prevent radiation injury using a rat model of radiation-induced skin injury. Sprague-Dawley rats were divided into five groups: a control group not receiving Zn, GH, or irradiation: a radiation (RT) group receiving a single 30 Gy dose of gamma irradiation to the right hind legs; a radiation + GH group (RT + GH) receiving a single 30 Gy dose of gamma irradiation plus the subcutaneous administration of 0.01 IU kg d-1 GH; a radiation + Zn group (RT + Zn) receiving a single 30 Gy dose plus 5 mg kg d-1 Zn po; and a radiation + GH + Zn group (RT + GH + Zn) group receiving a single 30 Gy dose plus subcutaneous 0.01 IU kg d-1 GH and 5 mg kg d-1 Zn po. Acute skin reactions were assessed every 3 days by two radiation oncologists grouping. Light microscopic findings were assessed blindly by two pathologists. Groups receiving irradiation were associated with dermatitis as compared to the control group (P < 0.05). The severity of radiodermatitis in the RT + GH, RT + Zn, and RT + GH + Zn groups was significantly lower than that in the RT group (P < 0.05). Furthermore, radiodermatitis was observed earlier in the RT group than in the other treatment groups (P < 0.05). GH and Zn effectively prevented epidermal atrophy, dermal degeneration, and hair follicle atrophy. The highest level of protection against radiation dermatitis was observed in the combination group.
Collapse
Affiliation(s)
- Mustafa Kandaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61100, Trabzon, Turkey.
| | - Mustafa Vecdi Ertekin
- Department of Radiation Oncology, Avrasya Hospital, Beştelsiz Mah., 101., Sok., No:107, Akşemsettin Tramvay Durağı, Zeytinburnu, 34020, Istanbul, Turkey
| | - İhsan Karslıoğlu
- Department of Radiation Oncology, Medikal Park Hospital, Olgunlar Mahallesi, Atatürk Bulvarı, No:5, 23040, Elazığ, Turkey
| | - Fazlı Erdoğan
- Department of Pathology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Orhan Sezen
- Department of Radiation Oncology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Akçahan Gepdiremen
- Department of Pharmacology, Faculty of Medicine, Abant İzzet Baysal University, Gölköy Yerleşkesi, 14300, Bolu, Turkey
| | - Cemal Gündoğdu
- Department of Pathology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
28
|
Abstract
The growth hormone (GH) and insulin-like growth factor-1 (IGF1) axis is the key regulator of longitudinal growth, promoting postnatal bone and muscle growth. The available data suggest that GH expression by tumour cells is associated with the aetiology and progression of various cancers such as endometrial, breast, liver, prostate, and colon cancer. Accordingly there has been increased interest in targeting GH-mediated signal transduction in a therapeutic setting. Because GH has endocrine, autocrine, and paracrine actions, therapeutic strategies will need to take into account systemic and local functions. Activation of related hormone receptors and crosstalk with other signalling pathways are also key considerations.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, University of Auckland, 1023 Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1023 Auckland, New Zealand
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, PR China
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1052-Centre National de la Recherche Scientifique (CNRS) 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, 117456 Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School, Shenzhen, PR China.
| |
Collapse
|
29
|
Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW, Melmed S. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 2017; 158:2255-2268. [PMID: 28444169 PMCID: PMC5505214 DOI: 10.1210/en.2016-1939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) growth is mainly driven by androgen receptor (AR), and tumors that initially respond to androgen deprivation therapy (ADT) or AR inhibition usually relapse into a more aggressive, castration-resistant PCa (CRPC) stage. Circulating growth hormone (GH) has a permissive role in PCa development in animal models and in human PCa xenograft growth. As GH and GH receptor (GHR) are both expressed in PCa cells, we assessed whether prostatic GH production is linked to AR activity and whether GH contributes to the castration-resistant phenotype. Using online datasets, we found that GH is highly expressed in human CRPC. We observed increased GH expression in castration-resistant C4-2 compared with castration-sensitive LNCaP cells as well as in enzalutamide (MDV3100)-resistant (MDVR) C4-2B (C4-2B MDVR) cells compared with parental C4-2B. We describe a negative regulation of locally produced GH by androgens/AR in PCa cells following treatment with AR agonists (R1881) and antagonists (enzalutamide, bicalutamide). We also show that GH enhances invasive behavior of CRPC 22Rv1 cells, as reflected by increased migration, invasion, and anchorage-independent growth, as well as expression of matrix metalloproteases. Moreover, GH induces expression of the AR splice variant 7, which correlates with antiandrogen resistance, and also induces insulinlike growth factor 1, which is implicated in PCa progression and ligand-independent AR activation. In contrast, blockade of GH action with the GHR antagonist pegvisomant reverses these effects both in vitro and in vivo. GH induction following ADT or AR inhibition may contribute to CRPC progression by bypassing androgen growth requirements.
Collapse
Affiliation(s)
| | - J. Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, 99202
| | - Allen C. Gao
- Department of Urology, University of California at Davis, Sacramento, California, 95817
| | - Svetlana Zonis
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Vera Chesnokova
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Leland W. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| |
Collapse
|
30
|
Basu R, Baumgaertel N, Wu S, Kopchick JJ. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps. HORMONES & CANCER 2017; 8:143-156. [PMID: 28293855 PMCID: PMC10355985 DOI: 10.1007/s12672-017-0292-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - Nicholas Baumgaertel
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA.
- Heritage College of Osteopathic Medicine, Athens, OH, USA.
| |
Collapse
|
31
|
Basu R, Wu S, Kopchick JJ. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017; 8:21579-21598. [PMID: 28223541 PMCID: PMC5400608 DOI: 10.18632/oncotarget.15375] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
32
|
Evans A, Jamieson SM, Liu DX, Wilson WR, Perry JK. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model. Cancer Lett 2016; 379:117-23. [DOI: 10.1016/j.canlet.2016.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
|
33
|
Lang B, Shang C, Meng L. Targeted Silencing of S100A8 Gene by miR-24 to Increase Chemotherapy Sensitivity of Endometrial Carcinoma Cells to Paclitaxel. Med Sci Monit 2016; 22:1953-8. [PMID: 27279639 PMCID: PMC4920097 DOI: 10.12659/msm.899179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The objective of this study was to determine whether miR-24 can regulate malignant proliferation and chemotherapy sensitivity of EC cells by targeted silencing of the S100 Calcium Binding Protein A8 (S100A8) gene. Material/Methods The expression of miR-24 in EC tissues was detected by quantitative real-time PCR. The proliferation ability and chemotherapy sensitivity were analyzed by MTT assay. Bioinformatics software was used to predict some potential target genes of miR-24. Luciferase activity assay was used to verify the relationship between target genes and miR-24. S100A8 protein expression was detected by Western blot analysis. Results The low expression of miR-24 in EC tissues compared with normal control tissues suggests miR-24 might play a role in tumorigenesis of EC. EC HEC-1A cells were transfected with miR-24 agonist (agomiR-24) to up-regulate the expression of miR-24. Up-regulation of miR-24 inhibited the cell proliferation and advanced the chemotherapy sensitivity to paclitaxel in HEC-1A cells significantly. We used several types of bioinformatic software to predict that miR-24 could specifically combine with the 3′ untranslated region (3′UTR) of the S100A8 gene, and this prediction was verified by Western blot and luciferase activities assay. The regulation effects of miR-24 enhancement on cell proliferation and chemotherapy sensitivity were largely reversed by S100A8 up-regulation. Conclusions miR-24 acts as a tumor-suppressing gene to inhibit malignant proliferation and advance chemotherapy sensitivity to paclitaxel in EC by targeted silencing of the S100A8 gene.
Collapse
Affiliation(s)
- Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao, China (mainland)
| |
Collapse
|
34
|
Abdel-Wahab R, Shehata S, Hassan MM, Habra MA, Eskandari G, Tinkey PT, Mitchell J, Lee JS, Amin HM, Kaseb AO. Type I insulin-like growth factor as a liver reserve assessment tool in hepatocellular carcinoma. J Hepatocell Carcinoma 2015; 2:131-42. [PMID: 27508202 PMCID: PMC4918293 DOI: 10.2147/jhc.s81309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic liver diseases (CLDs) encompass a wide range of illnesses, including nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and viral hepatitis. Deterioration of liver capacity, with subsequent progression into cirrhosis and hepatocellular carcinoma (HCC), ultimately leads to a further decrease in the hepatic reserve. The Child-Turcotte-Pugh scoring system is the standard tool for assessing underlying liver reserve capacity in routine practice and in clinical trials of CLD and HCC. In this review, we highlight the clinical significance of insulin-like growth factor-I (IGF-I) and the growth hormone (GH) signaling pathway in HCC. IGF-I could be a marker for liver reserve capacity in CLDs and HCC in clinical practice. This approach could improve the risk assessment and stratifications of patients on the basis of their underlying liver reserve, either before active treatment in routine practice or before they are enrolled in clinical trials.
Collapse
Affiliation(s)
- Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Samir Shehata
- Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mouhammed A Habra
- Department of Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghazaleh Eskandari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peggy T Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Mitchell
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Chen YJ, Zhang X, Wu ZS, Wang JJ, Lau AYC, Zhu T, Lobie PE. Autocrine human growth hormone stimulates the tumor initiating capacity and metastasis of estrogen receptor-negative mammary carcinoma cells. Cancer Lett 2015; 365:182-9. [PMID: 26070963 DOI: 10.1016/j.canlet.2015.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022]
Abstract
The oncogenic effects of autocrine human growth hormone (hGH) have been intensively investigated in estrogen receptor-positive mammary carcinoma (ER + MC) cells. We demonstrated herein that autocrine hGH promoted cancer stem cell (CSC)-like properties of estrogen receptor-negative mammary carcinoma (ER-MC) cells in vitro. In xenograft studies, autocrine hGH increased the tumor initiating capacity of ER-MC cells. We also observed that autocrine hGH promoted migration and invasion of ER-MC cells in vitro, and metastasis in vivo. Thus, inhibition of hGH is a potential therapeutic strategy to prevent tumor initiation and metastasis of ER-MC.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Pharmacology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xiao Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Jing-Jing Wang
- Department of Pharmacology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Amy Yong-Chen Lau
- Department of Pharmacology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| | - Peter E Lobie
- Department of Pharmacology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Wu XY, Chen C, Yao XQ, Cao QH, Xu Z, Li WS, Liu FK, Li G. Growth hormone protects colorectal cancer cells from radiation by improving the ability of DNA damage repair. Mol Med Rep 2014; 10:486-90. [PMID: 24788673 DOI: 10.3892/mmr.2014.2185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine the effects of recombinant human growth hormone (rhGH) on the sensitivity of a colorectal cancer cell line to radiotherapy, and to investigate its association with DNA damage and repair. Flow cytometry and immunofluorescence were employed to detect growth hormone receptor (GHR) expression in nine human colorectal cancer cell lines. A colony forming assay was performed to measure the colorectal cancer cell proliferation post‑radiotherapy, as an indicator of radiotherapy sensitivity. The comet assay results were interpreted as an indicator of radiotherapy‑induced DNA damage, and growth arrest and DNA damage 45 (GADD45) and apurinic/apyrimidinic endonuclease (APEN) protein expression were quantified with western blot analysis from the same cell lines. The results demonstrated that the colony‑forming efficiency (CFE) was significantly increased in HCT‑8 cells subject to radiotherapy and rhGH pretreatment compared with the cells treated with radiotherapy alone, in a dose‑dependent manner (0‑100 mg/l). This effect was enhanced under high doses of radiation (8 Gy; 52.1±2.9 vs. 21.0±2.7; P<0.001) and was ameliorated with GHR neutralizing antibody exposure. By contrast, rhGH pre‑incubation did not change the colony formation rate in GHR(‑) LOVO cells. rhGH intervention reduced the early HCT‑8 cell DNA damage (21.53±2.88 vs. 36.56±3.93; P=0.003) as well as the following plateau phase, compared with cells treated with radiotherapy alone (5.5±0.42 vs. 9.07±0.84; P=0.012). rhGH upregulated GADD45 and APEN protein expression, which is associated with cellular stress responses and DNA damage repair (P=0.007). The results suggest that rhGH is able to protect colorectal cancer cells from radiation through the interaction with GHR, which is associated with the promotion of DNA damage repair activity.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Che Chen
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xue-Quan Yao
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qin-Hong Cao
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhe Xu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Su Li
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fu-Kun Liu
- Department of Gastrointestinal Tumor Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Animals born with a deficiency in the cell surface receptor for growth hormone (GH) have a significantly reduced risk of developing cancer. Conversely, increased expression levels of GH and the GH receptor (GHR) are detectable in a variety of different human cancers. Here we discuss recent literature contributing to our understanding of the field. RECENT FINDINGS In addition to animal evidence, studies of individuals with Laron syndrome suggest that congenital GHR deficiency may also protect humans against cancer. GH expression in certain malignancies is correlated with clinicohistopathological parameters and may contribute the therapeutic resistance. Other recent studies have identified novel aspects of the GH signal transduction pathway, including receptor crosstalk and the involvement of microRNA in endocrine regulation of GH. SUMMARY Substantial evidence suggests the GH/insulin-like growth factor-1 axis initiates and promotes progression of cancer. However, important questions remain unanswered regarding the therapeutic utility of GH or GHR antagonism in cancer. Further clinical studies regarding the clinical association of GH expression with human malignancies and translational studies investigating GHR antagonism in animal models of human cancer are critical.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|