1
|
Ahmed R, Samanta S, Banerjee J, Kar SS, Dash SK. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100131. [PMID: 36568259 PMCID: PMC9780070 DOI: 10.1016/j.crphar.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Over the past few decades, thyroid cancer has become one of the most common types of endocrine cancer, contributing to an increase in prevalence. In the year 2020, there were 586,202 newly diagnosed cases of thyroid cancer around the world. This constituted approximately 3.0% of all patients diagnosed with cancer. The World Health Organization reported that there will be 2.3 million women receiving treatment for breast cancer in 2020, with 685,000. Despite the fact that carcinoma is one of the world's leading causes of death, there is still a paucity of information about its biology. MicroRNAs (miRNAs; miRs) are non-coding RNAs that can reduce gene expression by cleaving the 3' untranslated regions of mRNA. These factors make them a potential protein translation inhibitor. Diverse biological mechanisms implicated in the genesis of cancer are modulated by miRNA. The investigation of global miRNA expression in cancer showed regulatory activity through up regulation and down-regulation in several cancers, including thyroid cancer and breast cancer. In thyroid cancer, miRNA influences several cancers related signaling pathways through modulating MAPK, PI3K, and the RAS pathway. In breast cancer, the regulatory activity of miRNA was played through the cyclin protein family, protein kinases and their inhibitors, and other growth promoters or suppressors, which modulated cell proliferation and cell cycle progression. This article's goal is to discuss key miRNA expressions that are involved in the development of thyroid and breast cancer as well as their therapeutic manipulation for these two specific cancer types.
Collapse
Affiliation(s)
- Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College and Hospital, Kolkata, 700004, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India,Corresponding author.
| |
Collapse
|
2
|
Gan Y, Fang W, Zeng Y, Wang P, Shan R, Zhang L. Identification of a Novel Survival-Related circRNA–miRNA–mRNA Regulatory Network Related to Immune Infiltration in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:800537. [PMID: 35309118 PMCID: PMC8924452 DOI: 10.3389/fgene.2022.800537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing studies have reported that circular RNAs (circRNAs) play critical roles in tumorigenesis and cancer progression. However, the underlying regulatory mechanisms of circRNA-related competing endogenous RNA (ceRNA) in liver hepatocellular carcinoma (LIHC) are still unclear. In the present study, we discovered dysregulated circRNAs through Gene Expression Omnibus (GEO) analysis and validated the expression of the top seven circRNAs with upregulated expression by qRT–PCR and Sanger sequencing. Then, the Cancer-Specific CircRNA Database (CSCD) was used to predict the downstream miRNAs of seven circRNAs, and expression and survival analyses through The Cancer Genome Atlas (TCGA) were performed to identify the key miRNA in LIHC. Thereafter, the hsa_circ_0017264-hsa-miR-195–5p subnetwork was successfully constructed. Subsequently, we predicted downstream target genes of hsa-miR-195–5p with TargetScan, miRDB, and mirtarbase and overlapped them with differentially expressed mRNAs to obtain 21 target genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the biological and functional roles of these target genes. Finally, with Pearson correlation and prognostic value analysis, a survival-related hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 axis was established. Gene set enrichment analysis (GSEA) was performed to determine the function of CHEK1/CDC25A/FOXK1 in the ceRNA network. Moreover, immune infiltration analysis revealed that the ceRNA network was markedly associated with the levels of multiple immune cell infiltrates, immune cell biomarkers and immune checkpoints. Overall, the hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 network might provide novel insights into the potential mechanisms underlying LIHC onset and progression.
Collapse
Affiliation(s)
- Yu Gan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weidan Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peijun Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Human Genetic Resources Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ling Zhang,
| |
Collapse
|
3
|
Yin Y, Huang J, Shi H, Huang Y, Huang Z, Song M, Yin L. LINC01087 Promotes the Proliferation, Migration, and Invasion of Thyroid Cancer Cells by Upregulating PPM1E. JOURNAL OF ONCOLOGY 2022; 2022:7787378. [PMID: 35368894 PMCID: PMC8975626 DOI: 10.1155/2022/7787378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
This study is aimed at investigating the effect and mechanism of LINC01087 on the malignant evolution of thyroid cancer cells. The expression levels of LINC01087, miR-135a-5p, and PPM1E in thyroid carcinoma tissues were detected by QRT-PCR. Cell viability was detected using the CCK-8 method. Transwell assay was used to assess the ability of cells to invade. The targeting relationship between LINC01087 and miR-135a-5p was detected by dual luciferase reporting assay. In comparison with normal thyroid tissues and cells, the expression level of LINC01087 in thyroid cancer tissues and TPC-1 and K1 cells increased, and the expression level of miR-135a-5p in thyroid cancer tissues and TPC-1 and K1 cells decreased. LINC01087 knockdown and the high expression of miR-143-3p inhibited the proliferation, invasion, and EMT processes of TPC-1 and K1 in thyroid cancer cells. LINC01087 negatively targeted miR-135a-5p. Has-miR-135a-5p inhibited the malignant evolution and EMT of thyroid cancer by targeting PPM1E. The PPM1E overexpression can reverse the inhibitory effect of LINC01087 gene knockdown on the proliferation, migration, and invasion of thyroid cancer cells. LINC01087 can promote the proliferation and apoptosis of thyroid cancer cells, and its mechanism may be related to the miR-135a-5p/PPM1E axis.
Collapse
Affiliation(s)
- Ying Yin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhao Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hongyan Shi
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijie Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ziyang Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Muye Song
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liping Yin
- Imaging Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations. Noncoding RNA 2021; 7:ncrna7030038. [PMID: 34202122 PMCID: PMC8293323 DOI: 10.3390/ncrna7030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NEN) are infrequent malignant tumors of a neuroendocrine nature that arise in various organs. They occur most frequently in the lungs, intestines, stomach and pancreas. Molecular diagnostics and prognosis of NEN development are highly relevant. The role of clinical biomarkers can be played by microRNAs (miRNAs). This work is devoted to the analysis of data on miRNA expression in NENs. For the first time, a search for specificity or a community of their functional characteristics in different types of NEN was carried out. Their properties as biomarkers were also analyzed. To date, more than 100 miRNAs have been characterized as differentially expressed and significant for the development of NEN tumors. Only about 10% of the studied miRNAs are expressed in several types of NEN; differential expression of the remaining 90% was found only in tumors of specific localizations. A significant number of miRNAs have been identified as potential biomarkers. However, only a few miRNAs have values that characterized their quality as markers. The analysis demonstrates the predominant specific expression of miRNA in each studied type of NEN. This indicates that miRNA’s functional features are predominantly influenced by the tissue in which they are formed.
Collapse
|
5
|
MicroRNAs in Medullary Thyroid Carcinoma: A State of the Art Review of the Regulatory Mechanisms and Future Perspectives. Cells 2021; 10:cells10040955. [PMID: 33924120 PMCID: PMC8074316 DOI: 10.3390/cells10040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignant neoplasia with a variable clinical course, with complete remission often difficult to achieve. Genetic alterations lead to fundamental changes not only in hereditary MTC but also in the sporadic form, with close correlations between mutational status and prognosis. In recent years, microRNAs (miRNAs) have become highly relevant as crucial players in MTC etiology. Current research has focused on their roles in disease carcinogenesis and development, but recent studies have expounded their potential as biomarkers and response predictors to novel biological drugs for advanced MTC. One such element which requires greater investigation is their mechanism of action and the molecular pathways involved in the regulation of gene expression. A more thorough understanding of these mechanisms will help realize the promising potential of miRNAs for MTC therapy and management.
Collapse
|
6
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
7
|
Pishkari S, Hadavi R, Koochaki A, Razaviyan J, Paryan M, Hashemi M, Mohammadi-Yeganeh S. Assessment of AXL and mTOR genes expression in medullary thyroid carcinoma (MTC) cell line in relation with over expression of miR-144 and miR-34a. Horm Mol Biol Clin Investig 2021; 42:265-271. [PMID: 33769725 DOI: 10.1515/hmbci-2020-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the expression of AXL and mTOR genes and their targeting microRNAs (miRNAs) including miR-34a and miR-144 in Medullary Thyroid Carcinoma (MTC) cell line, TT, and determine the effect of these two miRNAs on their target genes to introduce new molecular markers or therapeutics. METHODS The expression of miR-34a, miR-144, and their targets genes including AXL and mTOR was evaluated by quantitative Real-time PCR. Luciferase assay was performed to confirm the interaction between miRNAs and their target mRNAs. The expression level of AXL and mTOR was evaluated before and after miRNAs induction in TT cell line compared with Cos7 as control cells. RESULTS The expression of AXL and mTOR were up-regulated significantly, while miR-34a and miR-144 were down-regulated in TT cell line compared to Cos7. After transduction, the overexpression of miR-34a and 144 caused down-regulation of both genes. Luciferase assay results showed that the mTOR is targeted by miR-34a and miR-144 and the intensity of luciferase decreased in the presence of miRNAs. CONCLUSIONS Based on the results of the present study and since AXL and mTOR genes play a critical role in variety of human cancers, suppression of these genes by their targeting miRNAs, especially miR-34a and miR-144, can be propose as a new strategy for MTC management. However, more studies are needed to approve the hypothesis.
Collapse
Affiliation(s)
- Shaghayegh Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Razie Hadavi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Razaviyan
- Student Research Committee, Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Manso J, Censi S, Mian C. Epigenetic in medullary thyroid cancer: the role of microRNA in tumorigenesis and prognosis. Curr Opin Oncol 2021; 33:9-15. [PMID: 33093335 DOI: 10.1097/cco.0000000000000692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW MicroRNAs emerged as pivotal regulators of cell differentiation, growth, and cell death, suggesting their implication in tumorigenesis and prognosis of cancer. In the last decades, knowledge about the alterations of microRNAs in medullary thyroid cancer (MTC) is increasing. In this review, we try to summarize the most relevant findings regarding microRNA dysregulation in MTC. RECENT FINDINGS A literature analysis was performed in MEDLINE for studies published up to August 2020. Comprehensively, at least 27 different microRNAs have been investigated in MTC showing evidence for overexpression or underexpression in comparison with normal thyroid tissue samples, healthy blood controls, or primary tumor site or hereditary form of MTC. We highlight the evidence in favor of a possible use of microRNAs for diagnosis, prognosis and treatment in MTC and their role in MTC pathogenesis. SUMMARY This review reveals the emerging complexity of the molecular genetic and epigenetic panorama in MTC. Further studies are needed to confirm and refine the findings on microRNA expression pattern in MTC. Thus, in the future, microRNA analysis could enter in clinical practice and may pave the way to new risk-stratification tools and novel therapeutic approaches for MTC.
Collapse
Affiliation(s)
- Jacopo Manso
- Department of Medicine (DIMED), Endocrinology Unit, Padua University, Padua, Italy
| | | | | |
Collapse
|
9
|
Oczko-Wojciechowska M, Czarniecka A, Gawlik T, Jarzab B, Krajewska J. Current status of the prognostic molecular markers in medullary thyroid carcinoma. Endocr Connect 2020; 9:R251-R263. [PMID: 33112827 PMCID: PMC7774764 DOI: 10.1530/ec-20-0374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Medullary thyroid cancer (MTC) is a rare thyroid malignancy, which arises from parafollicular C-cells. It occurs in the hereditary or sporadic form. Hereditary type is a consequence of activation of the RET proto-oncogene by germline mutations, whereas about 80% of sporadic MTC tumors harbor somatic, mainly RET or rarely RAS mutations. According to the current ATA guidelines, a postoperative MTC risk stratification and long-term follow-up are mainly based on histopathological data, including tumor stage, the presence of lymph node and/or distant metastases (TNM classification), and serum concentration of two biomarkers: calcitonin (Ctn) and carcinoembryonic antigen (CEA). The type of RET germline mutation also correlates with MTC clinical characteristics. The most common and the best known RET mutation in sporadic MTC, localized at codon 918, is related to a more aggressive MTC course and poorer survival. However, even if histopathological or clinical features allow to predict a long-term prognosis, they are not sufficient to select the patients showing aggressive MTC courses requiring immediate treatment or those, who are refractory to different therapeutic methods. Besides the RET gene mutations, there are currently no other reliable molecular prognostic markers. This review summarizes the present data of genomic investigation on molecular prognostic factors in medullary thyroid cancer.
Collapse
Affiliation(s)
- Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Oncologic and Reconstructive Surgery Clinic, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Tomasz Gawlik
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
10
|
Chiacchiarini M, Trocchianesi S, Besharat ZM, Po A, Ferretti E. Role of tissue and circulating microRNAs and DNA as biomarkers in medullary thyroid cancer. Pharmacol Ther 2020; 219:107708. [PMID: 33091426 DOI: 10.1016/j.pharmthera.2020.107708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor comprising hereditary or sporadic form with frequent mutations in the rearranged during transfection (RET) or RAS genes. Diagnosis is based on the presence of thyroid tumor mass with altered levels of calcitonin (Ctn) and carcinoembryonal antigen (CEA) in the serum and/or in the cytological smears from fine needle aspiration biopsies. Treatment consists of total thyroidectomy, followed by tyrosine kinase inhibitors (TKi) in case of disease persistence. During TKi treatment, Ctn and CEA levels can fluctuate regardless of tumor volume, metastasis or response to therapy. Research for more reliable non-invasive biomarkers in MTC is still underway. In this context, circulating nucleic acids, namely circulating microRNAs (miRNAs) and cell free DNA (cfDNA), have been evaluated by different research groups. Aiming to shed light on whether miRNAs and cfDNA are suitable as MTC biomarkers we searched three different databases, PubMed, Scopus, WOS and reviewed the literature. We classified 83 publications fulfilling our search criteria and summarized the results. We report data on miRNAs and cfDNA that can be evaluated for validation in independent studies and clinical application.
Collapse
Affiliation(s)
| | - Sofia Trocchianesi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
11
|
Nanayakkara J, Tyryshkin K, Yang X, Wong JJM, Vanderbeck K, Ginter PS, Scognamiglio T, Chen YT, Panarelli N, Cheung NK, Dijk F, Ben-Dov IZ, Kim MK, Singh S, Morozov P, Max KEA, Tuschl T, Renwick N. Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and data mining. NAR Cancer 2020; 2:zcaa009. [PMID: 32743554 PMCID: PMC7380486 DOI: 10.1093/narcan/zcaa009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are clinically diverse and incompletely characterized cancers that are challenging to classify. MicroRNAs (miRNAs) are small regulatory RNAs that can be used to classify cancers. Recently, a morphology-based classification framework for evaluating NENs from different anatomical sites was proposed by experts, with the requirement of improved molecular data integration. Here, we compiled 378 miRNA expression profiles to examine NEN classification through comprehensive miRNA profiling and data mining. Following data preprocessing, our final study cohort included 221 NEN and 114 non-NEN samples, representing 15 NEN pathological types and 5 site-matched non-NEN control groups. Unsupervised hierarchical clustering of miRNA expression profiles clearly separated NENs from non-NENs. Comparative analyses showed that miR-375 and miR-7 expression is substantially higher in NEN cases than non-NEN controls. Correlation analyses showed that NENs from diverse anatomical sites have convergent miRNA expression programs, likely reflecting morphological and functional similarities. Using machine learning approaches, we identified 17 miRNAs to discriminate 15 NEN pathological types and subsequently constructed a multilayer classifier, correctly identifying 217 (98%) of 221 samples and overturning one histological diagnosis. Through our research, we have identified common and type-specific miRNA tissue markers and constructed an accurate miRNA-based classifier, advancing our understanding of NEN diversity.
Collapse
Affiliation(s)
- Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Xiaojing Yang
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Justin J M Wong
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kaitlin Vanderbeck
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Paula S Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nicole Panarelli
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Frederike Dijk
- Department of Pathology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Michelle Kang Kim
- Center for Carcinoid and Neuroendocrine Tumors of Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Simron Singh
- Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON M4N 3M5, Canada
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Klaas E A Max
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Li XJ, Wen R, Wen DY, Lin P, Pan DH, Zhang LJ, He Y, Shi L, Qin YY, Lai YH, Lai JN, Yang JL, Lai QQ, Wang J, Ma J, Yang H, Pang YY. Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Mol Med Rep 2020; 22:2199-2218. [PMID: 32705210 PMCID: PMC7411362 DOI: 10.3892/mmr.2020.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/09/2020] [Indexed: 01/07/2023] Open
Abstract
Thyroid cancer (TC) is a frequently occurring malignant tumor with a rising steadily incidence. microRNA (miRNA/miR)‑193a‑3p is an miRNA that is associated with tumors, playing a crucial role in the genesis and progression of various cancers. However, the expression levels of miR‑193a‑3p and its molecular mechanisms in TC remain to be elucidated. The present study aimed to probe the expression of miR‑193a‑3p and its clinical significance in TC, including its underlying molecular mechanisms. Microarray and RNA sequencing data gathered from three major databases, specifically Gene Expression Omnibus (GEO), ArrayExpress and The Cancer Genome Atlas (TCGA) databases, and the relevant data from the literature were used to examine miR‑193a‑3p expression. Meta‑analysis was also conducted to evaluate the association between clinicopathological parameters and miR‑193a‑3p in 510 TC and 59 normal samples from the TCGA database. miRWalk 3.0, and the TCGA and GEO databases were used to predict the candidate target genes of miR‑193a‑3p. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and protein‑protein interaction network enrichment analyses were conducted by using the predicted candidate target genes to investigate the underlying carcinogenic mechanisms. A dual luciferase assay was performed to validate the targeting regulatory association between the most important hub gene cyclin D1 (CCND1) and miR‑193a‑3p. miR‑193a‑3p expression was considerably downregulated in TC compared with in the non‑cancer controls (P<0.001). The area under the curve of the summary receiver operating characteristic was 0.80. Downregulation of miR‑193a‑3p was also significantly associated with age, sex and metastasis (P=0.020, 0.044 and 0.048, respectively). Bioinformatics analysis indicated that a low miR‑193a‑3p expression may augment CCND1 expression to affect the biological processes of TC. In addition, CCND1, as a straightforward target, was validated through a dual luciferase assay. miR‑193a‑3p and CCND1 may serve as prognostic biomarkers of TC. Finally, miR‑193a‑3p may possess a crucial role in the genesis and progression of TC by altering the CCND1 expression.
Collapse
Affiliation(s)
- Xiao-Jiao Li
- Department of Positron Emission Tomography‑Computed Tomography (PET‑CT), First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu He
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Shi
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Yong-Ying Qin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Hui Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jing-Ni Lai
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Lin Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qin-Qiao Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Wang
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Ma
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
13
|
Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. JOURNAL OF ONCOLOGY 2020; 2020:2052396. [PMID: 32565797 PMCID: PMC7290866 DOI: 10.1155/2020/2052396] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Thyroid cancer is one of the most common endocrine cancers, with an increasing trend in the last few decades. Although papillary thyroid cancer is the most frequent subtype compared with follicular or anaplastic thyroid cancer, it can dedifferentiate to a more aggressive phenotype, and the recurrence rate is high. The cells of follicular adenomas and follicular carcinomas appear identical in cytology, making the preoperative diagnosis difficult. On the other hand, anaplastic thyroid cancer poses a significant clinical challenge due to its aggressive nature with no effective therapeutic options. In the past several years, the roles of genetic alterations of thyroid tumors have been documented, with a remarkable correlation between genotype and phenotype, indicating that distinct molecular changes are associated with a multistep tumorigenic process. Besides mRNA expression profiles, small noncoding microRNA (miRNA) expression also showed critical functions for cell differentiation, proliferation, angiogenesis, and resistance to apoptosis and finally activating invasion and metastasis in cancer. Several high-throughput sequencing studies demonstrate that miRNA expression signatures contribute clinically relevant information including types of thyroid cancer, tumor grade, and prognosis. This review summarizes recent findings on miRNA signatures in thyroid cancer subtypes.
Collapse
|
14
|
Li Q, Wang P, Sun C, Wang C, Sun Y. Integrative Analysis of Methylation and Transcriptome Identified Epigenetically Regulated lncRNAs With Prognostic Relevance for Thyroid Cancer. Front Bioeng Biotechnol 2020; 7:439. [PMID: 31998704 PMCID: PMC6962111 DOI: 10.3389/fbioe.2019.00439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence has shown that epigenetic changes in DNA methylation, an important regulator of long non-coding RNA (lncRNA) expression, can disturb the expression patterns of lncRNAs and contribute to carcinogenesis. However, knowledge about crosstalk effects between DNA methylation and lncRNA regulation in thyroid cancer (THCA) remain largely unknown. In this study, we performed an integrated analysis of methylation and the transcriptome and identified 483 epigenetically regulated lncRNAs (EpilncRNAs) associated with the development and progression of THCA. These EpilncRNAs can be divided into two categories based on their methylation and expression patterns: 228 HyperLncRNAs and 255 HypoLncRNAs. Then, we identified a methylation-driven 5-lncRNA-based signature (EpiLncPM) to improve prognosis prediction using the random survival forest and multivariate Cox analysis, which were then validated using the training dataset [Hazard ratio (HR) = 50.097, 95% confidence interval (CI): 10.231-245.312, p < 0.001] and testing dataset (HR = 4.395, 95% CI: 0.981-19.686, p = 0.053). Multivariate analysis suggested that the EpiLncPM is an independent prognostic factor. By performing a functional enrichment analysis of GO and KEGG for mRNAs co-expressed with the EpiLncPM, we found that the EpiLncPM was involved in immune and inflammatory-related biological processes. Finally, in situ hybridization analysis in 119 papillary thyroid carcinoma (PTC) tissues and paired adjacent normal tissues revealed that selected candidate lncRNA AC110011 has significantly higher expression of PTC compared to adjacent non-neoplastic tissues, and was closely related to the tumor size, lymph node metastasis, and extrathyroidal extension. In summary, our study characterized the crosstalk between DNA methylation and lncRNA, and provided novel biomarkers for the prognosis of THCA.
Collapse
Affiliation(s)
- Qiuying Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chuanhui Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Jiang M, Shi X, Zhu H, Wei W, Li J. Two GEO MicroRNA Expression Profile Based High-Throughput Screen to Identify MicroRNA-31-3p Regulating Growth of Medullary Thyroid Carcinoma Cell by Targeting RASA2. Med Sci Monit 2019; 25:5170-5180. [PMID: 31298226 PMCID: PMC6642674 DOI: 10.12659/msm.916815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC), a rare type of thyroid cancer, is a big challenge in clinical treatment. However, the pathogenesis of MTC remains poorly understand. MicroRNAs (miRNAs) were previously demonstrated to be involved in the pathogenesis of MTC, however, the roles of majority of miRNAs in MTC are still undetermined. Material/Methods Two GEO miRNA expression profiles (GSE40807, GSE97070) were downloaded, and the differentially expressed miRNAs (DEmiRNAs) of GSE40807 and GSE97070 were analyzed by bioinformatics methods. Expressions of miRNAs were detected by quantitative real-time polymerase chain reaction; cell proliferation was examined through Cell Counting Kit-8, colony formation and in vivo tumor growth assays; the interaction between miRNA and mRNA was verified by dual-luciferase reporter assay; functional analysis of target genes was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID, www.david.ncifcrf.gov) software. Results Ten miRNAs were identified to be dysregulated in both GSE40807 and GSE97070 datasets, and miR-31-3p showed the highest change fold (Log fold change=−3.460625 in GSE40807 and Log fold change=−0.07084374 in GSE97070). MiR-31-3p expression was significantly downregulated in MTC, and low miR-31-3p expression showed a poor prognosis relative to high miR-31-3p expression (P<0.05). Functionally, miR-31-3p inhibited MTC cell proliferation in vitro and in vivo. Functional analysis also showed that the target genes of miR-31-3p were involved in numerous of biochemical processes and pathways, of which Ras signaling pathway was selected for further study. RASA2, overexpressed in MTC, were negatively regulated by miR-31-3p. In addition, we found that knockdown of RASA2 inhibited MTC cell proliferation. Conclusions Reduced expression level of miR-31-3p might play a key role in the tumorigenesis of MTC by targeting critical pathways, especially Ras signaling pathway.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjian, China (mainland)
| | - Hua Zhu
- Department of Mental Health, Shenzhen Futian Hospital for Chronic Diseases, Shenzhen, Guangdong, China (mainland)
| | - Wu Wei
- Department of Emergency, Dongying District People's Hospital, Dongying, Shandong, China (mainland)
| | - Jinyan Li
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
16
|
Zhang L, Lu D, Liu M, Zhang M, Peng Q. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Mol Med Rep 2019; 20:2316-2324. [PMID: 31322209 PMCID: PMC6691269 DOI: 10.3892/mmr.2019.10463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is an endocrine tumor and comprises 5–10% of all primary thyroid malignancies. However, the biomechanical contribution to the development and progression of MTC remains unclear. In this study, To discover the key microRNAs (miRNAs or miRs) and their potential roles in the tumorigenesis of MTC, the microarray datasets GSE97070, GSE40807 and GSE27155 were analyzed. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs (DEMs) and genes (DEGs) were accessed by R. Targets of DEMs and predicted using starBase, and functional and pathway enrichment analyses were performed using Metascape. A protein-protein interaction (PPI) network and an analysis of modules were constructed using NetworkAnalyst. Finally, a network was constructed to show the regulatory association between transcription factors (TFs), DEMs and downstream genes. A total of 5 DEMs were found both in GSE97070 and GSE40807, including 3 upregulated DEMs and 2 downregulated DEMs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses from Metascape revealed that the target genes of upregulated DEMs were significantly enriched in adherens junction, kinase and protein binding, while the target genes of downregulated DEMs were mainly involved in non-canonical Wnt signaling pathway and RNA transport. From the PPI network, 13 nodes were screened as hub genes. Pathway enrichment analysis revealed that the top 5 modules were mostly enriched in the neurotrophin signaling pathway, mRNA surveillance pathway and MAPK signaling pathway. In addition, the TF-DEMs-target gene and DEGs regulatory network revealed that 17 TFs regulated 2 miRNAs, including upregulated or downregulated DEMs, CREB1 regulated all upregulated DEMs, and TGFB1 was an activator of hsa-miR-199a-3p and a repressor of hsa-miR-429. Taken together, the present study identified several miRNAs and potential biological mechanisms involved in the tumorigenesis of MTC. This study identified the key DEMs and potential mechanisms underlying the development of MTC, and provided a series of biomarkers and targets for the management of MTC.
Collapse
Affiliation(s)
- Lijie Zhang
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Donghui Lu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Meiqin Liu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Mingjin Zhang
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Quan Peng
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
17
|
Joo LJS, Weiss J, Gill AJ, Clifton-Bligh R, Brahmbhatt H, MacDiarmid JA, Gild ML, Robinson BG, Zhao JT, Sidhu SB. RET Kinase-Regulated MicroRNA-153-3p Improves Therapeutic Efficacy in Medullary Thyroid Carcinoma. Thyroid 2019; 29:830-844. [PMID: 30929576 DOI: 10.1089/thy.2018.0525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Medullary thyroid carcinoma (MTC) presents a disproportionate number of thyroid cancer deaths due to limited treatment options beyond surgery. Gain-of-function mutations of the human REarranged during Transfection (RET) proto-oncogene have been well-established as the key driver of MTC tumorigenesis. RET has been targeted by tyrosine kinase inhibitors (TKIs), such as cabozantinib and vandetanib. However, clinical results have been disappointing, with regular dose reductions and inevitable progression. This study aimed to identify RET-regulated microRNAs (miRNAs) and explore their potential as novel therapeutic targets. Methods: Small RNA sequencing was performed in MTC TT cells before and after RET inhibition to identify RET-regulated miRNAs of significance. In vitro gain-of-function studies were performed to investigate cellular and molecular effects of potential miRNAs on cell phenotypes. Systemic delivery of miRNA in MTC xenografts using EDV™ nanocells, targeted to epidermal growth factor receptor on tumor cells, was employed to assess the therapeutic potential and possible modulation of TKI responses. Results: The study demonstrates the tumor suppressive role of a specific RET-regulated miRNA, microRNA-153-3p (miR-153-3p), in MTC. Targeted intravenous delivery of miR-153-3p impeded the tumor growth in MTC xenografts. Furthermore, combined treatment with miR-153-3p plus cabozantinib caused greater growth inhibition and appeared to reverse cabozantinib resistance. Mechanistically, miR-153-3p targets ribosomal protein S6 kinase B1 (RPS6KB1) of mTOR signaling and reduced downstream phosphorylation of Bcl-2 associated death promoter. Conclusion: This study provides evidence to establish systemic miRNA replacement plus TKIs as a novel therapeutic for patients with metastatic, progressive MTC.
Collapse
Affiliation(s)
- Lauren Jin Suk Joo
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
| | | | - Anthony J Gill
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
- 4 NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital and Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Roderick Clifton-Bligh
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
- 5 Department of Endocrinology; University of Sydney, Sydney, Australia
| | | | | | - Matti L Gild
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 5 Department of Endocrinology; University of Sydney, Sydney, Australia
| | - Bruce G Robinson
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
- 5 Department of Endocrinology; University of Sydney, Sydney, Australia
| | - Jing Ting Zhao
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
| | - Stan B Sidhu
- 1 Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- 2 Faculty of Medicine and Health; University of Sydney, Sydney, Australia
- 6 University of Sydney Endocrine Surgery Unit; Royal North Shore Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 2019; 39:1185-1196. [PMID: 29985991 DOI: 10.1093/carcin/bgy092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and high mortality rate. The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in cell proliferation and cell migration by negatively regulating the PI3K/Akt pathway. PTEN is downregulated by microRNAs in multiple cancers. However, few microRNAs have been reported to directly target PTEN in TNBC. In this study, microRNAs predicted to target PTEN were screened by immunoblotting and luciferase reporter assays. Expression levels of microRNA-498 (miR-498) were measured by TaqMan microRNA assays. We performed clonogenic, cell cycle and scratch wound assays to examine the oncogenic role of miR-498. We demonstrated that miR-498 directly targeted the 3'untranslated region of PTEN mRNA and reduced PTEN protein levels in TNBC cells. Compared with the non-tumorigenic breast epithelial cell line MCF-10A, TNBC cell lines overexpressed miR-498. Moreover, miR-498 promoted cell proliferation and cell cycle progression in TNBC cells in a PTEN-dependent manner. Suppressing miR-498 overexpression impaired the oncogenic effects of miR-498 on cell proliferation and cell migration. This study identified a novel microRNA (miR-498) overexpressed in TNBC cells and its oncogenic role in suppressing PTEN. These results provide new insight into the downregulation of PTEN and indicate a potential therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Chengsen Chai
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Hong Wu
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Benfan Wang
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, University Ave., University of Alberta, Edmonton, Alberta, Canada
| | - Roger P Leng
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Wang Z, Lv J, Zou X, Huang Z, Zhang H, Liu Q, Jiang L, Zhou X, Zhu W. A three plasma microRNA signature for papillary thyroid carcinoma diagnosis in Chinese patients. Gene 2019; 693:37-45. [PMID: 30684524 DOI: 10.1016/j.gene.2019.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
Abstract
Whether plasma miRNAs could be used as novel non-invasive biomarkers in diagnosing papillary thyroid carcinoma (PTC) remains unknown. In this study, we designed a four-phase study to identify differentially expressed plasma miRNAs in Chinese PTC patients. Exiqon panel was initially utilized to conduct plasma miRNA profile (3 PTC pools VS. 1 healthy control (HC) pool; each 10 samples were pooled as 1 sample). The dysregulated miRNAs were then analyzed in the training (30 PTC VS. 30 HCs), testing (57 PTC VS. 54 HCs) and external validation phases (33 PTC VS. 30HCs). The identified miRNAs were further affirmed in benign nodules (2 nodular goiter (NG) pool VS. 1 HC pool). We also verified the expression of identified miRNAs in 17 matched malignant and normal tissue samples, NG plasma samples (29 PTC VS. 29 NG) and plasma exosomes (25 PTC VS. 25 HCs). Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic value of the identified miRNAs. As a result, the screening phase demonstrated 30 dysregulated plasma miRNAs in PTC patients compared with HCs. After multiphase experiment processes, miR-346, miR-10a-5p and miR-34a-5p were found significantly elevated in PTC plasma samples relative to HCs. The areas under the ROC curve (AUC) of the three-miRNA panel for the training, testing and validation phases were 0.926, 0.811 and 0.816, separately. The panel could also differentiate PTC from NG with the AUC of 0.877. MiR-346 and miR-34a-5p but not miR-10a-5p were up-regulated in PTC tissues. And the three miRNAs showed consistently up-regulation in PTC plasma exosomes. In conclusion, our study established a three-miRNA panel in plasma with considerable clinical value in discriminating PTC from HC or NG.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Jinru Lv
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Xuan Zou
- First Clinical College of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi 214062, Jiangsu Province, PR China
| | - Huo Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Qingxie Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Lin Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, No.1399 West Road, Shengze Town, Wujiang District, Suzhou 215000, China.
| |
Collapse
|
20
|
Moradi‐Chaleshtori M, Hashemi SM, Soudi S, Bandehpour M, Mohammadi‐Yeganeh S. Tumor‐derived exosomal microRNAs and proteins as modulators of macrophage function. J Cell Physiol 2018; 234:7970-7982. [DOI: 10.1002/jcp.27552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Maryam Moradi‐Chaleshtori
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Soudi
- Department of Immunology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Mojgan Bandehpour
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Samira Mohammadi‐Yeganeh
- Department of Biotechnology School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Ye X, Chen X. miR-149-5p inhibits cell proliferation and invasion through targeting GIT1 in medullary thyroid carcinoma. Oncol Lett 2018; 17:372-378. [PMID: 30655777 PMCID: PMC6313157 DOI: 10.3892/ol.2018.9628] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies indicate that miR-149 could both inhibit and promote the development of human cancer depending on the tumor type. GIT1 was found to play an important role in regulating cell migration. However, the specific function of miR-149-5p and GIT1 in the progression of medullary thyroid carcinoma (MTC) remains unknown. The purpose of this study was to confirm the function of miR-149-5p in MTC and explore its downstream regulation. Moreover, miR-149-5p level in MTC was detected via RT-quantitative PCR (RT-qPCR). GIT1 expression levels were assessed by RT-qPCR and western blot analysis. The cell proliferation and invasion were detected through MTT or Transwell assay respectively. In addition, miR-149-5p was identified to directly target GIT1 in MTC via dual luciferase assay. The results suggested that miR-149-5p level was obviously declined in MTC. Functionally, miR-149-5p overexpression inhibited proliferation and invasion. Moreover, miR-149-5p directly targeted GIT1 and was negatively associated with its expression in MTC. Conversely, GIT1 expression was obviously increased in MTC. GIT1 overexpression partially reversed the inhibitory action of miR-149-5p in MTC. miR-149-5p suppressed the proliferation and invasion of MTC cells through targeting GIT1, which would create new therapeutic avenues for MTC treatment.
Collapse
Affiliation(s)
- Xiaojuan Ye
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaofang Chen
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
22
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
23
|
Joo LJS, Zhao JT, Gild ML, Glover AR, Sidhu SB. Epigenetic regulation of RET receptor tyrosine kinase and non-coding RNAs in MTC. Mol Cell Endocrinol 2018; 469:48-53. [PMID: 28315378 DOI: 10.1016/j.mce.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
Medullary thyroid carcinoma (MTC) is an aggressive and rare cancer with limited treatment options for metastatic disease. Due to this, there is a need for a better understanding of MTC biology in the hope of improved treatments. One area of improved understanding of cancer biology is epigenetics. Epigenetics is defined as cellular processes which alter gene expression independent of changes in the primary DNA sequence. These processes include modifications such as DNA methylation, microRNA deregulation and post-translational histone modifications, all of which have been implicated in tumorigenesis of MTC. Transcription of the main driver of MTC - the REarranged during Transfection (RET) proto-oncogene can also be modulated by epigenetic alterations. This review will present a review of MTC and its epigenetic links with a particular focus on targeting epigenetic mechanisms as novel therapeutic strategies.
Collapse
Affiliation(s)
- Lauren Jin Suk Joo
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, The University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, The University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Matti L Gild
- Sydney Medical School Northern, Royal North Shore Hospital, The University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Anthony R Glover
- Sydney Medical School Northern, Royal North Shore Hospital, The University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Stan B Sidhu
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, The University of Sydney, St Leonards, Sydney, NSW, Australia; University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, St Leonards, NSW, Australia.
| |
Collapse
|
24
|
Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: miR-34a and miR-144 as promising overexpressed markers in MTC. Hum Pathol 2018; 79:212-221. [PMID: 29885402 DOI: 10.1016/j.humpath.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neoplasia derived from neural parafollicular C cells. MicroRNAs (miRNAs) are small regulatory RNAs with essential roles in the biology of cancers such as MTC and can be applied as diagnostic markers. According to previous studies, miR-144 and miR-34 and their two oncogenes target, mammalian target of rapamycin (mTOR) and AXL receptor tyrosine kinase (AXL), were selected for further investigations in our study. Thirty MTC samples as well as thirty adjacent normal thyroid tissues were applied in this study including 28 formalin-fixed, paraffin-embedded (FFPE) and 2 fresh-frozen MTC samples. RNA extraction and complementary DNA (cDNA) synthesis were performed for all samples. After primer pairs and probes were designed, real-time polymerase chain reaction (real-time PCR) method was used, and the results were analyzed using 2-ΔΔCt method. Receiver operating characteristic (ROC) curve analysis was applied to assess the diagnostic value of the two miRNAs. AXL protein level was measured in all clinical samples using enzyme-linked immunosorbent assay (ELISA) method. Both miRNAs were up-regulated in all clinical samples compared to the normal tissues. AXL was up-regulated in most clinical samples while mTOR was down-regulated in most samples. Furthermore, the level of AXL protein increased. ROC curve analysis demonstrated that increased expression of miR-34a and miR-144 in MTC patients had significant predictive value. The results demonstrated that high expression of miR-144 and miR-34a can be considered as biomarkers of MTC. However, there was no statistically significant correlation between the expression of these miRNAs and target genes in MTC clinical samples.
Collapse
|
25
|
Khatami F, Tavangar SM. Genetic and Epigenetic of Medullary Thyroid Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:142-50. [PMID: 29126344 PMCID: PMC5889499 DOI: 10.22034/ibj.22.3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Medullary thyroid carcinoma (MTC) is an infrequent, calcitonin producing neuroendocrine tumor and initiates from the parafollicular C cells of the thyroid gland. Several genetic and epigenetic alterations are collaterally responsible for medullary thyroid carcinogenesis. In this review article, we shed light on all the genetic and epigenetic hallmarks of MTC. From the genetic perspective, RET, HRAS, and KRAS are the most important genes that are characterized in MTC. From the epigenetic perspective, Ras-association domain family member 1A, telomerase reverse transcriptase promoter methylations, overexpression of histone methyltransferases, EZH2 and SMYD3, and wide ranging increase and decrease in non-coding RNAs can be responsible for medullary thyroid carcinogenesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018; 41:269-283. [PMID: 28762013 DOI: 10.1007/s40618-017-0735-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.
Collapse
Affiliation(s)
- S Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - M Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - M Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - E Baldini
- Department of Surgical Sciences, University of Rome, Rome, Italy.
| | - S Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, De Cecco L, Rizzetti MG, Zanframundo A, Aiello A, Carcangiu ML, Gloghini A, Ferrero S, Licitra L, Greco A, Fugazzola L, Locati LD, Borrello MG. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer 2018; 25:217-231. [PMID: 29298817 DOI: 10.1530/erc-17-0389] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to identify circulating miRNAs as novel non-invasive biomarkers for prognosis and vandetanib response in advanced medullary thyroid cancer (MTC) patients. We prospectively recruited two independent cohorts of locally advanced/metastatic MTC patients including a subgroup of vandetanib-treated subjects: a discovery cohort (n = 20), including matched plasma/tissue samples (n = 17/20), and a validation cohort, yielding only plasma samples (n = 17). Plasma samples from healthy subjects (n = 36) and MTC patients in remission (n = 9) were used as controls. MTC (n = 17 from 8 patients included in discovery cohort) and non-neoplastic thyroid specimens (n = 3) were assessed by microarray profiling to identify candidate circulating miRNAs. qRT-PCR and in situ hybridization were carried out to validate the expression and localization of a selected miRNA within tissues, and qRT-PCR was also performed to measure miRNA levels in plasma samples. By microarray analysis, we identified 51 miRNAs differentially expressed in MTC. The most overexpressed miR, miR-375, was highly expressed by C cells compared to other thyroid cells, and more expressed in MTC than in reactive C-cell hyperplasia. MTC patients had significantly higher miR-375 plasma levels than healthy controls (P < 0.0001) and subjects in remission (P = 0.0004) as demonstrated by qRT-PCR analysis. miR-375 plasma levels were not predictive of vandetanib response, but, notably, high levels were associated with significantly reduced overall survival (HR 10.61, P < 0.0001) and were a strong prognostic factor of poor prognosis (HR 6.24, P = 0.00025) in MTC patients. Overall, our results unveil plasma miR-375 as a promising prognostic marker for advanced MTC patients, to be validated in larger cohorts.
Collapse
Affiliation(s)
- Paola Romeo
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carla Colombo
- Division of Endocrine and Metabolic DiseasesIRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Roberta Granata
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Department of RadiologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambra Vittoria Gualeni
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Functional Genomics and Bioinformatics UnitDepartment of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Functional Genomics and Bioinformatics UnitDepartment of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Rizzetti
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Zanframundo
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Aiello
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Luisa Carcangiu
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Ferrero
- Department of Pathophysiology and TransplantationFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of BiomedicalSurgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lisa Licitra
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Medical OncologyUniversity of Milan, Milan, Italy
| | - Angela Greco
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic DiseasesIRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Laura Deborah Locati
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Borrello
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
28
|
Liu Y, Xu N, Liu B, Huang Y, Zeng H, Yang Z, He Z, Guo H. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget 2018; 7:43835-43851. [PMID: 27270310 PMCID: PMC5190063 DOI: 10.18632/oncotarget.9699] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/06/2016] [Indexed: 01/04/2023] Open
Abstract
Resistance to temolozomide (TMZ), the standard chemotherapy agent for treating glioblastomas (GBM), is a major clinical problem for patients with GBM. Recently, long noncoding RNAs (lncRNAs) have been implicated in chemotherapy resistance in various cancers. In this study, we found that the level of the lncRNA RP11-838N2.4 was lower in TMZ-resistant GBM cells (U87TR, U251TR) compared to the parental, non-resistant GBM cells (U87, U251). In GBM patients, the decreased level of lncRNA RP11-838N2.4 correlated with higher risk of GBM relapse, as well as shorter postoperative survival times. We further found that lncRNA RP11-838N2.4 could enhances the cytotoxic effects of temozolomide to GBM cells both in vivo and in vitro. Moreover, lncRNA RP11-838N2.4 acts as an endogenous sponge, suppressing the function of miR-10a through conserved sequences and increasing the expression of EphA8 that enhanced the rate of cell apoptosis, thereby intensified sensitivity of GBM cells to TMZ. Additionally, lncRNA RP11-838N2.4 inhibited the activity of transforming growth factor-β (TGF-β) independent of miR-10a. Finally, Characterization of lncRNA RP11-838N2.4 could contribute to strategies for enhancing the efficacy of TMZ.
Collapse
Affiliation(s)
- Yanting Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ningbo Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yiru Huang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huijun Zeng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Yang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenyan He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
29
|
Matamala N, Vargas MT, González-Cámpora R, Arias JI, Menéndez P, Andrés-León E, Yanowsky K, Llaneza-Folgueras A, Miñambres R, Martínez-Delgado B, Benítez J. MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget 2018; 7:20068-79. [PMID: 26933805 PMCID: PMC4991439 DOI: 10.18632/oncotarget.7705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that BRCA1 pathway contributes to the behavior of sporadic triple negative breast cancer (TNBC), but little is known about the mechanisms underlying this association. Considering the central role that microRNAs (miRNAs) play in gene expression regulation, the aim of this study was to identify miRNAs specifically deregulated in TNBC and investigate their involvement in BRCA1 regulation. Using locked nucleic acid (LNA)-based microarrays, expression levels of 1919 miRNAs were measured in paraffin-embedded tissues from 122 breast tumors and 11 healthy breast tissue samples. Differential miRNA expression was explored among the main subtypes of breast cancer, and 105 miRNAs were identified as specific for triple negative tumors. In silico prediction revealed that miR-498 and miR-187-5p target BRCA1, and these results were confirmed by luciferase reporter assay. While miR-187-5p was found overexpressed in a luminal B cell line, miR-498 was highly expressed in a triple negative cell line, Hs578T, and its expression was negatively correlated with the levels of BRCA1. We functionally demonstrated that miR-498 inhibits BRCA1 in breast cancer cell lines, and showed that inhibition of miR-498 led to reduced proliferation in the triple negative cell line Hs578T. Our results indicate that miR-498 regulates BRCA1 expression in breast cancer and its overexpression could contribute to the pathogenesis of sporadic TNBC via BRCA1 downregulation.
Collapse
Affiliation(s)
- Nerea Matamala
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Current address: Molecular Genetics Unit, Research Institute of Rare Diseases (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Teresa Vargas
- Pathology Service, Hospital Virgen de la Macarena, Sevilla, Spain.,Current address: Hematology Service, Hospital Virgen de la Macarena, Sevilla, Spain
| | | | | | | | - Eduardo Andrés-León
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Current address: Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Kira Yanowsky
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Research Institute of Rare Diseases (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Benítez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Network on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
30
|
Bahnassy AA, El-Sayed M, Ali NM, Khorshid O, Hussein MM, Yousef HF, Mohanad MA, Zekri ARN, Salem SE. Aberrant expression of miRNAs predicts recurrence and survival in stage-II colorectal cancer patients from Egypt. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41241-017-0045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Chi J, Zheng X, Gao M, Zhao J, Li D, Li J, Dong L, Ruan X. Integrated microRNA-mRNA analyses of distinct expression profiles in follicular thyroid tumors. Oncol Lett 2017; 14:7153-7160. [PMID: 29344146 PMCID: PMC5754833 DOI: 10.3892/ol.2017.7146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs identified in plants, animals and certain viruses; they function in RNA silencing and post-transcriptional regulation of gene expression. miRNAs also serve an important role in the pathogenesis, diagnosis and treatment of tumors. However, few studies have investigated the role of miRNAs in thyroid tumors. In the present study, the expression of miRNA and mRNA was compared between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FA) samples, and then miRNA-mRNA regulatory network analysis was performed. Microarray datasets (GSE29315 and GSE62054) were downloaded from the Gene Expression Omnibus, and profiling data were processed with R software. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were determined, and Gene Ontology enrichment analysis was subsequently performed for DEGs using the Database for Annotation, Visualization and Integrated Discovery. The target genes of the DEMs were identified with miRWalk, miRecords and TarMir databases. Network analysis of the DEMs and DEMs-targeted DEGs was performed using Cytoscape software. In GSE62054, 23 downregulated and 9 upregulated miRNAs were identified. In GSE29315, 42 downregulated and 44 upregulated mRNAs were identified. A total of 36 miRNA-gene pairs were also identified. Network analysis indicated a co-regulatory association between miR-296-5p, miR-10a, miR-139-5p, miR-452, miR-493, miR-7, miR-137, miR-144, miR-145 and corresponding targeted mRNAs, including TNF receptor superfamily member 11b, benzodiazepine receptor (peripheral) -associated protein 1, and transforming growth factor β receptor 2. These results suggest that miRNA-mRNAs networks serve an important role in the pathogenesis, diagnosis and treatment of FTC and FA.
Collapse
Affiliation(s)
- Jiadong Chi
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China.,Department of Graduate College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Ming Gao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jingzhu Zhao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Dapeng Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jiansen Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Li Dong
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
33
|
Celano M, Rosignolo F, Maggisano V, Pecce V, Iannone M, Russo D, Bulotta S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int J Genomics 2017; 2017:6496570. [PMID: 29038786 PMCID: PMC5606057 DOI: 10.1155/2017/6496570] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Optimal management of patients with thyroid cancer requires the use of sensitive and specific biomarkers. For early diagnosis and effective follow-up, the currently available cytological and serum biomarkers, thyroglobulin and calcitonin, present severe limitations. Research on microRNA expression in thyroid tumors is providing new insights for the development of novel biomarkers that can be used to diagnose thyroid cancer and optimize its management. In this review, we will examine some of the methods commonly used to detect and quantify microRNA in biospecimens from patients with thyroid tumor, as well as the potential applications of these techniques for developing microRNA-based biomarkers for the diagnosis and prognostic evaluation of thyroid cancers.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Maggisano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Pecce
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Section of Pharmacology, Roccelletta di Borgia, 88021 Borgia, Italy
| | - Diego Russo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
34
|
Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA, Robinson BG, Sidhu SB. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res 2017; 2:143-150. [PMID: 30159433 PMCID: PMC6084838 DOI: 10.1016/j.ncrna.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
The search for targeted novel therapies for cancer is ongoing. MicroRNAs (miRNAs) display a number of characteristics making them an attractive and realisable option. In this review, we explore these applications, ranging from diagnostics, prognostics, disease surveillance, to being a primary therapy or a tool to sensitise patients to treatment modalities such as chemotherapy and radiotherapy. We take a particular perspective towards miRNAs and their impact on rare cancers. Advancement in the delivery of miRNAs, from viral vectors and liposomal delivery to nanoparticle based, has led to a number of pre-clinical and clinical applications for microRNA cancer therapeutics. This is promising, especially in the setting of rare cancers.
Collapse
Affiliation(s)
- Grace T. Kwok
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, St Leonards, 2065 NSW, Australia
- Northern Clinical School, Royal North Shore Hospital and University of Sydney, St Leonards, 2065 Sydney, NSW, Australia
- University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, St Leonards, 2065 Sydney, NSW, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, St Leonards, 2065 NSW, Australia
- Northern Clinical School, Royal North Shore Hospital and University of Sydney, St Leonards, 2065 Sydney, NSW, Australia
| | - Jocelyn Weiss
- EnGeneIC Pty Ltd, Lane Cove West, 2066 NSW, Australia
| | | | | | | | - Bruce G. Robinson
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, St Leonards, 2065 NSW, Australia
- Northern Clinical School, Royal North Shore Hospital and University of Sydney, St Leonards, 2065 Sydney, NSW, Australia
| | - Stan B. Sidhu
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, St Leonards, 2065 NSW, Australia
- Northern Clinical School, Royal North Shore Hospital and University of Sydney, St Leonards, 2065 Sydney, NSW, Australia
- University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, St Leonards, 2065 Sydney, NSW, Australia
| |
Collapse
|
35
|
MiR-375 and YAP1 expression profiling in medullary thyroid carcinoma and their correlation with clinical-pathological features and outcome. Virchows Arch 2017; 471:651-658. [PMID: 28861609 DOI: 10.1007/s00428-017-2227-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Medullary thyroid cancer (MTC) is a tumor marked by an indolent growth for which few prognostic factors and therapeutic strategies are actually available. Different studies have recently appraised well-differentiated thyroid cancers are characterized by a dysregulation in different microRNA sets; however, only few of them investigated the role of miRNA expression in MTCs. In this study, we have assessed the miR-375 expression in a series of 130 MTCs (104 are sporadic and 26 familial) with a median follow-up of 39 months (range 1-138) and then we have correlated our results with the clinical-pathological features and the patients' outcome.Moreover, we have appraised YAP1 (Yes-associated protein 1) immunohistochemical expression in the same MTC series and in 5 C-cells hyperplasia (CCH) samples as well. We observed a significant upregulation of miR-375 in all MTCs, when compared to the normal thyroid tissues. Besides, miR-375 expression was found to be closely linked to neoplastic size, a chance of thyroid capsule infiltration, the risk of lymph node metastasis, and the staging of the tumor. At the end of follow-up, only 10% (13/130) showed a tumor progression and a higher miR-375 expression was found to be closely linked to a worst patient' outcome. On the contrary, YAP1 immunohistochemical expression was sharply downregulated in tumors, whereas it was weakly expressed in CCHs. Our results suggest miR-375 plays a central role in MTC progression and, therefore, we seek following the idea that miR-375 pathway may be an effective target in novel MTC therapeutic strategies.
Collapse
|
36
|
Pekow J, Meckel K, Dougherty U, Huang Y, Chen X, Almoghrabi A, Mustafi R, Ayaloglu-Butun F, Deng Z, Haider HI, Hart J, Rubin DT, Kwon JH, Bissonnette M. miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clin Cancer Res 2017; 23:5281-5291. [PMID: 28600480 DOI: 10.1158/1078-0432.ccr-17-0171] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
Purpose: Patients with ulcerative colitis are at increased risk for colorectal cancer, although mechanisms underlying neoplastic transformation are poorly understood. We sought to evaluate the role of microRNAs in neoplasia development in this high-risk population.Experimental Design: Tissue from 12 controls, 9 ulcerative colitis patients without neoplasia, and 11 ulcerative colitis patients with neoplasia was analyzed. miRNA array analysis was performed and select miRNAs assayed by real-time PCR on the discovery cohort and a validation cohort. DNA methylation of miR-193a was assessed. Following transfection of miR-193a-3p, proliferation, IL17RD expression, and luciferase activity of the 3'UTR of IL17RD were measured. Tumor growth in xenografts as well as EGFR signaling were assessed in HCT116 cells expressing IL17RD with either a mutant 3' untranslated region (UTR) or wild-type (WT) 3'UTR.Results: miR-31, miR-34a, miR-106b, and miR-193a-3p were significantly dysregulated in ulcerative colitis-neoplasia and adjacent tissue. Significant down-regulation of miR-193a-3p was also seen in an independent cohort of ulcerative colitis cancers. Changes in methylation of miR-193a or expression of pri-miR-193a were not observed in ulcerative colitis cancer. Transfection of miR-193a-3p resulted in decreased proliferation, and identified IL17RD as a direct target of miR-193a-3p. IL17RD expression was increased in ulcerative colitis cancers, and miR-193a-3p treatment decreased growth and EGFR signaling of HCT116 cells in xenografts expressing both IL17RD with WT 3'UTR compared with cells expressing IL17RD with mutant 3'UTR.Conclusions: miR-193a-3p is downregulated in ulcerative colitis neoplasia, and its loss promotes carcinogenesis through upregulation of IL17RD. These findings provide novel insight into inflammation-driven colorectal cancer and could suggest new therapeutic targets in this high-risk population. Clin Cancer Res; 23(17); 5281-91. ©2017 AACR.
Collapse
Affiliation(s)
- Joel Pekow
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois.
| | - Katherine Meckel
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Urszula Dougherty
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Yong Huang
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Xindi Chen
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Anas Almoghrabi
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Reba Mustafi
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Fatma Ayaloglu-Butun
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Zifeng Deng
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Haider I Haider
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - John Hart
- University of Chicago, Department of Pathology, Chicago, Illinois
| | - David T Rubin
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - John H Kwon
- University of Texas Southwestern, Digestive and Liver Disease Division, Dallas, Texas
| | - Marc Bissonnette
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| |
Collapse
|
37
|
Zatelli MC, Grossrubatscher EM, Guadagno E, Sciammarella C, Faggiano A, Colao A. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr Relat Cancer 2017; 24:R223-R237. [PMID: 28389504 DOI: 10.1530/erc-17-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
The prognosis of neuroendocrine neoplasms (NENs) is widely variable and has been shown to associate with several tissue- and blood-based biomarkers in different settings. The identification of prognostic factors predicting NEN outcome is of paramount importance to select the best clinical management for these patients. Prognostic markers have been intensively investigated, also taking advantage of the most modern techniques, in the perspective of personalized medicine and appropriate resource utilization. This review summarizes the available data on the possible role of circulating tumor cells and microRNAs as prognostic markers in NENs.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Department of Medical SciencesSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | | | - Elia Guadagno
- Department of Advanced Biomedical SciencesPathology Section, University of Naples Federico II, Naples, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura Dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | | |
Collapse
|
38
|
Fu X, Fang J, Lian M, Zhong Q, Ma H, Feng L, Wang R, Wang H. Identification of microRNAs associated with medullary thyroid carcinoma by bioinformatics analyses. Mol Med Rep 2017; 15:4266-4272. [PMID: 28487941 DOI: 10.3892/mmr.2017.6547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the microRNA (miRNA) profile in human medullary thyroid carcinoma (MTC) tissue. The GSE40807 data profile was downloaded from the Gene Expression Omnibus database. Following preprocessing, differentially expressed microRNAs (DEMs) between MTC and healthy tissues were identified. Based on the obtained DEMs, transcription factor (TF)‑miRNA and miRNA‑target gene regulatory association pairs were predicted. Finally, functional enrichment analysis was performed on target genes of DEMs. Fifteen upregulated and 17 downregulated DEMs were identified. In the constructed TF‑miRNA regulatory network, hsa‑miR‑9‑5p was regulated by 9 TFs and hsa‑miR‑1 was regulated by 8 TFs. TFs of nuclear factor of κ light polypeptide gene enhancer in B‑cells 1 (NF‑κB1) and v‑myc avian myelocytomatosis viral oncogene homolog (MYC) regulated 4 and 3 DEMs, respectively. In the miRNA‑target gene regulatory network, hsa‑miR‑1, hsa‑miR‑9‑5p, hsa‑miR‑96‑5p and hsa‑miR‑590‑5p were most upregulated. The target genes of these 4 miRNAs were primarily enriched in the mitogen activated protein kinase (MAPK) signaling pathway. Therefore, MAPK signaling pathway may serve important roles in MTC progression. In conclusion, the DEMs hsa‑miR‑1 and hsa‑miR‑9‑5p, and TFs of NF‑κB1 and MYC may be used as biomarkers for the diagnosis and treatment of MTC.
Collapse
Affiliation(s)
- Xiangjun Fu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qi Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Haizhou Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
39
|
MiR-498 in esophageal squamous cell carcinoma: clinicopathological impacts and functional interactions. Hum Pathol 2017; 62:141-151. [PMID: 28188753 DOI: 10.1016/j.humpath.2017.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
MicroRNA-498 plays a crucial role in progression of many carcinomas. The signaling pathways by which miR-498 modulates carcinogenesis are still unknown. Also, miR-498-associated molecular pathogenesis has never been studied in esophageal squamous cell carcinoma (ESCC). Herein, we aimed to examine the expression and functional roles of miR-498 in ESCC as well as its influences on the clinicopathological features in patients with ESCC. Expression of miR-498 was investigated in 93 ESCC tissues and 5 ESCC cell lines using quantitative real-time polymerase chain reaction. In vitro effects of miR-498 on cellular process were studied followed by overexpression of miR-498. Western blot and immunofluorescence techniques were used to identify the interacting targets for miR-498 in ESCC. miR-498 expression was significantly reduced in ESCC when compared with the nonneoplastic esophageal tissues (P<.05). Patients with low miR-498 expression showed different histological grading of cancer and survival rates when compared with the patients with high miR-498 expression. Overexpression of miR-498 in ESCC cell lines induced remarkable reductions of cell proliferation, barrier penetration, and colony formation when compared with control and wild-type counterparts. Also, miR-498 activated the FOXO1/KLF6 transcriptional axis in ESCC. In addition, miR-498 overexpression increased p21 protein expression and led to reduced cancer cell growth. To conclude, reduced expression of miR-498 in ESCC and in vitro analysis have confirmed the tumor suppressor properties of miR-498 by modulating the FOXO1/KLF6 signaling pathway. The changes in miR-498 expression may have impacts on the clinical pathological parameters of ESCC as well as in the management of the patients with ESCC.
Collapse
|
40
|
Spitschak A, Meier C, Kowtharapu B, Engelmann D, Pützer BM. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer 2017; 16:24. [PMID: 28122586 PMCID: PMC5267421 DOI: 10.1186/s12943-016-0563-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background Dominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression. Methods The expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration. Results We found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1. Conclusion We demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Bhavani Kowtharapu
- Current address: Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
41
|
Korvala J, Jee K, Porkola E, Almangush A, Mosakhani N, Bitu C, Cervigne NK, Zandonadi FS, Meirelles GV, Leme AFP, Coletta RD, Leivo I, Salo T. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro. Exp Cell Res 2017; 350:9-18. [DOI: 10.1016/j.yexcr.2016.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
|
42
|
Cavedon E, Barollo S, Bertazza L, Pennelli G, Galuppini F, Watutantrige-Fernando S, Censi S, Iacobone M, Benna C, Vianello F, Zovato S, Nacamulli D, Mian C. Prognostic Impact of miR-224 and RAS Mutations in Medullary Thyroid Carcinoma. Int J Endocrinol 2017; 2017:4915736. [PMID: 28676824 PMCID: PMC5476902 DOI: 10.1155/2017/4915736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Little is known about the function of microRNA-224 (miR-224) in medullary thyroid cancer (MTC). This study investigated the role of miR-224 expression in MTC and correlated it with mutation status in sporadic MTCs. A consecutive series of 134 MTCs were considered. Patients had a sporadic form in 80% of cases (107/134). In this group, REarranged during transfection (RET) and rat sarcoma (RAS) mutation status were assessed by direct sequencing in the tumor tissues. Quantitative real-time polymerase chain reaction was used to quantify mature hsa-miR-224 in tumor tissue. RAS (10/107 cases, 9%) and RET (39/107 cases, 36%) mutations were mutually exclusive in sporadic cases. miR-224 expression was significantly downregulated in patients with the following: high calcitonin levels at diagnosis (p = 0.03, r = -0.3); advanced stage (p = 0.001); persistent disease (p = 0.001); progressive disease (p = 0.002); and disease-related death (p = 0.0001). We found a significant positive correlation between miR-224 expression and somatic RAS mutations (p = 0.007). Patients whose MTCs had a low miR-224 expression tended to have a shorter overall survival (log-rank test p = 0.005). On multivariate analysis, miR-224 represented an independent prognostic marker. Our data indicate that miR-224 is upregulated in RAS-mutated MTCs and in patients with a better prognosis and could represent an independent prognostic marker in MTC patients.
Collapse
Affiliation(s)
- Elisabetta Cavedon
- Familial Tumor Unit, Veneto Institute of Oncology, (IOV)-IRCCS, Padova, Italy
- *Elisabetta Cavedon:
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gianmaria Pennelli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Simona Censi
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Maurizio Iacobone
- Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Clara Benna
- Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Federica Vianello
- Department of Radiotherapy, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
| | - Stefania Zovato
- Familial Tumor Unit, Veneto Institute of Oncology, (IOV)-IRCCS, Padova, Italy
| | - Davide Nacamulli
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
43
|
Zhang L, Xiang ZL, Zeng ZC, Fan J, Tang ZY, Zhao XM. A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma. Oncotarget 2016; 7:3587-98. [PMID: 26657296 PMCID: PMC4823129 DOI: 10.18632/oncotarget.6534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2 %, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5 %, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95 % CI, 5.110–27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Mei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Abstract
Medullary thyroid carcinoma (MTC) is an uncommon neuroendocrine tumor arising from the C cells in the thyroid and accounts for about 5 % of all thyroid cancers. MTC exhibits more aggressive behavior than follicular tumors, with the majority of cases presenting with lymph node metastasis. It is particularly common among patients carrying germline RET mutations with almost 100 % penetrance. Because activating RET mutations occur in over 90 % of hereditary and 40 % of sporadic MTC, clinical trials of several RET-targeting multikinase inhibitors (MKIs) have resulted in FDA approval of vandetanib and cabozantinib for the treatment of MTC. Nevertheless, in light of significant individual differences in tumor behavior and treatment responses, there has been a persistent need for research efforts to decipher the molecular events within RET-driven or non-RET-driven tumors. Recently, the gene regulatory roles of microRNAs (miRNAs) in MTC have been studied extensively. Multiple miRNA deregulations have been discovered in MTC with potential prognostic and therapeutic implications. This review provides an overview of the basic pathology of MTC and an update on recent investigational progress.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Office K4/436 CSC-8550, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Office K4/436 CSC-8550, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
45
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA comprising approximately 19-25 nucleotides. miRNAs can act as tumour suppressors or oncogenes, and aberrant expression of miRNAs has been reported in several human cancers and has been associated with cancer initiation and progression. Recent evidence suggests that miRNAs play a major role in thyroid carcinogenesis. In this review, we summarize the role of miRNAs in thyroid cancer and describe the oncogenic or tumour suppressor function of miRNAs as well as their clinical utility as prognostic or diagnostic markers in thyroid cancer.
Collapse
Affiliation(s)
- Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Mancikova V, Montero-Conde C, Perales-Paton J, Fernandez A, Santacana M, Jodkowska K, Inglada-Pérez L, Castelblanco E, Borrego S, Encinas M, Matias-Guiu X, Fraga M, Robledo M. Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RETM918T Tumors. Clin Cancer Res 2016; 23:1334-1345. [PMID: 27620278 DOI: 10.1158/1078-0432.ccr-16-0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Perales-Paton
- Translational Bioinformatics Unit, Clinical Research Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Agustin Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - María Santacana
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Karolina Jodkowska
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucia Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esmeralda Castelblanco
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Hospital, Health Sciences Research Institute of the "Germans Trias i Pujol" Foundation (IGTP), Badalona, Spain.,Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, Spain
| | | | - Mario Encinas
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona
| | - Mario Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
47
|
Abstract
Hereditary medullary thyroid carcinoma (MTC) represents up to one-third of MTC cases and includes multiple endocrine neoplasia syndrome type 2A (and its variant familial MTC) and 2B. The aim of this paper is to provide an overview of the disease focusing on the management of hereditary MTC patients, who have already developed tumor, as well as discuss the recommended approach for asymptomatic family members carrying the same mutation. A PubMed search was performed to review recent literature on diagnosis, genetic testing, and surgical and medical management of hereditary MTC. The wide use of genetic testing for RET mutations has markedly influenced the course of hereditary MTC. Prophylactic thyroidectomy of RET carriers at an early age eliminates the risk of developing MTC later in life. Pre-operative staging is a strong prognostic factor in patients, who have developed MTC. The use of recently approved tyrosine kinase inhibitors (vandetanib, cabozantinib) holds promising results for the treatment of unresectable, locally advanced, and progressive metastatic MTC. Genetic testing of the RET gene is a powerful tool in the diagnosis and prognosis of MTC. Ongoing research is expected to add novel treatment options for patients with advanced, progressive disease.
Collapse
Affiliation(s)
- Theodora Pappa
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Endocrine Unit, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vassilissis Sofias Avenue, 11528, Athens, Greece
| | - Maria Alevizaki
- Endocrine Unit, Department of Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, 80 Vassilissis Sofias Avenue, 11528, Athens, Greece.
| |
Collapse
|
48
|
Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:103. [PMID: 27349385 PMCID: PMC4924278 DOI: 10.1186/s13046-016-0375-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer.
Collapse
Affiliation(s)
- Laura Paladini
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulia Bottai
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Carlotta Raschioni
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Libero Santarpia
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy.
| |
Collapse
|
49
|
Lassalle S, Zangari J, Popa A, Ilie M, Hofman V, Long E, Patey M, Tissier F, Belléannée G, Trouette H, Catargi B, Peyrottes I, Sadoul JL, Bordone O, Bonnetaud C, Butori C, Bozec A, Guevara N, Santini J, Hénaoui IS, Lemaire G, Blanck O, Vielh P, Barbry P, Mari B, Brest P, Hofman P. MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib. Oncotarget 2016; 7:30461-78. [PMID: 27036030 PMCID: PMC5058693 DOI: 10.18632/oncotarget.8458] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/10/2016] [Indexed: 01/28/2023] Open
Abstract
In this study, we performed microRNA (miRNA) expression profiling on a large series of sporadic and hereditary forms of medullary thyroid carcinomas (MTC). More than 60 miRNAs were significantly deregulated in tumor vs adjacent non-tumor tissues, partially overlapping with results of previous studies. We focused our attention on the strongest up-regulated miRNA in MTC samples, miR-375, the deregulation of which has been previously observed in a variety of human malignancies including MTC. We identified miR-375 targets by combining gene expression signatures from human MTC (TT) and normal follicular (Nthy-ori 3-1) cell lines transfected with an antagomiR-375 inhibitor or a miR-375 mimic, respectively, and from an in silico analysis of thyroid cell lines of Cancer Cell Line Encyclopedia datasets. This approach identified SEC23A as a bona fide miR-375 target, which we validated by immunoblotting and immunohistochemistry of non-tumor and pathological thyroid tissue. Furthermore, we observed that miR-375 overexpression was associated with decreased cell proliferation and synergistically increased sensitivity to vandetanib, the clinically relevant treatment of metastatic MTC. We found that miR-375 increased PARP cleavage and decreased AKT phosphorylation, affecting both cell proliferation and viability. We confirmed these results through SEC23A direct silencing in combination with vandetanib, highlighting the importance of SEC23A in the miR-375-associated increased sensitivity to vandetanib.Since the combination of increased expression of miR-375 and decreased expression of SEC23A point to sensitivity to vandetanib, we question if the expression levels of miR-375 and SEC23A should be evaluated as an indicator of eligibility for treatment of MTC patients with vandetanib.
Collapse
Affiliation(s)
- Sandra Lassalle
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Joséphine Zangari
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Alexandra Popa
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire IPMC, CNRS UMR7275, Sophia-Antipolis, France
| | - Marius Ilie
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Véronique Hofman
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Elodie Long
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Martine Patey
- Hôpital Universitaire de Reims - Hôpital Robert Debré, Department of Pathology, Institut Jean Godinot, Reims, France
| | - Frédérique Tissier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Laboratory of Pathology, Paris, France
| | - Geneviève Belléannée
- Centre Hospitalier Universitaire de Bordeaux, Hôpital Universitaire de Pessac-Haut Lévêque, Laboratory of Pathology, Pessac, France
| | - Hélène Trouette
- Centre Hospitalier Universitaire de Bordeaux, Hôpital Universitaire de Pessac-Haut Lévêque, Laboratory of Pathology, Pessac, France
| | - Bogdan Catargi
- Centre Hospitalier Universitaire de Bordeaux, Department of Endocrinology, Pessac, France
| | - Isabelle Peyrottes
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Laboratory of Pathology, Nice, France
| | - Jean-Louis Sadoul
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Department of Endocrinology, Nice, France
| | - Olivier Bordone
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Christelle Bonnetaud
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Catherine Butori
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Alexandre Bozec
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Head and Neck Institute, Surgery and Otorhinolaryngology Department, Nice, France
| | - Nicolas Guevara
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Head and Neck Institute, Surgery and Otorhinolaryngology Department, Nice, France
| | - José Santini
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Head and Neck Institute, Surgery and Otorhinolaryngology Department, Nice, France
| | - Imène Sarah Hénaoui
- University of Nice Sophia-Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire IPMC, CNRS UMR7275, Sophia-Antipolis, France
| | - Géraldine Lemaire
- Bayer CropScience SA, Research Center, Sophia Antipolis, Valbonne, France
| | - Olivier Blanck
- Bayer CropScience SA, Research Center, Sophia Antipolis, Valbonne, France
| | - Philippe Vielh
- Institut Gustave Roussy, Translational Research Laboratory, Department of Pathology, Villejuif, France
| | - Pascal Barbry
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire IPMC, CNRS UMR7275, Sophia-Antipolis, France
| | - Bernard Mari
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire IPMC, CNRS UMR7275, Sophia-Antipolis, France
| | - Patrick Brest
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| | - Paul Hofman
- Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081/CNRS UMR7284, Nice, France
- University of Nice Sophia-Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Hospital Integrated Biobank (BB 0033-00025), Nice, France
- Fédération Hospitalo-Universitaire “OncoAge”, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
50
|
Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, Bronson RT, Kovalchuk O. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget 2016; 6:9937-50. [PMID: 25888625 PMCID: PMC4496408 DOI: 10.18632/oncotarget.3157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | - Natasha Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Roderick T Bronson
- The Dana Farber/Harvard Comprehensive Cancer Center, Boston, Massachusetts, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|