1
|
Yin Z, Lu M, Fu R. Knockdown of FANCI suppresses hepatocellular carcinoma development via the PI3K/Akt/GSK-3β pathway. Heliyon 2025; 11:e42731. [PMID: 40040987 PMCID: PMC11876927 DOI: 10.1016/j.heliyon.2025.e42731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Background Abnormal expression of Fanconi anaemia complementation group I (FANCI) has been implicated in carcinogenesis. However, the precise role of FANCI in the development of hepatocellular carcinoma (HCC) remains unclear. Materials & methods We conducted a comprehensive bioinformatics analysis of FANCI's role based on HCC patient sequencing data in the TCGA and GEO databases. Then, we performed qPCR, Western blotting (WB), and immunohistochemistry (IHC) assays. SiRNA-mediated knockdown of FANCI was conducted, followed by CCK-8, EdU staining, and colony formation experiments to evaluate the impact of FANCI knockdown on HCC cell behaviour. Flow cytometry was employed to explore alterations in the cell cycle after FANCI knockdown in HCC cell lines. Furthermore, RNA sequencing was performed to investigate potential mechanisms following FANCI knockdown, and WB analysis was used to validate the corresponding pathway. Results Our bioinformatics analysis revealed elevated expression of FANCI in HCC, which was subsequently validated through qPCR, WB, and IHC assays. High expression of FANCI was significantly associated with a poor prognosis in HCC patients. Univariate and multivariate Cox regression analyses identified FANCI as an independent prognostic risk factor for HCC patients. Additionally, the coexpressed genes of FANCI were found to be associated with multiple cancer pathways. Knockdown of FANCI expression significantly inhibited HCC cell proliferation and colony formation by inducing cell cycle arrest. Further WB analysis revealed that FANCI knockdown suppressed the expression of Cyclin D1 and p-AKT while increasing the expression of GSK-3β in HCC cells. However, no significant differences were observed in the expression levels of AKT and PI3K. Conclusion Overall, our research provides substantial proof of FANCI's crucial function as an oncogene in HCC. It could serve as a potential prognostic marker, therapeutic target, and tumorigenic factor in HCC.
Collapse
Affiliation(s)
- Ziwei Yin
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
- Department of Hepatobiliary and Pancreatic Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Minqiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Rongdang Fu
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| |
Collapse
|
2
|
Mu A, Hira A, Mori M, Okamoto Y, Takata M. Fanconi anemia and Aldehyde Degradation Deficiency Syndrome: Metabolism and DNA repair protect the genome and hematopoiesis from endogenous DNA damage. DNA Repair (Amst) 2023; 130:103546. [PMID: 37572579 DOI: 10.1016/j.dnarep.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
We have identified a set of Japanese children with hypoplastic anemia caused by combined defects in aldehyde degrading enzymes ADH5 and ALDH2. Their clinical characteristics overlap with a hereditary DNA repair disorder, Fanconi anemia. Our discovery of this disorder, termed Aldehyde Degradation Deficiency Syndrome (ADDS), reinforces the notion that endogenously generated aldehydes exert genotoxic effects; thus, the coupled actions of metabolism and DNA repair are required to maintain proper hematopoiesis and health.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Soleimani T, Bourdon C, Davis J, Fortes T. A case report of biallelic CHEK2 heterozygous variant presenting with breast cancer. Clin Case Rep 2023; 11:e6820. [PMID: 36644613 PMCID: PMC9834134 DOI: 10.1002/ccr3.6820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Pathogenic germline variants in the CHEK2 gene have been shown to cause a moderate increased risk of breast cancer. Here, we present a striking CHEK2 family with a biallelic carrier of two frameshift pathogenic variants, to draw attention and to encourage a comprehensive genetic and cancer risk education for biallelic carriers of CHEK2 pathogenic variants.
Collapse
Affiliation(s)
| | | | - Jacquelyn Davis
- Department of Obstetrics and GynecologySparrow HospitalLansingMichiganUSA
| | | |
Collapse
|
4
|
Zhang J, Wang J, Wu J, Huang J, Lin Z, Lin X. UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT. Oncol Rep 2022; 48:139. [PMID: 35703356 PMCID: PMC9245069 DOI: 10.3892/or.2022.8350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia complementation group I (FANCI) is a critical protein for maintaining DNA stability. However, the exact role of FANCI in tumors remains to be elucidated. The present study aimed to explore the role and potential mechanism of action of FANCI in non-small cell lung cancer (NSCLC). To quantify the expression levels of FANCI and ubiquitin-conjugating enzyme E2T (UBE2T) in NSCLC tissues, reverse-transcription quantitative PCR and western blotting were employed. Cell Counting Kit-8, wound healing and Transwell assays along with flow cytometry analysis and tumor xenograft were used to investigate the biological effects of FANCI in NSCLC in vitro and in vivo. The binding of FANCI with UBE2T was confirmed using a co-immunoprecipitation assay. Epithelial-to-mesenchymal transition (EMT) protein markers were quantified via western blotting. The results showed that FANCI expression level was higher in NSCLC tumor tissues, compared with adjacent tissues. In A549 and H1299 cells, knockdown of FANCI inhibited cell proliferation, migration, invasion, cell cycle and EMT in vitro. Tumor growth was repressed in vitro, upon downregulation of FANCI expression. UBE2T was observed to directly bind to FANCI and regulate its monoubiquitination. Overexpression of UBE2T reversed the effects induced by FANCI knockdown in NSCLC cells. Furthermore, it was noted that FANCI interacted with WD repeat domain 48 (WDR48). Overexpression of WDR48 reversed the effects of FANCI on cell proliferation, migration and EMT. In conclusion, FANCI was identified to be a putative oncogene in NSCLC, wherein FANCI was monouniubiquitinated by UBE2T to regulate cell growth, migration and EMT through WDR48. The findings suggested that FANCI could be used as a prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jiguang Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jingdong Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jincheng Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianyuan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhaoxian Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
5
|
von Werdt A, Brandt L, Schärer OD, Rubin MA. PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations. JCO Precis Oncol 2021; 5:PO.21.00152. [PMID: 34712892 PMCID: PMC8547927 DOI: 10.1200/po.21.00152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE With the broad use of next-generation sequencing assays, it has become clear that mutations in DNA repair genes are more commonly found than previously reported. In advanced prostate cancer patients with BRCA1/2 or ATM mutations, poly (ADP-ribose) polymerase inhibition (PARPi) causes an increased overall survival advantage compared with patients without these mutations. This review explores the advantages and limitations of PARPi treatment and its use beyond BRCA1/2-altered tumors. Furthermore, it discusses the benefits of current biomarkers and what role functional biomarkers and organoids may play in addressing the involvement of homologous recombination repair mutations in tumor development and progression. METHODS A systematic review was conducted in MEDLINE, National Library of Medicine, and ClinicalTrials.gov to identify studies published between January 1, 2016, and August 31, 2021. The search strategy incorporated terms for PARPi, BRCA, DNA damage, homologous recombination, organoids, patient-derived organoids, biomarker AND prostate cancer, breast cancer, ovarian cancer. RESULTS A total of 261 records remained after duplicate removal, 69 of which were included in the qualitative synthesis. CONCLUSION To improve the outcome of targeted therapy and increase sensitivity of tumor detection, patients should be repeatedly screened for DNA repair gene alterations and biomarkers. Future clinical studies should explore the use of PARPi beyond BRCA1/2 mutations and focus on finding new synthetically lethal interactions. This review explores PARPi and its use for more than just BRCA1/2 altered tumors![]()
Collapse
Affiliation(s)
- Alexander von Werdt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Laura Brandt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Orlando D Schärer
- Institute of Basic Science-Center for Genomic Integrity, Ulsan, South Korea.,Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern and University Hospital Bern, Bern, Switzerland
| |
Collapse
|
6
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
7
|
Li MZ, Meng T, Song SS, Bao XB, Ma LP, Zhang N, Yu T, Zhang YL, Xiong B, Shen JK, Miao ZH, He JX. Discovery of MTR-106 as a highly potent G-quadruplex stabilizer for treating BRCA-deficient cancers. Invest New Drugs 2021; 39:1213-1221. [PMID: 33710464 DOI: 10.1007/s10637-021-01096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Abstract
G-quadruplexes (G4s) are DNA or RNA structures formed by guanine-rich repeating sequences. Recently, G4s have become a highly attractive therapeutic target for BRCA-deficient cancers. Here, we show that a substituted quinolone amide compound, MTR-106, stabilizes DNA G-quadruplexes in vitro. MTR-106 displayed significant antiproliferative activity in homologous recombination repair (HR)-deficient and PARP inhibitor (PARPi)-resistant cancer cells. Moreover, MTR-106 increased DNA damage and promoted cell cycle arrest and apoptosis to inhibit cell growth. Importantly, its oral and i.v. administration significantly impaired tumor growth in BRCA-deficient xenograft mouse models. However, MTR-106 showed modest activity against talazoparib-resistant xenograft models. In rats, the drug rapidly distributes to tissues within 5 min, and its average concentrations were 12-fold higher in the tissues than in the plasma. Overall, we identified MTR-106 as a novel G-quadruplex stabilizer with high tissue distribution, and it may serve as a potential anticancer agent.
Collapse
Affiliation(s)
- Meng-Zhu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Tao Meng
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shan-Shan Song
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Xu-Bin Bao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Lan-Ping Ma
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Ting Yu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yong-Liang Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Xiong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China. .,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jing-Kang Shen
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China. .,Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Jin-Xue He
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| |
Collapse
|
8
|
DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42764-020-00017-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA DNA double-strand break (DSB) is considered the most critical DNA lesion because it causes cell death and severe mutations if it is not repaired or repaired incorrectly. Accumulating evidence has shown that the majority of DSBs are repaired by DNA non-homologous end joining (NHEJ), the first utilized repair pathway in human cells. In contrast, the repair pathway is sometimes diverted into using homologous recombination (HR), which has increased precision under specific circumstances: e.g., when DSBs are generated at transcriptionally active loci or are not readily repaired due to the complexity of damage at the DSB ends or due to highly compacted chromatin. DSB end resection (resection) is considered the most critical turning point for directing repair towards HR. After resection, the HR process is finalized by RAD51 loading and recombination. Thus, understanding the process of resection is critically important to understand the regulation of the choice of DSB repair pathway. In addition, resection is also an important factor influencing DNA damage signaling because unresected ends preferentially activate ATM, whereas longer resected ends activate ATR. Thus, DSB end resection is a key relay point that determines the repair pathway and the signal balance. In this review, we summarize the mechanism underlying DSB end resection and further discuss how it is involved in cancer therapy.
Collapse
|
9
|
Hatano Y, Tamada M, Matsuo M, Hara A. Molecular Trajectory of BRCA1 and BRCA2 Mutations. Front Oncol 2020; 10:361. [PMID: 32269964 PMCID: PMC7109296 DOI: 10.3389/fonc.2020.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Every cancer carries genomic mutations. Although almost all these mutations arise after fertilization, a minimal count of cancer predisposition mutations are already present at the time of genesis of germ cells. Of the cancer predisposition genes identified to date, BRCA1 and BRCA2 have been determined to be associated with hereditary breast and ovarian cancer syndrome. Such cancer predisposition genes have recently been attracting attention owing to the emergence of molecular genetics, thus, affecting the strategy of cancer prevention, diagnostics, and therapeutics. In this review, we summarize the molecular significance of these two BRCA genes. First, we provide a brief history of BRCA1 and BRCA2, including their identification as cancer predisposition genes and recognition as members in the Fanconi anemia pathway. Next, we describe the molecular function and interaction of BRCA proteins, and thereafter, describe the patterns of BRCA dysfunction. Subsequently, we present emerging evidence on mutational signatures to determine the effects of BRCA disorders on the mutational process in cancer cells. Currently, BRCA genes serve as principal targets for clinical molecular oncology, be they germline or sporadic mutations. Moreover, comprehensive cancer genome analyses enable us to not only recognize the current status of the known cancer driver gene mutations but also divulge the past mutational processes and predict the future biological behavior of cancer through the molecular trajectory of genomic alterations.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
10
|
Zheng P, Li L. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther 2020; 13:451-463. [PMID: 32021289 PMCID: PMC6970268 DOI: 10.2147/ott.s230333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose Fanconi anemia complementation group I (FANCI) is a key protein in ribosome biogenesis and DNA repair. Here, we aimed to determine the clinical significance, prognostic value and biology functions of FANCI in lung adenocarcinoma (LUAD). Methods The expression of FANCI in LUAD tissue and its relationship with patient outcomes were assessed using bioinformatics analysis, as well as quantitative reverse-transcription PCR (qRT-PCR) and Western blot analysis of LUAD tissue and adjacent normal lung tissue. The chi-squared test and Cox regression analysis were used to analyze the clinical significance of FANCI expression. The biological effects of FANCI knockdown in human LUAD cell lines were investigated by analysis of proliferation, colony formation, cell cycle distribution, migration, and invasion in vitro, and monitoring of tumor xenograft growth in vivo. FANCI interactions with IMPDH2 and involvement in MEK/ERK/MMPs signaling were analyzed using co-immunoprecipitation assays, immunofluorescence microscopy, and Western blotting. Results FANCI was identified as a hub gene for LUAD. FANCI expression was upregulated in LUAD tissues compared with normal lung tissues and was positively associated with lymphatic metastasis, distant metastasis, and poor outcome. FANCI was also an independent prognostic factor in LUAD patients. Knockdown of FANCI in LUAD cell lines decreased their proliferation, migration, invasion, and cell cycle progression in vitro, and decreased the growth of xenografts in mice. Direct binding of FANCI to IMPDH2 decreased IMPDH2 degradation, regulated activation of MEK/ERK/MMPs signaling. Overexpression of IMPDH2 reversed the inhibitory effects of FANCI knockdown. Conclusion FANCI may act as an oncogene in LUAD by cooperating with IMPDH2 to promote cell proliferation via the MEK/ERK/MMPs pathway. These results identify FANCI as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Pengchao Zheng
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| | - Lei Li
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
11
|
Jarhelle E, Riise Stensland HMF, Hansen GÅM, Skarsfjord S, Jonsrud C, Ingebrigtsen M, Strømsvik N, Van Ghelue M. Identifying sequence variants contributing to hereditary breast and ovarian cancer in BRCA1 and BRCA2 negative breast and ovarian cancer patients. Sci Rep 2019; 9:19986. [PMID: 31882575 PMCID: PMC6934654 DOI: 10.1038/s41598-019-55515-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Families with breast and ovarian cancer are often tested for disease associated sequence variants in BRCA1 and BRCA2. Pathogenic sequence variants (PVs) in these two genes are known to increase breast and ovarian cancer risks in females. However, in most families no PVs are detected in these two genes. Currently, several studies have identified other genes involved in hereditary breast and ovarian cancer (HBOC). To identify genetic risk factors for breast and ovarian cancer in a Norwegian HBOC cohort, 101 breast and/or ovarian cancer patients negative for PVs and variants of unknown clinical significance (VUS) in BRCA1/2 were screened for PVs in 94 genes using next-generation sequencing. Sixteen genes were closely scrutinized. Nine different deleterious germline PVs/likely pathogenic variants (LPVs) were identified in seven genes in 12 patients: three in ATM, and one in CHEK2, ERCC5, FANCM, RAD51C, TP53 and WRN. Additionally, 32 different VUSs were identified and these require further characterization. For carriers of PV/LPV in many of these genes, there are no national clinical management programs in Norway. The diversity of genetic risk factors possibly involved in cancer development show the necessity for more knowledge to improve the clinical follow-up of this genetically diverse patient group.
Collapse
Affiliation(s)
- Elisabeth Jarhelle
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway. .,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway. .,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway.
| | - Hilde Monica Frostad Riise Stensland
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Geir Åsmund Myge Hansen
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Siri Skarsfjord
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Christoffer Jonsrud
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Monica Ingebrigtsen
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Nina Strømsvik
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway.,Department of Health and Caring Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway. .,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway. .,Northern Norway Family Cancer Center, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am J Hum Genet 2019; 105:237-257. [PMID: 31374202 PMCID: PMC6693886 DOI: 10.1016/j.ajhg.2019.06.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information is constantly being attacked by intrinsic and extrinsic damaging agents, such as reactive oxygen species, atmospheric radiation, environmental chemicals, and chemotherapeutics. If DNA modifications persist, they can adversely affect the polymerization of DNA or RNA, leading to replication fork collapse or transcription arrest, or can serve as mutagenic templates during nucleic acid synthesis reactions. To combat the deleterious consequences of DNA damage, organisms have developed complex repair networks that remove chemical modifications or aberrant base arrangements and restore the genome to its original state. Not surprisingly, inherited or sporadic defects in DNA repair mechanisms can give rise to cellular outcomes that underlie disease and aging, such as transformation, apoptosis, and senescence. In the review here, we discuss several genetic disorders linked to DNA repair defects, attempting to draw correlations between the nature of the accumulating DNA damage and the pathological endpoints, namely cancer, neurological disease, and premature aging.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|
14
|
Mori M, Hira A, Yoshida K, Muramatsu H, Okuno Y, Shiraishi Y, Anmae M, Yasuda J, Tadaka S, Kinoshita K, Osumi T, Noguchi Y, Adachi S, Kobayashi R, Kawabata H, Imai K, Morio T, Tamura K, Takaori-Kondo A, Yamamoto M, Miyano S, Kojima S, Ito E, Ogawa S, Matsuo K, Yabe H, Yabe M, Takata M. Pathogenic mutations identified by a multimodality approach in 117 Japanese Fanconi anemia patients. Haematologica 2019; 104:1962-1973. [PMID: 30792206 PMCID: PMC6886416 DOI: 10.3324/haematol.2018.207241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Fanconi anemia is a rare recessive disease characterized by multiple congenital abnormalities, progressive bone marrow failure, and a predisposition to malignancies. It results from mutations in one of the 22 known FANC genes. The number of Japanese Fanconi anemia patients with a defined genetic diagnosis was relatively limited. In this study, we reveal the genetic subtyping and the characteristics of mutated FANC genes in Japan and clarify the genotype-phenotype correlations. We studied 117 Japanese patients and successfully subtyped 97% of the cases. FANCA and FANCG pathogenic variants accounted for the disease in 58% and 25% of Fanconi anemia patients, respectively. We identified one FANCA and two FANCG hot spot mutations, which are found at low percentages (0.04-0.1%) in the whole-genome reference panel of 3,554 Japanese individuals (Tohoku Medical Megabank). FANCB was the third most common complementation group and only one FANCC case was identified in our series. Based on the data from the Tohoku Medical Megabank, we estimate that approximately 2.6% of Japanese are carriers of disease-causing FANC gene variants, excluding missense mutations. This is the largest series of subtyped Japanese Fanconi anemia patients to date and the results will be useful for future clinical management.
Collapse
Affiliation(s)
- Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Michiko Anmae
- Medical Genetics Laboratory, Graduate School of Science and Engineering, Kindai University, Osaka, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomoo Osumi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Souichi Adachi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoji Kobayashi
- Department of Pediatrics and Adolescence, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada-machi, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Tamura
- Medical Genetics Laboratory, Graduate School of Science and Engineering, Kindai University, Osaka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Langerud J, Jarhelle E, Van Ghelue M, Ariansen SL, Iversen N. Trans-activation-based risk assessment of BRCA1 BRCT variants with unknown clinical significance. Hum Genomics 2018; 12:51. [PMID: 30458859 PMCID: PMC6247502 DOI: 10.1186/s40246-018-0183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Background Deleterious variants in the tumour suppressor BRCA1 are known to cause hereditary breast and ovarian cancer syndrome (HBOC). Missense variants in BRCA1 pose a challenge in clinical care, as their effect on protein functionality often remains unknown. Many of the pathogenic missense variants found in BRCA1 are located in the BRCA1 C-terminal (BRCT) domains, domains that are known to be vital for key functions such as homologous recombination repair, protein-protein interactions and trans-activation (TA). We investigated the TA activity of 12 BRCA1 variants of unknown clinical significance (VUSs) located in the BRCT domains to aid in the classification of these variants. Results Twelve BRCA1 VUSs were investigated using a modified version of the dual luciferase TA activity assay (TA assay) that yielded increased sensitivity and sample throughput. Variants were classified according to American College of Medical Genetics and Genomics (ACMG) criteria using TA assay results and available data. In combining our TA-assay results and available data, in accordance with the ACMG guidelines for variant classification, we proposed the following variant classifications: c.5100A>G, c.5326C>T, c.5348T>C and c.5477A>T as likely benign (class 2) variants. c.5075A>C, c.5116G>A and c.5513T>G were likely pathogenic (class 4), whereas c.5096G>A likely represents a likely pathogenic variant with moderate penetrance. Variants c.5123C>T, c.5125G>A, c.5131A>C and c.5504G>A remained classified as VUSs (class 3). Conclusions The modified TA assay provides efficient risk assessment of rare missense variants found in the BRCA1 BRCT-domains. We also report that increased post-transfection incubation time yielded a significant increase in TA assay sensitivity. Electronic supplementary material The online version of this article (10.1186/s40246-018-0183-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Langerud
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Jarhelle
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
16
|
Hamdi Y, Boujemaa M, Ben Rekaya M, Ben Hamda C, Mighri N, El Benna H, Mejri N, Labidi S, Daoud N, Naouali C, Messaoud O, Chargui M, Ghedira K, Boubaker MS, Mrad R, Boussen H, Abdelhak S. Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases. J Transl Med 2018; 16:158. [PMID: 29879995 PMCID: PMC5992876 DOI: 10.1186/s12967-018-1504-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nouha Daoud
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Chokri Naouali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - the PEC Consortium
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| |
Collapse
|
17
|
Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 2018; 34:337-350. [DOI: 10.1007/s10565-018-9429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
|
18
|
Kessous R, Octeau D, Klein K, Tonin PN, Greenwood CMT, Pelmus M, Laskov I, Kogan L, Salvador S, Lau S, Yasmeen A, Gotlieb WH. Distinct homologous recombination gene expression profiles after neoadjuvant chemotherapy associated with clinical outcome in patients with ovarian cancer. Gynecol Oncol 2018; 148:553-558. [PMID: 29395310 DOI: 10.1016/j.ygyno.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The expression of homologous recombination (HR) genes in high grade ovarian cancer (HGOC) samples from debulking surgeries were correlated to outcomes in patients selected for chemotherapy treatment regimens. STUDY DESIGN RNA was extracted from 96 fresh frozen tumor samples from debulking surgeries from chemotherapy naïve patients with HGOC (primary derived surgeries (PDS), n = 55) or following neoadjuvant chemotherapy treatment (NACT), n = 41). The samples were selected for high tumor content by a gynecological pathologist, and cancer cell content was further confirmed using a percent tumor content covariate, and mutation score covariate analysis. Gene expression analysis was performed using a tailored NanoString-based Pancancer Pathway Panel. Cox proportional hazard regression models were used to assess the associations between the expression of 19 HR genes and survival. RESULTS In the PDS group, over-expression of six HR genes (C11orf30, NBN, FANCF, FANCC, FANCB, RAD50) was associated with improved outcome, in contrast to the NACT group where four HR genes (BRCA2, TP53, FANCB, RAD51) were associated with worse outcome. With the adding extent of debulking as a covariate, three HR genes (NBN, FANCF, RAD50), and only one HR gene (RAD51) remained significantly associated with survival in PDS and NACT groups, respectively. CONCLUSION Distinct HR expression profiles define subgroups associated with overall outcome in patients that are exposed to neoadjuvant chemotherapy and not only chemotherapy-naïve patients.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Aged
- Antineoplastic Agents/therapeutic use
- BRCA1 Protein/genetics
- BRCA2 Protein/genetics
- CA-125 Antigen/blood
- Carcinoma, Endometrioid/blood
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cell Cycle Proteins/genetics
- Cytoreduction Surgical Procedures
- DNA Repair Enzymes/genetics
- DNA-Binding Proteins/genetics
- Fanconi Anemia Complementation Group C Protein/genetics
- Fanconi Anemia Complementation Group F Protein/genetics
- Fanconi Anemia Complementation Group Proteins/genetics
- Female
- Gene Expression Profiling
- Humans
- Membrane Proteins/blood
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Grading
- Neoplasm Proteins/genetics
- Neoplasms, Cystic, Mucinous, and Serous/blood
- Neoplasms, Cystic, Mucinous, and Serous/drug therapy
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Nuclear Proteins/genetics
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovariectomy
- PTEN Phosphohydrolase/genetics
- Prognosis
- Proportional Hazards Models
- Rad51 Recombinase/genetics
- Recombinational DNA Repair/genetics
- Repressor Proteins/genetics
- Survival Rate
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Roy Kessous
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - David Octeau
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Kathleen Klein
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Celia M T Greenwood
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Manuela Pelmus
- Division of Pathology, Jewish General Hospital, Montréal, Canada
| | - Ido Laskov
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada.
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
19
|
A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast 2018; 38:92-97. [PMID: 29287190 DOI: 10.1016/j.breast.2017.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Breast cancer (BC) in men is a rare disease, whose etiology appears to be associated with genetic factors. Inherited mutations in BRCA1/2 genes account for about 10-15% of all cases. FANCM, functionally linked to BRCA1/2, has been suggested as a novel BC susceptibility gene. Our aim was to test if FANCM germline mutations could further explain male BC (MBC) susceptibility. METHODS We screened the entire coding region of FANCM in 286 MBCs by a multi-gene panel analysis, and compared these data with available whole exome sequencing data from 415 men used as population controls. Moreover, we genotyped the two most frequent FANCM mutations (c.5101C>T and c.5791C>T) in 506 MBCs and 854 healthy male controls. RESULTS Two FANCM truncating mutations, the c.1432C>T (p.Arg478Ter) and c.1972C>T (p.Arg658Ter), were identified in two MBC cases (0.7%). When specifically considering cases at increased genetic risk for BC, FANCM mutation frequency raises up to 1%. One mutation, the c.2201_2202delCT (p.Ser734Terfs), was found among controls (0.24%). Mutation frequency in cases was higher than in controls, however this difference was not statistically significant. FANCM c.5101C>T was not present in any of the cases and controls analyzed, whereas FANCM c.5791C>T was found in two controls (0.23%). CONCLUSION Rare FANCM truncating mutations, other than c.5101C>T and c.5791C>T, may have a role in MBC susceptibility. The inclusion of FANCM in gene panels for research purpose would allow for the identification of a higher number of mutation carriers, thus helping estimate BC risk associated with FANCM mutations.
Collapse
|
20
|
Wan B, Dai L, Wang L, Zhang Y, Huang H, Qian G, Yu T. Knockdown of BRCA2 enhances cisplatin and cisplatin-induced autophagy in ovarian cancer cells. Endocr Relat Cancer 2018; 25:69-82. [PMID: 29066501 DOI: 10.1530/erc-17-0261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Clinical implications of the BRCA2 expression level on treatments of ovarian cancer are controversial. Here, we demonstrated that platinum-resistant cancer had a higher percentage of high BRCA2 level (87.5% vs 43.6%, P = 0.001), and that patients with a low BRCA2 level in cancer tissues had longer progression-free survival (with a median time of 28.0 vs 12.0 months, P < 0.001) and platinum-free duration (with a median time of 19.0 vs 5.0 months, P < 0.001) compared with those with a high BRCA2 level. In human ovarian cancer cell lines CAOV-3 and ES-2, cisplatin induced an upregulation of the RAD51 protein, which was inhibited after silencing BRCA2; silencing BRCA2 enhanced the action of cisplatin in vitro and in vivo Knockdown of BRCA2 promoted cisplatin-induced autophagy. Interestingly, the autophagy blocker chloroquine enhanced cisplatin in BRCA2-silenced cells accompanied by an increase in apoptotic cells, which did not occur in BRCA2-intact cells; chloroquine enhanced the efficacy of cisplatin against BRCA2-silenced CAOV-3 tumors in vivo, with an increase in LC3-II level in tumor tissues. Sensitization of cisplatin was also observed in BRCA2-silenced CAOV-3 cells after inhibiting ATG7, confirming that chloroquine modulated the sensitivity via the autophagy pathway. These data suggest that a low BRCA2 level can predict better platinum sensitivity and prognosis, and that the modulation of autophagy can be a chemosensitizer for certain cancers.
Collapse
Affiliation(s)
- Biao Wan
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Leheyi Dai
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Huang
- Hospital of StomatologyChongqing Medical University, Chongqing, China
| | - Guanhua Qian
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Siraj AK, Masoodi T, Bu R, Parvathareddy SK, Al-Badawi IA, Al-Sanea N, Ashari LH, Abduljabbar A, Alhomoud S, Al-Sobhi SS, Tulbah A, Ajarim D, Alzoman K, Aljuboury M, Yousef HB, Al-Dawish M, Al-Dayel F, Alkuraya FS, Al-Kuraya KS. Expanding the spectrum of germline variants in cancer. Hum Genet 2017; 136:1431-1444. [DOI: 10.1007/s00439-017-1845-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
22
|
Knies K, Inano S, Ramírez MJ, Ishiai M, Surrallés J, Takata M, Schindler D. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest 2017; 127:3013-3027. [PMID: 28691929 DOI: 10.1172/jci92069] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The WD40-containing E3 ubiquitin ligase RFWD3 has been recently linked to the repair of DNA damage by homologous recombination (HR). Here we have shown that an RFWD3 mutation within the WD40 domain is connected to the genetic disease Fanconi anemia (FA). An individual presented with congenital abnormalities characteristic of FA. Cells from the patient carrying the compound heterozygous mutations c.205_206dupCC and c.1916T>A in RFWD3 showed increased sensitivity to DNA interstrand cross-linking agents in terms of increased chromosomal breakage, reduced survival, and cell cycle arrest in G2 phase. The cellular phenotype was mirrored in genetically engineered human and avian cells by inactivation of RFWD3 or introduction of the patient-derived missense mutation, and the phenotype was rescued by expression of wild-type RFWD3 protein. HR was disrupted in RFWD3-mutant cells as a result of impaired relocation of mutant RFWD3 to chromatin and defective physical interaction with replication protein A. Rfwd3 knockout mice appear to have increased embryonic lethality, are subfertile, show ovarian and testicular atrophy, and have a reduced lifespan resembling that of other FA mouse models. Although RFWD3 mutations have thus far been detected in a single child with FA, we propose RFWD3 as an FA gene, FANCW, supported by cellular paradigm systems and an animal model.
Collapse
Affiliation(s)
- Kerstin Knies
- Department of Human Genetics, Biozentrum, University of Wurzburg, Wurzburg, Germany
| | - Shojiro Inano
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - María J Ramírez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Genetics Department, Hospital de Sant Pau, Barcelona, Spain
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Wurzburg, Wurzburg, Germany
| |
Collapse
|
23
|
Ishiai M, Sato K, Tomida J, Kitao H, Kurumizaka H, Takata M. Activation of the FA pathway mediated by phosphorylation and ubiquitination. Mutat Res 2017; 803-805:89-95. [PMID: 28552166 DOI: 10.1016/j.mrfmmm.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary condition that impacts genome integrity, leading to clinical features such as skeletal and visceral organ malformations, attrition of bone marrow stem cells, and carcinogenesis. At least 21 proteins, when absent or defective, have been implicated in this disorder, and they together constitute the FA pathway, which functions in detection and repair of, and tolerance to, endogenous DNA damage. The damage primarily handled by the FA pathway has been assumed to be related to DNA interstrand crosslinks (ICLs). The FA pathway is activated upon ICL damage, and a hallmark of this activation is the mono-ubiquitination events of the key FANCD2-FANCI protein complex. Recent data have revealed unexpectedly complex details in the regulation of FA pathway activation by ICLs. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via protein modifications.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kitao
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Foulkes WD, Sugano K. BRCA2: a grown-up cancer susceptibility gene. Endocr Relat Cancer 2016; 23:E1-3. [PMID: 27650115 DOI: 10.1530/erc-16-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- William D Foulkes
- Departments of Human GeneticsMedicine and Oncology, McGill University, Montreal, Quebec, Canada
| | - Kokichi Sugano
- Oncogene Research Unit/Cancer Prevention UnitTochigi Cancer Center Research Institute, Tochigi, Japan
| |
Collapse
|