1
|
Tavares MEA, Pinto AP, da Rocha AL, Sampaio LV, Correia RR, Batista VRG, Veras ASC, Chaves-Neto AH, da Silva ASR, Teixeira GR. Combined physical exercise re-synchronizes expression of Bmal1 and REV-ERBα and up-regulates apoptosis and metabolism in the prostate during aging. Life Sci 2024; 351:122800. [PMID: 38880169 DOI: 10.1016/j.lfs.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.
Collapse
Affiliation(s)
- Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson Luiz da Rocha
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Antonio Hernandes Chaves-Neto
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|
2
|
Li T, Jiang Y, Bai Y, Jiang K, Du G, Chen P, Luo C, Li L, Qiao J, Shen J. A review for the impacts of circadian disturbance on urological cancers. Sleep Biol Rhythms 2024; 22:163-180. [PMID: 38524168 PMCID: PMC10959858 DOI: 10.1007/s41105-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/18/2023] [Indexed: 03/26/2024]
Abstract
Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guangshi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Li
- Gastrointestinal Surgery Center, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Shen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Krajnak K, Waugh S, Welcome D, Xu XS, Warren C, McKinney W, Dong RG. Effects of whole-body vibration on reproductive physiology in a rat model of whole-body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:953-971. [PMID: 36165131 PMCID: PMC9885295 DOI: 10.1080/15287394.2022.2128954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Findings from epidemiological studies suggest that occupational exposure to whole-body vibration (WBV) may increase the risk of miscarriage and contribute to a reduction in fertility rates in both men and women. However, workers exposed to WBV may also be exposed to other risk factors that contribute to reproductive dysfunction. The goal of this experiment was to examine the effects of WBV on reproductive physiology in a rat model. Male and female rats were exposed to WBV at the resonant frequency of the torso (31.5 Hz, 0.3 g amplitude) for 4 hr/day for 10 days. WBV exposure resulted in a significant reduction in number of developing follicles, and decrease in circulating estradiol concentrations, ovarian luteinizing hormone receptor protein levels, and marked changes in transcript levels for several factors involved in follicular development, cell cycle, and steroidogenesis. In males, WBV resulted in a significant reduction in spermatids and circulating prolactin levels, elevation in number of males having higher circulating testosterone concentrations, and marked alterations in levels of transcripts associated with oxidative stress, inflammation, and factors involved in regulating the cell cycle. Based upon these findings data indicate that occupational exposure to WBV contributes to adverse alterations in reproductive physiology in both genders that may lead to reduction in fertility.
Collapse
Affiliation(s)
- K Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - S Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - D Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - X S Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - C Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - W McKinney
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - R G Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
4
|
Kouthouridis S, Robson E, Hartung A, Raha S, Zhang B. Se(XY) matters: the importance of incorporating sex in microphysiological models. Trends Biotechnol 2022; 40:1284-1298. [PMID: 35597689 DOI: 10.1016/j.tibtech.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
The development of microphysiological models is currently at the forefront of preclinical research. Although these 3D tissue models are being developed to mimic physiological organ function and diseases, which are often sexually dimorphic, sex is usually neglected as a biological variable. For decades, national research agencies have required government-funded clinical trials to include both male and female participants as a means of eliminating male bias. However, this is not the case in preclinical trials, which have been shown to favor male rodents in animal studies and male cell types in in vitro studies. In this Opinion, we highlight the importance of considering sex as a biological variable and outline five approaches for incorporating sex-specific features into current microphysiological models.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Eleanor Robson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Alicia Hartung
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4L8, Canada; Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
5
|
Dasari SS, Archer M, Mohamed NE, Tewari AK, Figueiro MG, Kyprianou N. Circadian Rhythm Disruption as a Contributor to Racial Disparities in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205116. [PMID: 36291899 PMCID: PMC9600368 DOI: 10.3390/cancers14205116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 01/27/2023] Open
Abstract
In the United States, African American (AA) men have a 2.4 times higher mortality rate due to prostate cancer than White men. The multifactorial causes of the racial disparities in prostate cancer involve various social determinants of health, socioeconomic status, and access to healthcare. However, emerging evidence also suggests that circadian rhythm disruption (CRD) contributes to prostate cancer, and AA men may be more susceptible to developing CRDs. Circadian rhythms play a significant role in metabolism, hormone secretion, and sleep/wake cycles. Disruption in these circadian rhythms can be caused by airplane travel/jetlag, night shift work, exposure to light, and neighborhood noise levels, which can contribute to sleep disorders and chronic conditions such as obesity, diabetes, cardiovascular disease, and depression. The drivers of the racial disparities in CRD include night shift work, racial discrimination, elevated stress, and residing in poor neighborhoods characterized by high noise pollution. Given the increased vulnerability of AA men to CRDs, and the role that CRDs play in prostate cancer, elucidating the clock-related prostate cancer pathways and their behavior and environmental covariates may be critical to better understanding and reducing the racial disparities in prostate cancer.
Collapse
Affiliation(s)
- Sonali S. Dasari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariana G. Figueiro
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| |
Collapse
|
6
|
Riedl J. [Chronopharmacology : The right timing can be crucial]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:844-849. [PMID: 35925288 DOI: 10.1007/s00120-022-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chronopharmacology takes into account, among other things, the circadian rhythm, a recurring, daily rhythm of biological functions that is significantly influenced by the day-night rhythm. Daily rhythm, diseases, and therapies influence each other: the circadian rhythm, among other factors, could influence the effect of pharmacological and nonpharmacological therapies, especially in urological oncology. AIM This article focuses on the question of the optimal time for therapeutic interventions and considers relevant basics of chronobiological principles depending on possible biomarkers that could be targets of a future therapeutic approach. RESULTS With chronomodulated chemotherapy, cancer therapies are not only more tolerable, but also more effective. Effects and side effects of an active substance can change according to the circadian rhythm. Due to the introduction of particularly targeted, oral tumor therapies, a daily application would be organizationally possible, but further clinical studies are necessary for this. The internal clock could play an unexpected role, especially in hormone-dependent prostate cancer: the amount of the circadian factor Cry1 not only seems to increase in the advanced stage, but is also closely associated with a poorer prognosis. Epidemiological studies also show a connection between hormone-dependent tumors and the disruption of the rhythmic release of melatonin. Melatonin appears to be able to improve therapy as an adjunct to cancer therapy in some urological tumor entities.
Collapse
Affiliation(s)
- Jörg Riedl
- Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Universitäres Cancer Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| |
Collapse
|
7
|
Sparasci D, Napoli I, Rossi L, Pereira-Mestre R, Manconi M, Treglia G, Marandino L, Ottaviano M, Turco F, Mangan D, Gillessen S, Vogl UM. Prostate Cancer and Sleep Disorders: A Systematic Review. Cancers (Basel) 2022; 14:cancers14071784. [PMID: 35406556 PMCID: PMC8997021 DOI: 10.3390/cancers14071784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Longer survival times for prostate cancer patients due to efficient treatments consisting of local radiotherapy, prostatectomy and androgen-deprivation therapy, as well as androgen-receptor-targeted agents, increases the importance of side effect management. Sleep disturbances are higher in this group than the general population and no clear mechanism(s) explains this. This systematic review finds a reported effect in 14 of 16 included studies on sleep quality changes for these patients. All reported treatments showed some kind of negative effect on sleep quality, including ADT. Limitations are discussed and recommendations made for progressing the understanding and then for mitigation strategies of these side effects. Abstract Prostate cancer (PCa) treatment involves multiple strategies depending on the disease’s stage. Androgen deprivation therapy (ADT) remains the gold standard for advanced and metastatic stages. Sleep quality has been suggested as being additionally influenced also by local radiotherapy, prostatectomy and androgen-receptor (AR)-targeted agents. We performed a systematic review exploring the landscape of studies published between 1 January 1990 and 31 July 2021, investigating sleep disturbances in PCa patients receiving active treatments, including the influence of hormonal therapy on sleep quality as a factor affecting their quality of life. Out of 45 articles identified, 16 studies were selected, which recruited patients with PCa, undergoing active treatment in either a prospective longitudinal or cross-sectional study. Development of sleep disorders or changes in sleep quality were reported in 14 out of 16 trials included. Only five trials included objective measurements such as actigraphy, mostly at one time point and without a baseline assessment. Limitations to be addressed are the small number of existing trials, lack of randomized trials and heterogeneity of methodologies used. This systematic review outlines the lack of prospective trials investigating sleep disorders, with a rigorous methodology, in homogeneous cohorts of PCa patients. Future trials are needed to clarify the prevalence and impact of this side effect of PCa treatments.
Collapse
Affiliation(s)
- Davide Sparasci
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (D.S.); (M.M.)
| | - Ilenia Napoli
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Radiation Oncology Unit, Department of Biomedical, Dental Science, Morphological and Functional Imaging, University Hospital Messina, 98122 Messina, Italy
| | - Lorenzo Rossi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
| | - Ricardo Pereira-Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (D.S.); (M.M.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Marandino
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Department of Medical Oncology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Margaret Ottaviano
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Department of Clinical Medicine and Surgery, University Federico II of Naples, 80138 Naples, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Department of Oncology, Division of Medical Oncology, University of Turin San Luigi Gonzaga Hospital, Regione Gonzole, 10043 Orbassano, Italy
| | - Dylan Mangan
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Division of Population Health, University of Manchester, Manchester M13 9PL, UK
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (I.N.); (L.R.); (R.P.-M.); (L.M.); (M.O.); (F.T.); (D.M.); (S.G.)
- Correspondence:
| |
Collapse
|
8
|
Porcacchia AS, Câmara DAD, Andersen ML, Tufik S. Sleep disorders and prostate cancer prognosis: biology, epidemiology, and association with cancer development risk. Eur J Cancer Prev 2022; 31:178-189. [PMID: 33990093 DOI: 10.1097/cej.0000000000000685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sleep is crucial for the maintenance of health and well-being. Sleep disorders can result in physiological consequences and are associated with several health issues, including cancer. Cancer is one of the most significant health problems in the world. In Western countries, prostate cancer is the most prevalent noncutaneous cancer among men. Epidemiological studies showed that one in nine men will have this disease during their life. Many factors influence prostate cancer and the tumor niche, including endogenous hormones, family history, diet, and gene mutations. Disruption of the circadian cycle by sleep disorders or other factors has been suggested as a novel and important risk factor for prostate cancer and its tumorigenesis. This review presents information regarding the epidemiological and biological aspects of prostate cancer, and discusses the impact of sleep physiology and sleep disorders on this type of cancer, highlighting possible associations with risk of cancer development.
Collapse
Affiliation(s)
| | | | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA. An Overview of Current Alternative Models for Use in the Context of Prostate Cancer Research. Altern Lab Anim 2020; 48:58-69. [PMID: 32614643 DOI: 10.1177/0261192920929701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers worldwide, particularly in elderly populations. To mitigate the expected increase in prostate cancer-related morbidity and mortality as a result of an expanding aged population, safer and more effective therapeutics are required. To this end, plenty of research is focusing on the mechanisms underlying cancer initiation and development, the metastatic process and on the discovery of new therapies. While animal models are used (mainly rats and mice) for the study of prostate cancer, alternative models and methods are increasingly being considered to replace, or at least reduce, the number of animals used in this particular field of research. In this review, we cover some of the alternative models that are currently available for use in the study of prostate cancer, including: mathematical models; 2-D and 3-D cell cultures; microfluidic devices; the chicken egg chorioallantoic membrane-based model; and zebrafish embryo-based models. The main advantages and limitations, as well as some examples of applications, are given for each type of model. According to our analysis, immortalised cell lines are still the most commonly used models in the field of prostate cancer research. However, the use of alternative models for prostate cancer research will likely become more prevalent in the coming years partly because of the increasing societal pressure to reduce the numbers of laboratory animals. In this context, the development and dissemination of effective non-animal alternative models assumes particular relevance and will be instrumental in leveraging their success. Taking these perspectives into account, we believe that technological advances will lead to more effective cell culture systems, namely 3-D cultures or organ-on-a-chip devices, which can be used to replace animal-based models in prostate cancer research.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Bruno Jorge Antunes Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Zootechnics, 56066University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
10
|
Al-Dujaili EAS, Hajleh MNA, Chalmers R. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study. Nutrients 2020; 12:nu12061582. [PMID: 32481563 PMCID: PMC7352699 DOI: 10.3390/nu12061582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Ginseng is a traditional herbal adaptogen that has been historically used in China and the Far East. Ginsenosides are the active component of ginseng known to exert several actions by targeting "multi-receptor systems", both extracellular and intracellular. In humans, ginseng effects remain unclear. This study aimed to investigate whether ginseng can influence salivary androgen levels (testosterone and dehydroepiandrosterone (DHEA)) in females. The study followed a parallel partially controlled design. Healthy women (n = 24) were recruited and divided into two groups (A = 20-32 and B = 38-50 years). Volunteers were asked to maintain a food diary pre and post ginseng consumption and collected four salivary samples (7 a.m., 9 a.m., 12 p.m., and 5 p.m.) before and after ingesting 75 mg red Korean ginseng extract per day for seven days. Testosterone and DHEA were then assayed by ELISA methods. Group A's mean daily salivary testosterone pre ginseng ingestion increased from 76.3 ± 16.6 to 98.4 ± 21.1 pg/mL post ginseng (p < 0.01) with significant difference at all time points, and mean daily salivary DHEA increased from 1.53 ± 0.63 to 1.98 ± 0.89 ng/mL post ginseng (p = 0.02). Group B's mean daily salivary testosterone pre ginseng ingestion was 61.2 ± 16.9 and post ginseng 68.1 ± 11.5 pg/mL (p = 0.132), and daily salivary DHEA increased from 0.91 ± 0.32 to 1.62 ± 0.49 ng/mL post ginseng (p = 0.014) with significant difference at all time points. In conclusion, it appears that ginseng intake significantly increased salivary testosterone levels in the younger women group, but only slightly in the older group. However, DHEA levels in the older women showed a marked and significant increase. These results suggest a potential role for ginseng in modulating salivary androgen levels and that such effect may be more evident in older women where the levels of androgens (DHEA) start to decline. However, it has to be stressed that our results are preliminary and further properly controlled trials are justified.
Collapse
Affiliation(s)
- Emad A. S. Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Correspondence: ; Tel.: +44-131-339-1785
| | - Maha N. Abu Hajleh
- Department of Pharmaceutical sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Ruth Chalmers
- Biological Sciences, Queen Margaret University, Edinburgh EH21 6UU, UK;
| |
Collapse
|
11
|
Altered circadian clock as a novel therapeutic target for constant darkness-induced insulin resistance and hyperandrogenism of polycystic ovary syndrome. Transl Res 2020; 219:13-29. [PMID: 32119846 DOI: 10.1016/j.trsl.2020.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying metabolic and reproductive dysfunction caused by arrhythmic circadian clock and their involvement in polycystic ovary syndrome (PCOS) are not understood. Here, we addressed this issue using rats with constant light or darkness exposure for 8 weeks and human leukocytes and serum of PCOS and non-PCOS patients. Additionally, we utilized HepG2 cells and KGN cells to verify the molecular mechanisms. The arrhythmic expressions of circadian clock genes due to constant darkness induced the metabolic and reproductive hallmarks of PCOS in rats. After exposure to constant darkness, decreased brain and muscle ARNT-like protein 1 (BMAL1) promoted insulin resistance via glucose transporter 4 (GLUT4), and decreased period (PER) 1 and PER2 promoted androgen excess via insulin-like growth factor-binding protein 4 (IGFBP4) and sex hormone binding globulin (SHBG) in the liver. Hyperinsulinemia and hyperandrogenism shared a bidirectional link promoting aberrant expression of circadian genes and inducing apoptosis of ovarian granulosa cells. Notably, the altered expressions of circadian clock genes in darkness-treated rats matched those of PCOS patients. Furthermore, melatonin treatment relieved the hyperinsulinemia and hyperandrogenism of darkness-treated rats via BMAL1, PER1, and PER2. Restoring normal light/dark exposure for 2 weeks reversed these conditions via BMAL1. In conclusion, our findings elucidated the critical function of circadian clock genes, especially BMAL1, PER1, and PER2 in PCOS, which might aid the development of feasible preventive and therapeutic strategies for PCOS in women with biorhythm disorder.
Collapse
|
12
|
Schröder A, Aitken KJ, Jiang JX, Sidler M, Tölg C, Siebenaller A, Jeffrey N, Kirwan T, Leslie B, Wu C, Weksberg R, Delgado-Olguin P, Bägli DJ. Persistent myopathy despite release of partial obstruction: in vivo reversal of dysfunction and transcriptional responses using rapamycin. FASEB J 2020; 34:3594-3615. [PMID: 31984552 DOI: 10.1096/fj.201900547rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Current and potential medical therapy for obstruction-induced myopathic bladder dysfunction (from benign prostatic hyperplasia or posterior urethral valves) focuses on symptoms. The persistent tissue pathology and dysfunction after release of obstruction is often deemed irreversible without any systematic therapeutic approaches. As rapamycin can attenuate bladder smooth muscle hypertrophy and dysfunction during the genesis of partial obstruction in vivo, we tested whether rapamycin could improve persistent function after release of obstruction (de-obstruction or REL). Female Sprague-Dawley rat bladders were partially obstructed (PBO) by suturing around both the urethra and a para-urethral steel rod, then removing the rod. One day prior to release of obstruction (preREL), voiding parameters and residual urine volume of preREL+future rapa, preREL+future veh groups were recorded. Release of obstruction (REL) was performed by suture removal following 6 weeks of PBO. For 4 more weeks after the de-obstruction, REL animals were randomized to rapamycin (REL+rapa) or vehicle (REL+veh). PBO for 6 weeks were used as positive controls. In shams, the urethra was exposed, but no suture tied. Voiding parameters and residual urine volume were measured prior to sacrifice of sham and REL+veh or REL+rapa, and PBO. Rapamycin efficacy was tested by pair-wise comparison of changes in individual voiding data from preREL+future veh or preREL+future rapa versus REL+veh or REL+rapa, respectively, as well as by comparisons of REL+veh to REL+rapa groups. Bladders were weighed and processed for a high-throughput QPCR array, and histopathology. Bladder/body mass ratios with PBO increased significantly and remained higher in the release phase in REL+veh animals. REL+rapa versus REL+veh improved residual volumes and micturition fractions toward sham levels. Three genes encoding extracellular proteins, BMP2, SOD3, and IGFBP7, correlated with functional improvement by Pearson's correlations. The promoters of these genes showed enrichment for several motifs including circadian E-boxes. While obstruction and REL augmented CLOCK and NPAS2 expression above sham levels, rapamycin treatment during release significantly blocked their expression. This experimental design of pharmaco-intervention during the de-obstruction phase revealed a novel pathway dysregulated during the clinically relevant treatment phase of obstructive bladder myopathy.
Collapse
Affiliation(s)
- Annette Schröder
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Sidler
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cornelia Tölg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tyler Kirwan
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Bruno Leslie
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rosanna Weksberg
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Darius J Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
14
|
Jung SJ, Lee J, Choi JW, Kim S, Shin A, Lee YJ. Association between sedative-hypnotic medication use and incidence of cancer in Korean Nation Health Insurance Service data. Sleep Med 2019; 60:159-164. [PMID: 31186214 DOI: 10.1016/j.sleep.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We aimed to investigate the association between the use of various sedative-hypnotics and the incidence of overall and individual cancers in a large, population-based, retrospective cohort study. METHODS We selected a 5% random sample of individuals aged 50 years or older from data maintained by the Korean National Health Insurance Service for the years 2002-2015, excluding individuals with a prior diagnosis of cancer and with any sedative-hypnotic use in the initial two years of follow-up, leaving 236,759 participants for the final analysis. Exposure to sedative-hypnotics was defined by type of drug, standardized to a defined daily dose, and coded as a time-varying variable. Cox proportional hazard models were applied after adjusting for sex, socio-economic status, and comorbidities. RESULTS We observed increased risk for overall cancer among men and women who used sedative-hypnotics (hazard ratio (HR) = 1.07, 95% confidence interval (CI) = 1.01-1.13 for men; HR = 1.21, 95% CI = 1.09-1.25 for women) compared with non-users after full adjustment. In the fully adjusted model, women with any sedative-hypnotic use had significantly increased risk for thyroid (HR = 1.53, 95% CI = 1.24-1.87), breast (HR = 1.29, 95% CI = 1.04-1.61), ovarian (HR = 1.65, 95% CI = 1.10-2.46), and lung cancer (HR = 1.40, 95% CI = 1.17-1.69) compared with non-users. Men with sedative-hypnotic use had increased risk for prostate (HR = 1.36, 95% CI = 1.16-1.58), brain (HR = 1.67, 95% CI = 1.04-2.69), and lung cancer (HR = 1.20, 95% CI = 1.07-1.35) compared with non-users. CONCLUSION We found a significant increase in overall cancer incidence among participants who used sedative-hypnotics, and both male and female sedative-hypnotic users had significantly increased risk for certain types of cancer.
Collapse
Affiliation(s)
- Sun Jae Jung
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joonki Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Won Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | - Soohyun Kim
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M. An Overview of the Polymorphisms of Circadian Genes Associated With Endocrine Cancer. Front Endocrinol (Lausanne) 2019; 10:104. [PMID: 30873119 PMCID: PMC6401647 DOI: 10.3389/fendo.2019.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
A major consequence of the world industrialized lifestyle is the increasing period of unnatural light in environments during the day and artificial lighting at night. This major change disrupts endogenous homeostasis with external circadian cues, which has been associated to higher risk of diseases affecting human health, mainly cancer among others. Circadian disruption promotes tumor development and accelerate its fast progression. The dysregulation mechanisms of circadian genes is greatly affected by the genetic variability of these genes. To date, several core circadian genes, also called circadian clock genes, have been identified, comprising the following: ARNTL, CLOCK, CRY1, CRY2, CSNK1E, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, RORA, and TIMELESS. The polymorphic variants of these circadian genes might contribute to an individual's risk to cancer. In this short review, we focused on clock circadian clock-related genes, major contributors of the susceptibility to endocrine-dependent cancers through affecting circadian clock, most likely affecting hormonal regulation. We examined polymorphisms affecting breast, prostate and ovarian carcinogenesis, in addition to pancreatic and thyroid cancer. Further study of the genetic composition in circadian clock-controlled tumors will be of great importance by establishing the foundation to discover novel genetic biomarkers for cancer prevention, prognosis and target therapies.
Collapse
Affiliation(s)
- Sonia Morales-Santana
- Proteomic Research Service, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
- *Correspondence: Sonia Morales-Santana
| | - Santiago Morell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Santiago Morell
| | - Josefa Leon
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Angel Carazo-Gallego
- Genomic Research Service, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - María Morell
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
16
|
Polo A, Singh S, Crispo A, Russo M, Giudice A, Montella M, Colonna G, Costantini S. Evaluating the associations between human circadian rhythms and dysregulated genes in liver cancer cells. Oncol Lett 2017; 14:7353-7359. [PMID: 29250165 PMCID: PMC5727601 DOI: 10.3892/ol.2017.7109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Network analysis is a useful approach in cancer biology as it provides information regarding the genes and proteins. In our previous study, a network analysis was performed on dysregulated genes in HepG2 cells, a hepatoblastoma cell line that lacks the viral infection, compared with normal hepatocytes, identifying the presence of 26 HUB genes. The present study aimed to identify whether these previously identified HUB genes participate in the network that controls the human circadian rhythms. The results of the present study demonstrated that 20/26 HUB genes were associated with the metabolic processes that control human circadian rhythms, which supports the hypothesis that a number of cancer types are dependent from circadian cycles. In addition, it was revealed that the CLOCK circadian regulator gene was associated, via cytoskeleton associated protein 5 (CKAP5), with the HUB genes of the HepG2 network, and that CKAP5 was associated with three other circadian genes (casein kinase 1ε, casein kinase 1δ and histone deacetylase 4) and 10 HepG2 genes (SH2 domain containing, ZW10 interacting kinetochore protein, aurora kinase B, cell division cycle 20, centromere protein A, inner centromere protein, mitotic arrest deficient 2 like 1, baculoviral IAP repeat containing 5, SPC24 NDC80 kinetochore complex component and kinesin family member 2C). Furthermore, the genes that associate the circadian system with liver cancer were demonstrated to encode intrinsically disordered proteins. Finally, the results of the present study identified the microRNAs involved in the network formed by the overlapping of HepG2 and circadian genes.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Sakshi Singh
- Doctorate in Computational Biology, Second University of Naples, I-80131 Naples, Italy
| | - Anna Crispo
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Marilina Russo
- Oncology Research Center of Mercogliano, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Aldo Giudice
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Maurizio Montella
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Giovanni Colonna
- Medical Informatics Service, University Hospital, University of Campania ‘Luigi Vanvitelli’, I-80131 Naples, Italy
| | - Susan Costantini
- Oncology Research Center of Mercogliano, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| |
Collapse
|
17
|
Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017; 8:23978-23995. [PMID: 28177907 PMCID: PMC5410358 DOI: 10.18632/oncotarget.15074] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| |
Collapse
|
18
|
Corrà S, Salvadori R, Bee L, Barbieri V, Mognato M. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts. Cell Biol Toxicol 2017; 33:373-388. [PMID: 28466226 PMCID: PMC5493713 DOI: 10.1007/s10565-017-9394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.
Collapse
Affiliation(s)
- Samantha Corrà
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Riccardo Salvadori
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Leonardo Bee
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.,Menarini Silicon Biosystems, 10355 Science Center Dr #210, San Diego, CA, 92121, USA
| | - Vito Barbieri
- Department of Surgical, Oncological and Gastroenteric Sciences, University of Padova, via Giustiniani 2, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.
| |
Collapse
|
19
|
Wendeu-Foyet MG, Menegaux F. Circadian Disruption and Prostate Cancer Risk: An Updated Review of Epidemiological Evidences. Cancer Epidemiol Biomarkers Prev 2017; 26:985-991. [PMID: 28377415 DOI: 10.1158/1055-9965.epi-16-1030] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Since the publication of the International Agency for Research on Cancer Monograph in 2007 classifying night shift work leading to a disruption of circadian rhythm as probably carcinogenic to humans, there is an increasingly growing interest in understanding how circadian disruption may play a role in cancer development.This systematic review provides a comprehensive update on epidemiologic evidences on circadian disruption and prostate cancer since the last review published in 2012. We identified 12 new studies evaluating the effects of several circadian disruptors such as night shift work, sleep patterns, and circadian genes in prostate cancer risk. In contrast, no new studies have focused on exposure to light at night.Several convincing and biologically plausible hypotheses have been proposed to understand how circadian disruption may be related to cancer. However, the current difficulty of concluding on the role of circadian disruption on prostate cancer risk requires further studies including a better characterization of the different night shift systems, data on sleep patterns and chronotype, measurement of biomarkers, and investigations of polymorphisms in the genes regulating the biological clock. Cancer Epidemiol Biomarkers Prev; 26(7); 985-91. ©2017 AACR.
Collapse
Affiliation(s)
- Méyomo G Wendeu-Foyet
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Florence Menegaux
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France.
| |
Collapse
|
20
|
Marsh DJ, Eng C. Lessons learnt from outstanding mid-career women in endocrine cancer research. Endocr Relat Cancer 2016; 23:E5-E7. [PMID: 27935806 DOI: 10.1530/erc-16-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Deborah J Marsh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales, Australia
| | - Charis Eng
- Genomic Medicine InstituteCleveland Clinic, Cleveland, Ohio, USA
- Deparment of Genetics and Genome SciencesCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Germline High Risk Focus GroupComprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|