1
|
Lin Z, Gong Y, Yu C, Yang C, Yin L, Zhang D, Tang Y, Xu F, Wang Y, Liu Y. IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. Poult Sci 2024; 104:104761. [PMID: 39754922 DOI: 10.1016/j.psj.2024.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells. Small RNA sequencing revealed that miR-15c-3p expression was elevated by oxidative stress induction and attenuated by antioxidant curcumin. Functional validation with miR-15c-3p mimic and inhibitor confirmed the role of miR-15c-3p in exacerbating oxidative stress and resultant suppression of lipid droplet storage and progesterone secretion in chicken granulosa cells by targeting insulin-like growth factor 2 binding protein 3 (IGF2BP3). These regulatory effects were mediated through the sequential downstream signaling cascade of AKT-Raf1-ERK1/2. In conclusion, IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. These findings offer new insights into the molecular mechanisms by which oxidative stress damages reproductive capacity and a theoretical basis for mitigating oxidative stress in laying hens through genetic improvement.
Collapse
Affiliation(s)
- Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Anim Biotechnol 2024; 35:2254568. [PMID: 37694839 DOI: 10.1080/10495398.2023.2254568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The thyroid gland is an important endocrine gland in animals, which mainly secretes thyroid hormones and acts on various organs of the body. Long-chain non-coding RNA (lncRNA) plays an important role in animal reproduction. However, there is still a lack of understanding of their expression patterns and potential roles in the thyroid of Small Tail Han (STH) sheep. In this study, RNA-seq was used to examine the transcriptome expression patterns of lncRNAs and mRNAs in the follicular phase (ww_FT) and luteal phase (ww_LT) in FecB++ genotype STH Sheep. A total of 17,217 lncRNAs and 39,112 mRNAs were identified including 96 differentially expressed lncRNAs (DELs) and 1054 differentially expressed mRNAs (DEGs). Functional analysis of genes with significant differences in expression level showed that these genes could be enriched in Ras signalling pathway, hedgehog (HH) signalling pathway, ATP-binding cassette (ABC) transporters and other signalling pathways related to animal reproduction. In addition, through correlation analysis for lncRNA-mRNA co-expression and network construction, we found that LNC_009115 and LNC_005796 trans target NIK-related kinase (NRK) and poly(A)-specific ribonuclease (PARN). LNC_007189 and LNC_002045 trans target progesterone-induced blocking factor 1 (PIBF1), LNC_009013 trans targets small mothers against decapentaplegic (SMAD1) are related to animal reproduction. These genes add new resources for elucidating the regulatory mechanisms of reproduction in sheep with different reproductive cycles of the FecB++ genotype STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Rauen KA, Tidyman WE. RASopathies - what they reveal about RAS/MAPK signaling in skeletal muscle development. Dis Model Mech 2024; 17:dmm050609. [PMID: 38847227 PMCID: PMC11179721 DOI: 10.1242/dmm.050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, 95817, USA
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| | - William E Tidyman
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Cheng T, Gu ML, Xu WQ, Ye DW, Zha ZY, Fang WG, Mao LK, Ning J, Hu XB, Ding YH. Mechanism of lncRNA SNHG16 on kidney clear cell carcinoma cells by targeting miR-506-3p/ETS1/RAS/ERK molecular axis. Heliyon 2024; 10:e30388. [PMID: 38756581 PMCID: PMC11096951 DOI: 10.1016/j.heliyon.2024.e30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Objective This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ming-Li Gu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wei-Qiang Xu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Da-Wen Ye
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ze-Yu Zha
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wen-Ge Fang
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Li-Kai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xing-Bang Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Yong-Hui Ding
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
5
|
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRAS G12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189108. [PMID: 38723697 DOI: 10.1016/j.bbcan.2024.189108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yue Qiao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Wang W, Zheng P, Yan L, Chen X, Wang Z, Liu Q. Mechanism of non-thermal atmospheric plasma in anti-tumor: influencing intracellular RONS and regulating signaling pathways. Free Radic Res 2024; 58:333-353. [PMID: 38767976 DOI: 10.1080/10715762.2024.2358026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Non-thermal atmospheric plasma (NTAP) has been proven to be an effective anti-tumor tool, with various biological effects such as inhibiting tumor proliferation, metastasis, and promoting tumor cell apoptosis. At present, the main conclusion is that ROS and RNS are the main effector components of NTAP, but the mechanisms of which still lack systematic summary. Therefore, in this review, we first summarized the mechanism by which NTAP directly or indirectly causes an increase in intracellular RONS concentration, and the multiple pathways dysregulation (i.e. NRF2, PI3K, MAPK, NF-κB) induced by intracellular RONS. Then, we generalized the relationship between NTAP induced pathways dysregulation and the various biological effects it brought. The summary of the anti-tumor mechanism of NTAP is helpful for its further research and clinical transformation.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wang Y, Zhang Y, Li Y, Huang J. Elevated PDE4C level serves as a candidate diagnostic biomarker and correlates with poor survival in thyroid carcinoma. Sci Rep 2024; 14:6813. [PMID: 38514754 PMCID: PMC10957934 DOI: 10.1038/s41598-024-57533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Thyroid carcinoma (THCA) is the most common endocrine cancer. Phosphodiesterase (PDE) 4 enzyme family, as specific regulator of cyclic adenosine monophosphate, may play a important role in THCA. However, few studies on PDE4 enzyme family in THCA have been reported yet. Therefore, this study aimed to systematically analyze the changes of PDE4 enzyme family in THCA, and look for potential target for THCA therapy. We systematically analyzed the expression differences, prognostic value, genetic alteration, methylation modification, and the correlation with tumor immune microenvironment of PDE4 family in THCA using several public databases, including TCGA, GEO, GSCA, TNMplot, cBioPortal, DiseaseMeth and TIMER. Besides, functional enrichment analysis and protein-protein interaction (PPI) network of PDE4 family was investigated using Metascape and STRING databases. The expression levels of PDE4A, PDE4B and PDE4D were down-regulated in THCA patients at different cancer stages, while the expression level of PDE4C was significantly up-regulated. Moreover, THCA patients with higher PDE4C expression had shorter progress free survival compared with those with lower PDE4C expression. The low genomic alteration frequencies and mildly increased methylation levels of PDE4 family were found in THCA patients. Except for PDE4A, the expression levels of PDE4B, PDE4C and PDE4D could affect many immune cells infiltration during THCA progression. Four PDE4 subtypes were all enriched in cAMP catabolic process. Nevertheless, PDE4C was not enriched in the cAMP binding signal pathway, and PDE4B was not enriched in the G alphas signaling events. Notably, PDE4C participated in cAMP metabolic process by regulating adenylate cyclases (ADCYs), which involved ADCY1, ADCY5, ADCY6, ADCY8 and ADCY9. The findings of this study provide a partial basis for the role of PDE4 family in the occurrence and development of THCA. In addition, this study also suggested that PDE4C might be a potential prognostic marker of THCA, which could serve as a reference for future basic and clinical research.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yongsheng Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Guo M, Sun Y, Wei Y, Xu J, Zhang C. Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne) 2024; 15:1372553. [PMID: 38501105 PMCID: PMC10944873 DOI: 10.3389/fendo.2024.1372553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans. A more focused approach is provided by targeted therapies, which target certain molecular targets such as mutant BRAF or RET proteins. This strategy minimizes collateral harm to healthy tissues and may also reduce adverse effects. Simultaneously, patient categorization based on molecular profiles is made possible by biomarker exploration, which allows for customized therapy regimens and maximizes therapeutic results. The benefits of targeted therapy and biomarker research go beyond their immediate clinical impact to encompass the whole cancer landscape. Comprehending the genetic underpinnings of thyroid cancer facilitates the creation of novel treatments that specifically target aberrant molecules. This advances the treatment of thyroid cancer and advances precision medicine, paving the way for the treatment of other cancers. Taken simply, more study on thyroid cancer is promising for better patient care. The concepts discovered during this investigation have the potential to completely transform the way that care is provided, bringing in a new era of personalized, precision medicine. This paradigm shift could improve the prognosis and quality of life for individuals with thyroid cancer and act as an inspiration for advances in other cancer types.
Collapse
Affiliation(s)
- Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Li Q, Wang Y, Meng X, Wang W, Duan F, Chen S, Zhang Y, Sheng Z, Gao Y, Zhou L. METTL16 inhibits papillary thyroid cancer tumorigenicity through m 6A/YTHDC2/SCD1-regulated lipid metabolism. Cell Mol Life Sci 2024; 81:81. [PMID: 38334797 PMCID: PMC10857971 DOI: 10.1007/s00018-024-05146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Yaju Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiangshu Meng
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenjing Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Feifan Duan
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuya Chen
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yukun Zhang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhiyong Sheng
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, China
| | - Lei Zhou
- Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
10
|
Xu D, Lai Y, Liu H, Li H, Feng N, Liu Y, Gong C, Zhang Y, Zhou J, Shen Y. A diagnostic model based on DNA methylation haplotype block characteristics for identifying papillary thyroid carcinoma from thyroid adenoma. Transl Res 2024; 264:76-84. [PMID: 37863284 DOI: 10.1016/j.trsl.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer. Methylation of some genes plays a crucial role in the tendency to malignancy as well as poor prognosis of thyroid cancer, suggesting that methylation features can serve as complementary markers for molecular diagnosis. In this study, we aimed to develop and validate a diagnostic model for PTC based on DNA methylation markers. A total of 142 thyroid nodule tissue samples containing 84 cases of PTC and 58 cases of thyroid adenoma (TA) were collected for reduced representation bisulfite sequencing (RRBS) and subsequent analysis. The diagnostic model was constructed by the logistic regression (LR) method followed by 5-cross validation and based on 94 tissue methylation haplotype block (MHB) markers. The model achieved an area under the receiver operating characteristic curve (AUROC) of 0.974 (95% CI, 0.964-0.981) on 108 training samples and 0.917 (95% CI, 0.864-0.973) on 27 independent testing samples. The diagnostic model scores showed significantly high in males (P = 0.0016), age ≤ 45 years (P = 0.026), high body mass index (BMI) (P = 0.040), lymph node metastasis (P = 0.00052) and larger nodules (P = 0.0017) in the PTC group, and the risk score of this diagnostic model showed significantly high in recurrent PTC group (P = 0.0005). These results suggest that the diagnostic model can be expected to be a powerful tool for PTC diagnosis and there are more potential clinical applications of methylation markers to be excavated.
Collapse
Affiliation(s)
- Dong Xu
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China; Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Hongmei Liu
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Ningning Feng
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Chengxiang Gong
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Jiaqing Zhou
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| | - Yuling Shen
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
11
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Du Q, Huang L, Guo W. LncRNA ARAP1-AS1 targets miR-516b-5p/PDE5A axis to facilitate the progression of thyroid cancer. Anticancer Drugs 2023; 34:735-746. [PMID: 36730555 DOI: 10.1097/cad.0000000000001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thyroid cancer (TC) remains a prevalent public health concern. To further study the molecular mechanism of TC development, we explored the regulatory mechanism and function of lncRNA ARAP1-AS1 in TC progression. The verification of ARAP1-AS1, PDE5A and miR-516b-5p expression levels among the TC cell lines and tissues was fulfilled via RT-qPCR and western blot analyses. Cell Counting Kit-8 and colony formation experiments were executed to assess ARAP1-AS1's biological function in vitro. Western blotting was conducted to assess apoptosis through the expressions of apoptotic markers. A tumor xenograft experiment was conducted to evaluate whether ARAP1-AS1 affected TC tumor development in vivo . The interactions of miR-516b-5p with ARAP1-AS1 and PDE5A were explored through a dual-luciferase reporter and RNA Binding Protein Immunoprecipitation assays, as well as through Pearson's correlation analysis. ARAP1-AS1 and PDE5A were evidently upregulated in the TC cell lines and tissues whereas miR-516b-5p was poorly expressed. ARAP1-AS1 silencing in TC cells hampered cell proliferation, reduced their viability and boosted apoptosis. Moreover, it inhibited tumor growth in vivo . ARAP1-AS1 had been revealed to be correlated negatively to miR-516b-5p. Finally, we demonstrated that the miR-516b-5p inhibitor was capable of reversing ARAP1-AS1-knockdown's repressive effects on TC cell development by means of regulating PDE5A expression. ARAP1-AS1 partially facilitated TC cell development and survival through the modulation of miR-516b-5p/PDE5A axis. This contributes a novel biomarker and new perspectives for TC treatment.
Collapse
Affiliation(s)
- Qiuli Du
- Department of Thyroid and Breast Surgery
| | | | - Wei Guo
- Department of Endocrinology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
13
|
Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Dis 2022; 8:423. [PMID: 36266265 PMCID: PMC9585021 DOI: 10.1038/s41420-022-01214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that pyruvate carboxylase (PC) plays a key role in the occurrence and progression of thyroid cancer (TC); however, the relationship between PC and iodine-refractory TC is unclear. Therefore, the present study aimed to investigate the molecular mechanism of PC in the malignant progression and loss of iodine uptake in papillary TC (PTC) and to explore the potential therapeutic effect of PC inhibitors in iodine-refractory PTC. PC increased cell proliferation, invasion, and metastasis, inhibited expression of the iodine metabolism-related genes TSHR, NIS, TPO, and TG, and decreased the iodine-uptake capacity by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway in PTC cell lines. Furthermore, the PC inhibitor ZY-444 effectively inhibited the activation of PC, reduced the malignant invasiveness, and restored the expression of iodine metabolism-related genes and the iodine-uptake capacity in PTC cells. These findings suggest that PC activation is involved in the progression of iodine-refractory TC and that PC inhibitors may represent a potentially novel targeted therapy for iodine-refractory TC.
Collapse
|
14
|
Li M, Li X, Chen S, Zhang T, Song L, Pei J, Sun G, Guo L. IPO5 Mediates EMT and Promotes Esophageal Cancer Development through the RAS-ERK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6570879. [PMID: 36120598 PMCID: PMC9481360 DOI: 10.1155/2022/6570879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022]
Abstract
Objective In the development of many tumors, IPO5, as a member of the nuclear transporter family, exerts a significant function. Also, IPO5 is used as a therapeutic target for tumors based on some reports. By studying IPO5 expression in esophageal cancer tissues, the mechanism associated with IPO5 improving esophageal cancer development was explored in this study. Methods To gain differentially expressed genes, this study utilized mRNA microarray and TCGA database for comprehensive analysis of esophageal cancer tissues and normal esophageal cancer tissues, and then the differentially expressed gene IPO5 was screened by us. To assess esophageal cancer patients' prognosis, this study also applied the Kaplan-Meier analysis, and we also conducted the GSEA enrichment analysis to investigate IPO5-related signaling pathways. This study performed TISIDB and TIMER online analysis tools to study the correlation between IPO5 and immune regulation and infiltration. We took specimens of esophageal cancer from patients and detected the expression of IPO5 in tumor and normal tissues by immunohistochemistry. The IPO5 gene-silenced esophageal cancer cell model was constructed by lentivirus transfection. Through the Transwell invasion assay, CCK-8 assay, and cell scratch assay, this study investigated the effects of IPO5 on cell propagation, invasion, and transfer. What is more, we identified the influences of IPO5 on the cell cycle through flow cytometry and established a subcutaneous tumor-forming model in nude mice. Immunohistochemistry was used to verify the expression of KI-67, and this study detected the modifications of cell pathway-related proteins using Western blot and applied EMT-related proteins to explain the mechanism of esophageal cancer induced by IPO5. Results According to database survival analysis, IPO5 high-expression patients had shorter disease-free survival than IPO5 low-expression patients. Compared to normal tissues, the IPO5 expression in cancer tissues was significantly higher in clinical trials (P < 0.05). Through TISIDB and TIMER database studies, we found that IPO5 could affect immune regulation, and the age of IPO5 expression grows with the increase of immune infiltration level. The IPO5 expression in esophageal cancer cells was higher than normal, especially in ECA109 and OE33 cells (P < 0.01). After knocking out IPO5 gene expression, cell proliferation capacity and invasion capacity were reduced (P < 0.05) and decreased (P < 0.01) in the IPO5-interfered group rather than the negative control group. The growth cycle of esophageal carcinoma cells was arrested in the G2/M phase after IPO5 gene silencing (P < 0.01). Tumor-forming experiments in nude mice confirmed that after IPO5 deletion, the tumor shrank, the expression of KI67 decreased, the downstream protein expression level of the RAS pathway decreased after sh-IPO5 interference (P < 0.01), and the level of EMT marker delined (P < 0.05). Conclusion In esophageal cancer, IPO5 is highly expressed and correlates with survival rate. Esophageal cancer cell growth and migration were significantly affected by the inhibition of IPO5 in vitro and in vivo. IPO5 mediates EMT using the RAS-ERK signaling pathway activation and promotes esophageal cancer cell development in vivo and in vitro.
Collapse
Affiliation(s)
- Meiyu Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaofei Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shujia Chen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianai Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liaoyuan Song
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayue Pei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guoyan Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lianyi Guo
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Zaballos MA, Acuña-Ruiz A, Morante M, Riesco-Eizaguirre G, Crespo P, Santisteban P. Inhibiting ERK dimerization ameliorates BRAF-driven anaplastic thyroid cancer. Cell Mol Life Sci 2022; 79:504. [PMID: 36056964 PMCID: PMC9440884 DOI: 10.1007/s00018-022-04530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Background RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo. Methods We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics. We also assessed the impact of DEL-22379 on the transcriptional landscape of ATC cell lines using RNA-sequencing and evaluated its therapeutic efficacy in an orthotopic mouse model of ATC. Results DEL-22379 impaired upstream ERK activation in BRAF- but not RAS-mutant cells. Cell viability and metastasis-related processes were attenuated by DEL-22379 treatment, but mostly in BRAF-mutant cells, whereas in vivo tumor growth and dissemination were strongly reduced for BRAF-mutant cells and mildly reduced for RAS-mutant cells. Transcriptomics analyses indicated that DEL-22379 modulated the transcriptional landscape of BRAF- and RAS-mutant cells in opposite directions. Conclusions Our findings establish that BRAF- and RAS-mutant thyroid cells respond differentially to DEL-22379, which cannot be explained by the previously described mechanism of action of the inhibitor. Nonetheless, DEL-22379 demonstrated significant anti-tumor effects against BRAF-mutant cells in vivo with an apparent lack of toxicity, making it an interesting candidate for the development of combinatorial treatments. Our data underscore the differences elicited by the specific driver mutation for thyroid cancer onset and progression, which should be considered for experimental and clinical approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04530-9.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain.,Grupo de Endocrinología Molecular, Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
16
|
Fuziwara CS, de Mello DC, Kimura ET. Gene Editing with CRISPR/Cas Methodology and Thyroid Cancer: Where Are We? Cancers (Basel) 2022; 14:cancers14030844. [PMID: 35159110 PMCID: PMC8834610 DOI: 10.3390/cancers14030844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The advent of genomic editing with CRISPR/Cas9 has transformed the way we manipulate the genome, and has facilitated the investigation of tumor cell biology in vitro and in vivo. Not only we can modify genome sequence to blunt an overactivated gene or correct a mutation, but also we may modulate gene expression using CRISPR/Cas system. In this review, we present the basics of CRISPR/Cas methodology, its components and how to start a CRISPR/Cas experiment; Moreover, we present how CRISPR/Cas methodology has been applied to study the function of coding and noncoding genes in thyroid cancer and provided insights into cancer biology. Abstract Important advances on the role of genetic alterations in thyroid cancer have been achieved in the last two decades. One key reason is linked to the development of technical approaches that allowed for the mimicking of genetic alterations in vitro and in vivo and, more recently, the gene editing methodology. The CRISPR/Cas methodology has emerged as a tangible tool for editing virtually any DNA sequence in the genome. To induce a double-strand break and programmable gene editing, Cas9 endonuclease is guided by a single-guide RNA (sgRNA) that is complementary to the target sequence in DNA. The gene editing per se occurs as the cells repair the broken DNA and may erroneously change the original DNA sequence. In this review, we explore the principles of the CRISPR/Cas system to facilitate an understanding of the mainstream technique and its applications in gene editing. Furthermore, we explored new applications of CRISPR/Cas for gene modulation without changing the DNA sequence and provided a Dry Lab experience for those who are interested in starting “CRISPRing” any given gene. In the last section, we will discuss the progress in the knowledge of thyroid cancer biology fostered by the CRISPR/Cas gene editing tools.
Collapse
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Diego Claro de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
17
|
Bektaş AB, Gönen M. PrognosiT: Pathway/gene set-based tumour volume prediction using multiple kernel learning. BMC Bioinformatics 2021; 22:537. [PMID: 34727887 PMCID: PMC8561914 DOI: 10.1186/s12859-021-04460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is promising, extracting significant and meaningful knowledge from the data simultaneously during the learning process is a difficult task considering the high-dimensional and highly correlated nature of genomic datasets. Thus, there is a need for models that not only predict tumour volume from gene expression data of patients but also use prior information coming from pathway/gene sets during the learning process, to distinguish molecular mechanisms which play crucial role in tumour progression and therefore, disease prognosis. Results In this study, instead of initially choosing several pathways/gene sets from an available set and training a model on this previously chosen subset of genomic features, we built a novel machine learning algorithm, PrognosiT, that accomplishes both tasks together. We tested our algorithm on thyroid carcinoma patients using gene expression profiles and cancer-specific pathways/gene sets. Predictive performance of our novel multiple kernel learning algorithm (PrognosiT) was comparable or even better than random forest (RF) and support vector regression (SVR). It is also notable that, to predict tumour volume, PrognosiT used gene expression features less than one-tenth of what RF and SVR algorithms used. Conclusions PrognosiT was able to obtain comparable or even better predictive performance than SVR and RF. Moreover, we demonstrated that during the learning process, our algorithm managed to extract relevant and meaningful pathway/gene sets information related to the studied cancer type, which provides insights about its progression and aggressiveness. We also compared gene expressions of the selected genes by our algorithm in tumour and normal tissues, and we then discussed up- and down-regulated genes selected by our algorithm while learning, which could be beneficial for determining new biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04460-6.
Collapse
Affiliation(s)
- Ayyüce Begüm Bektaş
- Graduate School of Sciences and Engineering, Koç University, Istanbul, 34450, Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of Engineering, Koç University, Istanbul, 34450, Turkey. .,School of Medicine, Koç University, Istanbul, 34450, Turkey.
| |
Collapse
|
18
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
19
|
Yu Y, Bovenhuis H, Wu Z, Laport K, Groenen MAM, Crooijmans RPMA. Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers. Genes (Basel) 2021; 12:997. [PMID: 34209805 PMCID: PMC8306087 DOI: 10.3390/genes12070997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Familial thyroid cancer originating from follicular cells accounts for 5-15% of all the thyroid carcinoma cases in humans. Previously, we described thyroid follicular cell carcinomas in a large number of the Dutch German longhaired pointers (GLPs) with a likely autosomal recessive inheritance pattern. Here, we investigated the genetic causes of the disease using a combined approach of genome-wide association study and runs of homozygosity (ROH) analysis based on 170k SNP array genotype data and whole-genome sequences. A region 0-5 Mb on chromosome 17 was identified to be associated with the disease. Whole-genome sequencing revealed many mutations fitting the recessive inheritance pattern in this region including two deleterious mutations in the TPO gene, chr17:800788G>A (686F>V) and chr17:805276C>T (845T>M). These two SNP were subsequently genotyped in 186 GLPs (59 affected and 127 unaffected) and confirmed to be highly associated with the disease. The recessive genotypes had higher relative risks of 16.94 and 16.64 compared to homozygous genotypes for the reference alleles, respectively. This study provides novel insight into the genetic causes leading to the familial thyroid follicular cell carcinoma, and we were able to develop a genetic test to screen susceptible dogs.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.Y.); (H.B.); (Z.W.); (K.L.); (M.A.M.G.)
| |
Collapse
|
20
|
Han Y, Yu X, Yin Y, Lv Z, Jia C, Liao Y, Sun H, Liu T, Cong L, Fei Z, Fu D, Cong X, Qu S. Identification of Potential BRAF Inhibitor Joint Therapy Targets in PTC based on WGCAN and DCGA. J Cancer 2021; 12:1779-1791. [PMID: 33613767 PMCID: PMC7890315 DOI: 10.7150/jca.51551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
As the most common mutation in papillary thyroid cancer (PTC), B-type Raf kinase V600E mutation (BRAFV600E ) has become an important target for the clinical treatment of PTC. However, the clinical application still faces the problem of resistance to BRAF inhibitors (BRAFi). Therefore, exploring BRAFV600E-associated prognostic factors to providing potential joint targets is important for combined targeted therapy with BRAFi. In this study, we combined transcript data and clinical information from 199 BRAF wild-type (BRAFWT ) patients and 283 BRAFV600E mutant patients collected from The Cancer Genome Atlas (TCGA), and screened 455 BRAFV600E- associated genes through differential analysis and weighted gene co-expression network analysis. Based on these BRAFV600E -associated genes, we performed functional enrichment analysis and co-expression differential analysis and constructed a core co-expression network. Next, genes in the differential co-expression network were used to predict drugs for therapy in the crowd extracted expression of differential signatures (CREEDS) database, and the key genes were selected based on the hub co-expression network through survival analyses and receiver operating characteristic (ROC) curve analyses. Finally, we obtained eight BRAFV600E -associated biomarkers with both prognostic and diagnostic values as potential BRAFi joint targets, including FN1, MET, SLC34A2, NGEF, TBC1D2, PLCD3, PROS1, and NECTIN4. Among these genes, FN1, MET, PROS1, and TBC1D2 were validated through GEO database. Two novel biomarkers, PROS1 and TBC1D2, were further validated by qRT-PCR experiment. Besides, we obtained four potential targeted drugs that could be used in combination with BRAFi to treat PTC, including MET inhibitor, ERBB3 inhibitor, anti-NaPi2b antibody-drug conjugate, and carboplatin through literature review. The study provided potential drug targets for combination therapy with BRAFi for PTC to overcome the drug resistance for BRAFi.
Collapse
Affiliation(s)
- YaLi Han
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, Shanghai, China
| | - XiaQing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - YuZhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - ChengYou Jia
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yina Liao
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, Shanghai, China
| | - Hongyan Sun
- Department of biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tie Liu
- Department of biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Lele Cong
- Department of biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - ZhaoLiang Fei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianling Cong
- Department of biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Shen Qu
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Cheng SP, Lai HF, Kuo CY. Significance of telomerase reverse-transcriptase promoter mutations in differentiated thyroid cancer. FORMOSAN JOURNAL OF SURGERY 2021. [DOI: 10.4103/fjs.fjs_212_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
22
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
23
|
Shanja-Grabarz X, Coste A, Entenberg D, Di Cristofano A. Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer. Endocr Relat Cancer 2020; 27:529-539. [PMID: 32698130 PMCID: PMC7450603 DOI: 10.1530/erc-20-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Genetically engineered and orthotopic xenograft mouse models have been instrumental for increasing our understanding of thyroid cancer progression and for the development of novel therapeutic approaches in a setting that is more physiologically relevant than the classical subcutaneous flank implants. However, the anatomical location of the thyroid gland precludes a non-invasive analysis at the cellular level of the interactions between tumor cells and the surrounding microenvironment and does not allow a real-time evaluation of the response of tumor cells to drug treatments. As a consequence, such studies have generally only relied on endpoint approaches, limiting the amount and depth of the information that could be gathered. Here we describe the development of an innovative approach to imaging specific aspects of thyroid cancer biology, based on the implantation of a permanent, minimally invasive optical window that allows high-resolution, multi-day, intravital imaging of the behavior and cellular dynamics of thyroid tumors in the mouse. We show that this technology allows visualization of fluorescently tagged tumor cells both in immunocompetent, genetically engineered mouse models of anaplastic thyroid cancer (ATC) and in immunocompromised mice carrying orthotopic implanted human or mouse ATC cells. Furthermore, the use of recipient mice in which endothelial cells and macrophages are fluorescently labeled allows the detection of the spatial and functional relationship between tumor cells and their microenvironment. Finally, we show that ATC cells expressing a fluorescent biosensor for caspase 3 activity can be effectively utilized to evaluate, in real-time, the efficacy and kinetics of action of novel small molecule therapeutics. This novel approach to intravital imaging of thyroid cancer represents a platform that will allow, for the first time, the longitudinal, in situ analysis of tumor cell responses to therapy and of their interaction with the microenvironment.
Collapse
Affiliation(s)
- Xhesika Shanja-Grabarz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
24
|
Kim JB, Yang EY, Woo J, Kwon H, Lim W, Moon BI. Sodium Selenite Enhanced the Anti-proliferative Effect of MEK-ERK Inhibitor in Thyroid Cancer Cells. In Vivo 2020; 34:185-190. [PMID: 31882478 DOI: 10.21873/invivo.11760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIM MEK-ERK pathway plays major roles in the progression of thyroid cancer, while the use of MEK-ERK inhibitors has been limited by its toxicity. We investigated the effect of sodium selenite as an adjunct for MEK-ERK inhibitors to avoid the toxicity of ERK inhibitors. MATERIALS AND METHODS TPC1, 8505C and HTori-3 cells were treated with U0126 (MEK-ERK inhibitor) and cell viability was counted in the Neubauer chamber. The synergistic effects of sodium selenite and U0126 were also measured. The expression of ERK, p-ERK, and p90RSK was determined by western blot. RESULTS Treatment with U0126 inhibited proliferation of TPC1 and 8505C cells in a dose-dependent manner. When 5 μM sodium selenite was added to 1 μM U0126, relative cell survival further decreased. Decreased expression of p90RSK indicated that sodium selenite down-regulated ERK signaling in thyroid cancer cells. CONCLUSION The combination of U0126 and sodium selenite inhibited proliferation of thyroid cancer cells through ERK inhibition.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Yeol Yang
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| | - Joohyun Woo
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Li S, Dong S, Xu W, Jiang Y, Li Z. Polymer Nanoformulation of Sorafenib and All-Trans Retinoic Acid for Synergistic Inhibition of Thyroid Cancer. Front Pharmacol 2020; 10:1676. [PMID: 32116677 PMCID: PMC7008594 DOI: 10.3389/fphar.2019.01676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Part of differentiated thyroid cancer will relapse or develop into dedifferentiated thyroid cancer after standard therapy, such as surgery or radionuclide therapy. Sorafenib (SOR) is recommended for the treatment of advanced or radioiodine-refractory thyroid cancer. The monotherapy using SOR is often hampered by its modest efficacy, serve systemic toxicity, and high occurrence of drug resistance. In order to enhance the antitumor effect of SOR and reduce its side effects, SOR and all-trans retinoic acid (ATRA), a differentiation-promoting drug, were loaded into poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) polymer micelles in this study. The drug-loaded micelles, PM/(SOR+ATRA), exhibited relatively slow drug release and effective cell uptake. Compared with other treatment groups, the PM/(SOR+ATRA) treatment group showed the most significant antitumor effect and minimal systemic toxicity toward the FTC-133 thyroid cancer-bearing BALB/c nude mouse model. Immunofluorescence analysis confirmed that PM/(SOR+ATRA) could significantly promote apoptosis and re-differentiation of tumor cells. All the results demonstrated that polymer micelles loaded with SOR and ATRA could treat thyroid cancer more effectively and safely.
Collapse
Affiliation(s)
- Shijie Li
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|