1
|
Bhoir S, De Benedetti A. Beyond the Horizon: Rethinking Prostate Cancer Treatment Through Innovation and Alternative Strategies. Cancers (Basel) 2024; 17:75. [PMID: 39796704 PMCID: PMC11718964 DOI: 10.3390/cancers17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
For nearly a century, fundamental observations that prostate cancer (PCa) cells nearly always require AR stimulation for sustained proliferation have led to a unidirectional quest to abrogate such a pathway. Similarly focused have been efforts to understand AR-driven processes in the context of elevated expression of its target genes, and much less so on products that become overexpressed when AR signaling is suppressed. Treatment with ARSI results in an increased expression of the TLK1B splice variant via a 'translational' derepression driven by the compensatory mTOR activation and consequent activation of the TLK1 > NEK1 > ATR > Chk1 and NEK1 > YAP axes. In due course, this results first in a pro-survival quiescence and then adaptation to ADT and CRPC progression. This constitutes a novel liability for PCa that we have targeted for several years and novel approaches.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
- Department of Therapeutic Radiology, School of Medicine, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
2
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Lisberg A, Liu Y, Merry DE. Blocking the dimerization of polyglutamine-expanded androgen receptor protects cells from DHT-induced toxicity by increasing AR turnover. J Biol Chem 2024; 300:107246. [PMID: 38556081 PMCID: PMC11067348 DOI: 10.1016/j.jbc.2024.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.
Collapse
Affiliation(s)
- Allison Lisberg
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Huggins RJ, Hosfield D, Ishag-Osman A, Lee K, Ton-That E, Greene GL. Evaluating steroid hormone receptor interactions using the live-cell NanoBRET proximity assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550078. [PMID: 37546915 PMCID: PMC10402027 DOI: 10.1101/2023.07.25.550078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - David Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Amira Ishag-Osman
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Keemin Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Elia Ton-That
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Alegre-Martí A, Jiménez-Panizo A, Martínez-Tébar A, Poulard C, Peralta-Moreno MN, Abella M, Antón R, Chiñas M, Eckhard U, Piulats JM, Rojas AM, Fernández-Recio J, Rubio-Martínez J, Le Romancer M, Aytes Á, Fuentes-Prior P, Estébanez-Perpiñá E. A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. SCIENCE ADVANCES 2023; 9:eade2175. [PMID: 36921044 PMCID: PMC10017050 DOI: 10.1126/sciadv.ade2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.
Collapse
Affiliation(s)
- Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Alba Jiménez-Panizo
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Adrián Martínez-Tébar
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Coralie Poulard
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - M. Núria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Montserrat Abella
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Marcos Chiñas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca, 61740 Morelos, Mexico
| | - Ulrich Eckhard
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Josep M. Piulats
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Ana M. Rojas
- Computational Biology and Bioinformatics, Andalusian Center for Developmental Biology (CABD-CSIC), 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), CSIC-UR-Gobierno de La Rioja, 26007 Logroño, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Muriel Le Romancer
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - Álvaro Aytes
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Dube N, Khan SH, Sasse R, Okafor CD. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. J Chem Inf Model 2023; 63:571-582. [PMID: 36594606 PMCID: PMC9875803 DOI: 10.1021/acs.jcim.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.
Collapse
Affiliation(s)
- Namita Dube
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Sabab Hasan Khan
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Riley Sasse
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
8
|
Jiménez-Panizo A, Alegre-Martí A, Tettey T, Fettweis G, Abella M, Antón R, Johnson T, Kim S, Schiltz R, Núñez-Barrios I, Font-Díaz J, Caelles C, Valledor A, Pérez P, Rojas A, Fernández-Recio J, Presman D, Hager G, Fuentes-Prior P, Estébanez-Perpiñá E. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022; 50:13063-13082. [PMID: 36464162 PMCID: PMC9825158 DOI: 10.1093/nar/gkac1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Collapse
Affiliation(s)
| | | | | | - Gregory Fettweis
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Montserrat Abella
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Thomas A Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Sohyoung Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Israel Núñez-Barrios
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Joan Font-Díaz
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Annabel F Valledor
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010, Valencia, Spain
| | - Ana M Rojas
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Diego M Presman
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L Hager
- Correspondence may also be addressed to Gordon L. Hager. Tel: +1 240 760 6618;
| | | | | |
Collapse
|
9
|
Iwabuchi E, Miki Y, Suzuki T, Sasano H. Visualization of the protein-protein interactions of hormone receptors in hormone-dependent cancer research. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R132-R142. [PMID: 37435453 PMCID: PMC10259353 DOI: 10.1530/eo-22-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 07/13/2023]
Abstract
In hormone-dependent cancers, the activation of hormone receptors promotes the progression of cancer cells. Many proteins exert their functions through protein-protein interactions (PPIs). Moreover, in such cancers, hormone-hormone receptor binding, receptor dimerization, and cofactor mobilization PPIs occur primarily in hormone receptors, including estrogen, progesterone, glucocorticoid, androgen, and mineralocorticoid receptors. The visualization of hormone signaling has been primarily reported by immunohistochemistry using specific antibodies; however, the visualization of PPIs is expected to improve our understanding of hormone signaling and disease pathogenesis. Visualization techniques for PPIs include Förster resonance energy transfer (FRET) and bimolecular fluorescence complementation analysis; however, these techniques require the insertion of probes in the cells for PPI detection. Proximity ligation assay (PLA) is a method that could be used for both formalin-fixed paraffin-embedded (FFPE) tissue as well as immunostaining. It can also visualize hormone receptor localization and post-translational modifications of hormone receptors. This review summarizes the results of recent studies on visualization techniques for PPIs with hormone receptors; these techniques include FRET and PLA. In addition, super-resolution microscopy has been recently reported to be applicable to their visualization in both FFPE tissues and living cells. Super-resolution microscopy in conjunction with PLA and FRET could also contribute to the visualization of PPIs and subsequently provide a better understanding of the pathogenesis of hormone-dependent cancers in the future.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Rossino G, Rui M, Linciano P, Rossi D, Boiocchi M, Peviani M, Poggio E, Curti D, Schepmann D, Wünsch B, González-Avendaño M, Vergara-Jaque A, Caballero J, Collina S. Bitopic Sigma 1 Receptor Modulators to Shed Light on Molecular Mechanisms Underpinning Ligand Binding and Receptor Oligomerization. J Med Chem 2021; 64:14997-15016. [PMID: 34624193 DOI: 10.1021/acs.jmedchem.1c00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sigma 1 receptor (S1R) is an enigmatic ligand-operated chaperone involved in many important biological processes, and its functions are not fully understood yet. Herein, we developed a novel series of bitopic S1R ligands as versatile tools to investigate binding processes, allosteric modulation, and the oligomerization mechanism. These molecules have been prepared in the enantiopure form and subjected to a preliminary biological evaluation, while in silico investigations helped to rationalize the results. Compound 7 emerged as the first bitopic S1R ligand endowed with low nanomolar affinity (Ki = 2.6 nM) reported thus far. Computational analyses suggested that 7 may stabilize the open conformation of the S1R by simultaneously binding the occluded primary binding site and a peripheral site on the cytosol-exposed surface. These findings pave the way to new S1R ligands with enhanced activity and/or selectivity, which could also be used as probes for the identification of a potential allosteric site.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marta Rui
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Massimo Boiocchi
- Centro Grandi Strumenti, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Elena Poggio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Correnstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Correnstraße 48, 48149 Münster, Germany
| | - Mariela González-Avendaño
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
11
|
Paakinaho V, Palvimo JJ. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer 2021; 28:R231-R250. [PMID: 34137734 PMCID: PMC8345902 DOI: 10.1530/erc-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Steroid receptors (SRs) constitute an important class of signal-dependent transcription factors (TFs). They regulate a variety of key biological processes and are crucial drug targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) drive the development and progression of breast and prostate cancer, respectively. Thus, they represent the main specific drug targets in these diseases. Recent evidence has suggested that the crosstalk between signal-dependent TFs is an important step in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict the chromatin binding of another TF. This crosstalk can rewire gene programs and thus alter biological processes and influence the progression of disease. Lately, it has been postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers. We emphasize how the activity of ER and AR on chromatin can be modulated by other SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of SRs and their complex interactions with other signaling pathways and suggest how to experimentally fill in these gaps.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Correspondence should be addressed to J J Palvimo:
| |
Collapse
|
12
|
Nederveen-Schippers LM, Pathak P, Keizer-Gunnink I, Westphal AH, van Haastert PJM, Borst JW, Kortholt A, Skakun V. Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells. Int J Mol Sci 2021; 22:ijms22147300. [PMID: 34298920 PMCID: PMC8307594 DOI: 10.3390/ijms22147300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.
Collapse
Affiliation(s)
- Laura M. Nederveen-Schippers
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Pragya Pathak
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (A.H.W.); (J.W.B.)
| | - Peter J. M. van Haastert
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (A.H.W.); (J.W.B.)
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
- Correspondence: (A.K.); (V.S.)
| | - Victor Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, 220030 Minsk, Belarus
- Correspondence: (A.K.); (V.S.)
| |
Collapse
|
13
|
Paisdzior S, Knierim E, Kleinau G, Biebermann H, Krude H, Straussberg R, Schuelke M. A New Mechanism in THRA Resistance: The First Disease-Associated Variant Leading to an Increased Inhibitory Function of THRA2. Int J Mol Sci 2021; 22:ijms22105338. [PMID: 34069457 PMCID: PMC8159125 DOI: 10.3390/ijms22105338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022] Open
Abstract
The nuclear thyroid hormone receptors (THRs) are key mediators of thyroid hormone function on the cellular level via modulation of gene expression. Two different genes encode THRs (THRA and THRB), and are pleiotropically involved in development, metabolism, and growth. The THRA1 and THRA2 isoforms, which result from alternative splicing of THRA, differ in their C-terminal ligand-binding domain (LBD). Most published disease-associated THRA variants are located in the LBD of THRA1 and impede triiodothyronine (T3) binding. This keeps the nuclear receptor in an inactive state and inhibits target gene expression. Here, we investigated a new dominant THRA variant (chr17:g.38,241,010A > G, GRCh37.13 | c.518A > G, NM_199334 | p.(E173G), NP_955366), which is located between the DNA- and ligand-binding domains and affects both splicing isoforms. Patients presented partially with hypothyroid (intellectual disability, motor developmental delay, brain atrophy, and constipation) and partially with hyperthyroid symptoms (tachycardia and behavioral abnormalities) to varying degrees. Functional characterization of THRA1p.(E173G) by reporter gene assays revealed increased transcriptional activity in contrast to THRA1(WT), unexpectedly revealing the first gain-of-function mutation found in THRA1. The THRA2 isoform does not bind T3 and antagonizes THRA1 action. Introduction of p.(E173G) into THRA2 increased its inhibitory effect on THRA1, which helps to explain the hypothyroid symptoms seen in our patients. We used protein structure models to investigate possible underlying pathomechanisms of this variant with a gain-of-antagonistic function and suggest that the p.(E173G) variant may have an influence on the dimerization domain of the nuclear receptor.
Collapse
Affiliation(s)
- Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany; (S.P.); (H.B.); (H.K.)
| | - Ellen Knierim
- NeuroCure Cluster of Excellence; Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany;
- Department of Neuropediatrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany;
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany; (S.P.); (H.B.); (H.K.)
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany; (S.P.); (H.B.); (H.K.)
| | - Rachel Straussberg
- Schneider Children’s Medical Center, Petach Tikva, Israel, Department of Child Neurology, Neurogenetic Service, affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Aviv IL-69978, Israel
- Correspondence: (R.S.); (M.S.); Tel.: +972-3-9253870 (R.S.); +49-30-450566112 (M.S.); FAX: +972-3-9253871 (R.S.); +49-30-45066920 (M.S.)
| | - Markus Schuelke
- NeuroCure Cluster of Excellence; Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany;
- Department of Neuropediatrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-13353 Berlin, Germany
- Correspondence: (R.S.); (M.S.); Tel.: +972-3-9253870 (R.S.); +49-30-450566112 (M.S.); FAX: +972-3-9253871 (R.S.); +49-30-45066920 (M.S.)
| |
Collapse
|
14
|
Akurugu WA, Van Heerden CJ, Mulder N, Zöllner EW. Hypothalamic-pituitary-adrenal axis suppression in asthma: A glucocorticoid receptor polymorphism may protect. Pediatr Allergy Immunol 2021; 32:273-279. [PMID: 32969491 DOI: 10.1111/pai.13379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Asthmatic children on corticosteroids can develop hypothalamic-pituitary-adrenal axis suppression (HPAS). Single nucleotide polymorphisms (SNPs) rs242941 and rs1876828 of the corticotrophin-releasing hormone receptor 1 (CRHR1) gene were associated with lower stimulated cortisol (F) levels, whereas rs41423247 of the glucocorticoid receptor (NR3C1) gene was associated with higher basal F levels. The objective of the current study was to confirm whether these three SNPs are associated with HPAS in asthmatic children. METHODS DNA was extracted from saliva obtained from 95 asthmatic children, who had previously undergone basal F and metyrapone testing. Thirty-six children were classified as suppressed. Non-suppressed children were subclassified according to their post-metyrapone adrenocorticotropin (PMTP ACTH) level into a middle (106-319 pg/mL) and a high (>319 pg/mL) ACTH response group. TaqMan® polymerase chain reaction assays were utilized. RESULTS Only rs41423247 was inversely associated with HPAS (OR = 0.27 [95% CI 0.06-0.90]). Its GC genotype was inversely associated with HPAS (log odds = -1.28, P = .021). √PMTP ACTH was associated with CC (effect size = 10.85, P = .005) and GC genotypes (effect size = 4.06, P = .023). The C allele is inherited as a dominant trait (effect size = -1.31 (95% CI -2.39--0.33; P = .012). In the high ACTH response group, both genotypes affected the PMTP ACTH (effect sizes 1.41 and 15.46; P-values .023 and <2 × 10-26 for GC and CC, respectively). CONCLUSIONS The C allele of rs41423247 was found to be protective against HPAS. CC genotype is associated with the highest PMTP ACTH response.
Collapse
Affiliation(s)
- Wisdom Alemya Akurugu
- Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Nicola Mulder
- Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ekkehard Werner Zöllner
- Paediatric Endocrine & Diabetes Unit, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
16
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
17
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
18
|
Rodríguez-Enríquez S, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Belmont-Díaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Peña NA, Saavedra E, Moreno-Sánchez R. Transcriptional Regulation of Energy Metabolism in Cancer Cells. Cells 2019; 8:cells8101225. [PMID: 31600993 PMCID: PMC6830338 DOI: 10.3390/cells8101225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norma Angélica Corona de la Peña
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos McGregor-Sánchez, México CP 03100, Mexico.
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| |
Collapse
|