1
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Anthofer L, Gmach P, Uretmen Kagiali ZC, Kleinau G, Rotter J, Opitz R, Scheerer P, Beck-Sickinger AG, Wolf P, Biebermann H, Bechmann I, Kühnen P, Krude H, Paisdzior S. Melanocortin-4 Receptor PLC Activation Is Modulated by an Interaction with the Monocarboxylate Transporter 8. Int J Mol Sci 2024; 25:7565. [PMID: 39062808 PMCID: PMC11277258 DOI: 10.3390/ijms25147565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.
Collapse
Affiliation(s)
- Larissa Anthofer
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Philipp Gmach
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Zeynep Cansu Uretmen Kagiali
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Gunnar Kleinau
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | | | - Philipp Wolf
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Peter Kühnen
- Department for Pediatric Endocrinology and Diabetology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
3
|
Liu R, Friedrich M, Hemmen K, Jansen K, Adolfi MC, Schartl M, Heinze KG. Dimerization of melanocortin 4 receptor controls puberty onset and body size polymorphism. Front Endocrinol (Lausanne) 2023; 14:1267590. [PMID: 38027153 PMCID: PMC10667928 DOI: 10.3389/fendo.2023.1267590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by Förster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.
Collapse
Affiliation(s)
- Ruiqi Liu
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
- Developmental Biochemistry, Biocenter, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| | - Mike Friedrich
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| | - Katherina Hemmen
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| | - Kerstin Jansen
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| | - Mateus C. Adolfi
- Developmental Biochemistry, Biocenter, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), Wuerzburg, Germany
| |
Collapse
|
4
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Reininghaus N, Paisdzior S, Höpfner F, Jyrch S, Cetindag C, Scheerer P, Kühnen P, Biebermann H. A Setmelanotide-like Effect at MC4R Is Achieved by MC4R Dimer Separation. Biomolecules 2022; 12:biom12081119. [PMID: 36009013 PMCID: PMC9405727 DOI: 10.3390/biom12081119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein–protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSH-induced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4R-WT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity.
Collapse
Affiliation(s)
- Nanina Reininghaus
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Paisdzior
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Friederike Höpfner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sabine Jyrch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Cigdem Cetindag
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13353 Berlin, Germany
| | - Peter Kühnen
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
6
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
7
|
Trevellin E, Granzotto M, Host C, Grisan F, De Stefani D, Grinzato A, Lefkimmiatis K, Pagano C, Rizzuto R, Vettor R. A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity. J Clin Endocrinol Metab 2021; 106:736-749. [PMID: 33247923 DOI: 10.1210/clinem/dgaa885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Melanocortin receptor-4 (MC4R) gene mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. OBJECTIVE To explore whether and how a novel heterozygous MC4R variant (MC4R-F313Sfs*29), identified in a young boy (body mass index [BMI] 38.8 kg/m2) during a mutation analysis conducted in a cohort of patients with obesity, plays a determinant pathophysiological role in the obesity development. DESIGN SETTING AND PATIENTS The genetic screening was carried out in a total of 209 unrelated patients with obesity (BMI ≥ 35 kg/m2). Structural and functional characterization of the F313Sfs*29-mutated MC4R was performed using computational approaches and in vitro, using HEK293 cells transfected with genetically encoded biosensors for cAMP and Ca2+. RESULTS The F313Sfs*29 was the only variant identified. In vitro experiments showed that HEK293 cells transfected with the mutated form of MC4R did not increase intracellular cAMP or Ca2+ levels after stimulation with a specific agonist in comparison with HEK293 cells transfected with the wild type form of MC4R (∆R/R0 = -90% ± 8%; P < 0.001). In silico modeling showed that the F313Sfs*29 mutation causes a major reorganization in the cytosolic domain of MC4R, thus reducing the affinity of the putative GalphaS binding site. CONCLUSIONS The newly discovered F313Sfs*29 variant of MC4R may be involved in the impairment of α-MSH-induced cAMP and Ca2+ signaling, blunting intracellular G protein-mediated signal transduction. This alteration might have led to the dysregulation of satiety signaling, resulting in hyperphagia and early onset of obesity.
Collapse
Affiliation(s)
| | - Marnie Granzotto
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cristina Host
- Department of Reproduction and Growth, University Hospital of Ferrara, Ferrara, Italy
| | - Francesca Grisan
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Konstantinos Lefkimmiatis
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pagano
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Vettor
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Madelaine R, Ngo KJ, Skariah G, Mourrain P. Genetic deciphering of the antagonistic activities of the melanin-concentrating hormone and melanocortin pathways in skin pigmentation. PLoS Genet 2020; 16:e1009244. [PMID: 33301440 PMCID: PMC7755275 DOI: 10.1371/journal.pgen.1009244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte–stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers. Melanocytes produce melanin, a natural skin pigment, for body coloration which helps to protect and camouflage an organism and to attract mates. Melanocytes are ubiquitous pigment cells in vertebrates and the genes underlying their development are well conserved, making fishes that possess the ability to modify their pigmentation, biologically relevant and successful models for human skin disorders. Many human skin diseases including albinism, vitiligo, and melanoma are derived from mutations in conserved pigmentation genes. However, much of the conserved molecular mechanisms behind these diseases and human pigmentation remain unknown. For instance, melanin concentrating hormone (MCH) was originally identified as a peptide that when injected, could make fish paler by promoting melanin aggregation but no mutants demonstrating an endogenous function for MCH in pigmentation have been reported. Here, we use zebrafish mutants of MCH and the MCH receptor to determine their specific genetic function in pigmentation. Additionally, we demonstrate that MCH has an antagonistic pigmentation function to the melanocortin system, where MCH expression promotes lighter pigmentation and melanocortin activity promotes darkening. Thus, we find that the balance between the MCH and melanocortin system activities are likely required for skin pigmentation and dysregulation of these pathways could underlie adverse human skin conditions.
Collapse
Affiliation(s)
- Romain Madelaine
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Keri J. Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gemini Skariah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- INSERM 1024, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
10
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
11
|
Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. Int J Mol Sci 2020; 21:ijms21041224. [PMID: 32059383 PMCID: PMC7072973 DOI: 10.3390/ijms21041224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin–melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.
Collapse
|
12
|
Heyder N, Kleinau G, Szczepek M, Kwiatkowski D, Speck D, Soletto L, Cerdá-Reverter JM, Krude H, Kühnen P, Biebermann H, Scheerer P. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Front Endocrinol (Lausanne) 2019; 10:515. [PMID: 31417496 PMCID: PMC6685040 DOI: 10.3389/fendo.2019.00515] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) can be endogenously activated by binding of melanocyte-stimulating hormones (MSH), which mediates anorexigenic effects. In contrast, the agouti-related peptide (AgRP) acts as an endogenous inverse agonist and suppresses ligand-independent basal signaling activity (orexigenic effects). Binding of ligands to MC4R leads to the activation of different G-protein subtypes or arrestin and concomitant signaling pathways. This receptor is a key protein in the hypothalamic regulation of food intake and energy expenditure and naturally-occurring inactivating MC4R variants are the most frequent cause of monogenic obesity. In general, obesity is a growing problem on a global scale and is of social, medical, and economic relevance. A significant goal is to develop optimized pharmacological tools targeting MC4R without adverse effects. To date, this has not been achieved because of inter alia non-selective ligands across the five functionally different MCR subtypes (MC1-5R). This motivates further investigation of (i) the three-dimensional MC4R structure, (ii) binding mechanisms of various ligands, and (iii) the molecular transfer process of signal transduction, with the aim of understanding how structural features are linked with functional-physiological aspects. Unfortunately, experimentally elucidated structural information is not yet available for the MC receptors, a group of class A G-protein coupled receptors (GPCRs). We, therefore, generated MC4R homology models and complexes with interacting partners to describe approximate structural properties associated with signaling mechanisms. In addition, molecular insights from pathogenic mutations were incorporated to discriminate more precisely their individual malfunction of the signal transfer mechanism.
Collapse
Affiliation(s)
- Nicolas Heyder
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Gunnar Kleinau
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Kwiatkowski
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Speck
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucia Soletto
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Patrick Scheerer
| |
Collapse
|
13
|
An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cell Signal 2018; 51:13-22. [DOI: 10.1016/j.cellsig.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
14
|
Habara M, Mori N, Okada Y, Kawasumi K, Nakao N, Tanaka Y, Arai T, Yamamoto I. Molecular characterization of feline melanocortin 4 receptor and melanocortin 2 receptor accessory protein 2. Gen Comp Endocrinol 2018; 261:31-39. [PMID: 29360464 DOI: 10.1016/j.ygcen.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Abstract
Melanocortin 4 receptor (MC4R), which is a member of the G protein-coupled receptor (GPCR) family, mediates regulation of energy homeostasis upon the binding of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS). Melanocortin 2 receptor accessory protein 2 (MRAP2) modulates the function of MC4R. We performed cDNA cloning of cat MC4R and MRAP2 and characterized their amino acid sequences, mRNA expression patterns in cat tissues, protein-protein interactions, and functions. We found high sequence homology (>88%) with other mammalian MC4R and MRAP2 encoding 332 and 206 amino acid residues, respectively. Reverse transcription-polymerase chain reaction analysis revealed that cat MC4R and MRAP2 mRNA were expressed highly in the CNS. In CHO-K1 cells transfected with cat MC4R, stimulation with α-MSH increased intracellular cyclic adenosine monophosphate (cAMP) concentration in a dose-dependent manner. Furthermore, the presence of MRAP2 enhanced the cat MC4R-mediated cAMP production. These results suggested that cat MC4R acts as a neuronal mediator in the CNS and that its function is modulated by MRAP2. In addition, our NanoBiT study showed the dynamics of their interactions in living cells; stimulation with α-MSH slightly affected the interaction between MC4R and MRAP2, and did not affect MC4R homodimerization, suggesting that they interact in the basal state and that structural change of MC4R by activation may affect the interaction between MC4R and MRAP2.
Collapse
Affiliation(s)
- Makoto Habara
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Nobuko Mori
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Yuki Okada
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Koh Kawasumi
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Nobuhiro Nakao
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Yoshikazu Tanaka
- Department of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Toshiro Arai
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Ichiro Yamamoto
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan.
| |
Collapse
|
15
|
Lensing CJ, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. Developing a Biased Unmatched Bivalent Ligand (BUmBL) Design Strategy to Target the GPCR Homodimer Allosteric Signaling (cAMP over β-Arrestin 2 Recruitment) Within the Melanocortin Receptors. J Med Chem 2018; 62:144-158. [PMID: 29669202 DOI: 10.1021/acs.jmedchem.8b00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the functional relevance of G protein-coupled receptor (GPCR) homodimerization has been limited by the insufficient tools to assess asymmetric signaling occurring within dimers comprised of the same receptor type. We present unmatched bivalent ligands (UmBLs) to study the asymmetric function of melanocortin homodimers. UmBLs contain one agonist and one antagonist pharmacophore designed to target a melanocortin homodimer such that one receptor is occupied by an agonist and the other receptor by an antagonist pharmacophore. First-in-class biased UmBLs (BUmBLs) targeting the human melanocortin-4 receptor (hMC4R) were discovered. The BUmBLs displayed biased agonism by potently stimulating cAMP signaling (EC50 ∼ 2-6 nM) but minimally activating the β-arrestin recruitment pathway (≤55% maximum signal at 10 μM). To our knowledge, we report the first single-compound strategy to pharmacologically target melanocortin receptor allosteric signaling that occurs between homodimers that can be applied straightforwardly in vitro and in vivo to other GPCR systems.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| | - Robert C Speth
- College of Pharmacy , Nova Southeastern University , Fort Lauderdale , Florida 33328-2018 , United States.,Department of Pharmacology and Physiology , Georgetown University , Washington, D.C. 20057 , United States
| | - Adam T Zarth
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States.,Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE, 2-210 CCRB , Minneapolis , Minnesota 55455 , United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience , University of Minnesota , 308 Harvard Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
16
|
Bräunig J, Dinter J, Höfig CS, Paisdzior S, Szczepek M, Scheerer P, Rosowski M, Mittag J, Kleinau G, Biebermann H. The Trace Amine-Associated Receptor 1 Agonist 3-Iodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Front Pharmacol 2018; 9:222. [PMID: 29593543 PMCID: PMC5857711 DOI: 10.3389/fphar.2018.00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Trace amine-associated receptors (TAARs) belong to the class A G-protein-coupled receptors (GPCR) and are evolutionary related to aminergic receptors. TAARs have been identified to mediate effects of trace amines. TAAR1 signaling is mainly mediated via activation of the Gs/adenylyl cyclase pathway. In addition to classical trace amines, TAAR1 can also be activated by the thyroid hormone derivative 3-iodothyronamine (3-T1AM). Pharmacological doses of 3-T1AM induced metabolic and anapyrexic effects, which might be centrally mediated in the hypothalamus in rodents. However, the observed anapyrexic effect of 3-T1AM persists in Taar1 knock-out mice which raises the question whether further GPCRs are potential targets for 3-T1AM and mediate the observed physiological effect. Anapyrexia has been observed to be related to action on aminergic receptors such as the serotonin receptor 1b (5-HT1b). This receptor primarily activates the Gi/o mediated pathway and PLC signaling through the Gβγ of Gi/o. Since the expression profiles of TAAR1 and 5-HT1b overlap, we questioned whether 3-T1AM may activate 5-HT1b. Finally, we also evaluated heteromerization between these two GPCRs and tested signaling under co-expressed conditions. In this study, we showed, that 3-T1AM can induce Gi/o signaling through 5-HT1b in a concentration of 10 μM. Strikingly, at 5-HT1b the ligand 3-T1AM only activates the Gi/o mediated reduction of cAMP accumulation, but not PLC activation. Co-stimulation of 5-HT1b by both ligands did not lead to additive or synergistic signaling effects. In addition, we confirmed the capacity for heteromerization between TAAR1 and 5-HT1b. Under co-expression of TAAR1 and HTR1b, 3-T1AM action is only mediated via TAAR1 and activation of 5-HT1b is abrogated. In conclusion, we found evidence for 5-HT1b as a new receptor target for 3-T1AM, albeit with a different signaling effect than the endogenous ligand. Altogether, this indicates a complex interrelation of signaling effects between the investigated GPCRs and respective ligands.
Collapse
Affiliation(s)
- Julia Bräunig
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juliane Dinter
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin S Höfig
- Institute of Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mark Rosowski
- Center of Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Institute of Biotechnology, Department Medical Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2414-2435. [PMID: 28363699 PMCID: PMC5600687 DOI: 10.1016/j.bbadis.2017.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katlyn A Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine N Schlasner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
19
|
Functional variants of the melanocortin-4 receptor associated with the Odontoceti and Mysticeti suborders of cetaceans. Sci Rep 2017; 7:5684. [PMID: 28720755 PMCID: PMC5515947 DOI: 10.1038/s41598-017-05962-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Cetaceans, a group of mammals adapted to the aquatic environment that descended from terrestrial artiodactyls, exhibit tremendous interspecific differences in a number of phenotypes, including feeding behavior, such as filter feeding in the Mysticeti vs prey-hunting Odontoceti, and size, with the smallest cetacean, the vaquita, at 1.4 meters and the largest, the blue whale, reaching 33 meters. The Melanocortin-4 receptor (MC4R) regulates food intake, energy balance, and somatic growth in both mammals and teleosts. In this study, we examined allelic variants of the MC4R in cetaceans. We sequenced the MC4R from 20 cetaceans, and pharmacologically characterized 17 of these protein products. Results identified a single variation at amino acid 156 in the MC4R from representative species of major cetacean lineages uniquely associated with the toothed whales or Odontoceti (arginine at 156) and baleen whales or Mysticeti (glutamine at 156). The Q156 receptor variant found in the larger baleen whales was functionally less responsive to its endogenous anorexigenic ligand, α-MSH. Furthermore, the R156 receptor variant showed greater constitutive activity and a higher affinity for ligand. These data suggest that the MC4R may be one gene involved in the evolution of feeding ecology, energy balance, and body size in cetaceans.
Collapse
|
20
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017; 117:303-327. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
22
|
Müller A, Berkmann JC, Scheerer P, Biebermann H, Kleinau G. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS One 2016; 11:e0168260. [PMID: 27936173 PMCID: PMC5148169 DOI: 10.1371/journal.pone.0168260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
The murine G-protein coupled receptor 83 (mGPR83) is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR) such as the ghrelin receptor (GHSR) or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo) of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83) by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R) was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julia Catherine Berkmann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Schonnop L, Kleinau G, Herrfurth N, Volckmar AL, Cetindag C, Müller A, Peters T, Herpertz S, Antel J, Hebebrand J, Biebermann H, Hinney A. Decreased melanocortin-4 receptor function conferred by an infrequent variant at the human melanocortin receptor accessory protein 2 gene. Obesity (Silver Spring) 2016; 24:1976-82. [PMID: 27474872 DOI: 10.1002/oby.21576] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The melanocortin receptor accessory protein 2 (MRAP2) is relevant for weight regulation in mice and humans. This function is likely mediated by regulation of the melanocortin-4 receptor (MC4R). Functional implications of human MRAP2 mutations have not been described yet. METHODS A mutation screen was conducted in MRAP2 in 184 children and adolescents with (extreme) obesity and in 184 lean controls. Detected nonsynonymous variants were genotyped in larger independent study groups (300 people with obesity and 436 individuals with normal weight). The influence of mutant MRAP2 on MC4R signaling was analyzed in vitro. RESULTS (1) Three (two novel) nonsynonymous MRAP2 variants were detected: p.Ala137Thr, p.Gln174Arg, p.Arg125His (rs115655382), two synonymous variants, and three intronic variants. (2) The impact of MRAP2 on MC4R function was dependent on the ratio between the two co-expressed proteins. Increased MC4R signaling was detected at MRAP2/MC4R ratios of 2 + 1 and above. (3) The function of MC4R was reduced with the infrequent allele at the MRAP2 p.Gln174Arg variant. (4) The three nonsynonymous mutations were each only detected once among the 484 people with obesity and not among 620 individuals with normal weight. CONCLUSIONS This was the first study describing an effect of a MRAP2 mutation on MC4R function.
Collapse
Affiliation(s)
- Laura Schonnop
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité, Berlin, Germany
| | - Nikolas Herrfurth
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cigdem Cetindag
- Institute of Experimental Pediatric Endocrinology, Charité, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité, Berlin, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité, Berlin, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
25
|
Kobayashi Y, Hamamoto A, Takahashi A, Saito Y. Dimerization of melanocortin receptor 1 (MC1R) and MC5R creates a ligand-dependent signal modulation: Potential participation in physiological color change in the flounder. Gen Comp Endocrinol 2016; 230-231:103-9. [PMID: 27080548 DOI: 10.1016/j.ygcen.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 01/21/2023]
Abstract
Vertebrates produce α-melanocyte-stimulating hormone (α-MSH), which contains an N-terminal acetyl group, and desacetyl-α-MSH, which does not contain an N-terminal acetyl group. In teleosts and amphibians, α-MSH-related peptides stimulate pigment dispersion via melanocortin receptors 1-5 (MC1R-MC5R), which are members of the G-protein-coupled receptor (GPCR) family. We previously reported an interesting phenomenon associated with physiological color changes in the skin of a flatfish, barfin flounder (bf). Specifically, pigments in xanthophores expressing only the bfMC5R gene were dispersed by both α-MSH and desacetyl-α-MSH, whereas those in melanophores expressing both the bfMC1R and bfMC5R genes were dispersed by desacetyl-α-MSH, but not by α-MSH. In this study, we examined whether heterodimers of bfMC1R and bfMC5R can act as significant inhibitory receptors for the N-terminal acetylation of α-MSH in mammalian Chinese hamster ovary cells. Immunofluorescence analyses showed that bfMC1R and bfMC5R were localized together at the plasma membrane when expressed in the same cells. Indeed, after coexpression of Flag-bfMC1R and HA-bfMC5R, immunoprecipitation with anti-Flag antibodies resulted in the presence of anti-HA immunoreactivity in the precipitate, and vice versa. Importantly, cyclic AMP assays showed that cotransfection of bfMC1R with bfMC5R inhibited the cyclic AMP accumulation induced by α-MSH to a greater extent than that observed after transfection of bfMC1R alone. Of note, this inhibitory response was not caused by desacetyl-α-MSH. Thus, we show a ligand-dependent signaling through functional heterodimerization of MC1R and MC5R in mammalian cells. The ligand-selective receptor complex also provide the first mechanistic implication that may play a role in the control of color change in teleosts.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
26
|
Lensing CJ, Freeman KT, Schnell SM, Adank DN, Speth RC, Haskell-Luevano C. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. J Med Chem 2016; 59:3112-28. [PMID: 26959173 DOI: 10.1021/acs.jmedchem.5b01894] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Danielle N Adank
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328-2018, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Dinter J, Khajavi N, Mühlhaus J, Wienchol CL, Cöster M, Hermsdorf T, Stäubert C, Köhrle J, Schöneberg T, Kleinau G, Mergler S, Biebermann H. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. Eur Thyroid J 2015; 4:21-9. [PMID: 26601070 PMCID: PMC4640289 DOI: 10.1159/000381801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether β-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. METHODS A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca(2+) imaging was utilized to delineate 3-T1AM-induced Ca(2+) signaling. RESULTS 3-T1AM (10(-5)-10(-10)M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca(2+) influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca(2+) channels. Notably, timolol was also found to block 3-T1AM (10(-5)M)-induced Ca(2+) influx. CONCLUSIONS The presented data support that 3-T1AM directly modulates β-adrenergic receptor signaling. The relationship between 3-T1AM and β-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca(2+) channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis.
Collapse
Affiliation(s)
- Juliane Dinter
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Noushafarin Khajavi
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | | | - Maxi Cöster
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Thomas Hermsdorf
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Claudia Stäubert
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
- *Heike Biebermann, Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail , Stefan Mergler, Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail
| |
Collapse
|
28
|
Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J, Hoefig CS, Müller A, Köhrle J, Grüters A, Krude H, Mittag J, Schöneberg T, Kleinau G, Biebermann H. 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 2015; 54:205-16. [PMID: 25878061 DOI: 10.1530/jme-15-0003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 11/08/2022]
Abstract
Most in vivo effects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists in Taar1 knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the α-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced Gi/o activation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the Gi/o signaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated Gi/o pathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.
Collapse
Affiliation(s)
- Juliane Dinter
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simon Friedrich Jacobi
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carolin Leonie Wienchol
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maxi Cöster
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaroslawna Meister
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carolin Stephanie Hoefig
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Mittag
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Torsten Schöneberg
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
29
|
Thompson MD, Hendy GN, Percy ME, Bichet DG, Cole DEC. G protein-coupled receptor mutations and human genetic disease. Methods Mol Biol 2015; 1175:153-87. [PMID: 25150870 DOI: 10.1007/978-1-4939-0956-8_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | |
Collapse
|
30
|
Tao YX. Constitutive activity in melanocortin-4 receptor: biased signaling of inverse agonists. ADVANCES IN PHARMACOLOGY 2015; 70:135-54. [PMID: 24931195 DOI: 10.1016/b978-0-12-417197-8.00005-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis, including both energy intake and energy expenditure. It mediates the actions of a number of hormones on energy balance. The endogenous ligands for MC4R include peptide agonists derived from processing of proopiomelanocortin and the antagonist Agouti-related peptide (AgRP). Wild-type MC4R has some basal (constitutive) activity. Naturally occurring and laboratory-generated mutations have been identified, which results in either increased or decreased basal activities. Impaired basal signaling has been suggested to be a cause of dysregulated energy homeostasis and early-onset obesity, although several constitutively active mutations have also been identified from obese patients. AgRP and several small-molecule antagonists have been shown to be inverse agonists in the Gs-cAMP pathway. However, in the extracellular signal-regulated kinase (ERK) 1/2 pathway, we showed that these inverse agonists are potent agonists, demonstrating convincingly that they are biased ligands. We also showed that some mutations that do not cause constitutive activation in the Gs-cAMP pathway cause constitutive activation in the ERK1/2 pathway, suggesting that they are biased receptors. The physiological and potential pathophysiological relevance of the biased constitutive signaling in MC4R and therapeutic potential remain to be investigated.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
31
|
Mühlhaus J, Dinter J, Nürnberg D, Rehders M, Depke M, Golchert J, Homuth G, Yi CX, Morin S, Köhrle J, Brix K, Tschöp M, Kleinau G, Biebermann H. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile. Int J Mol Sci 2014; 15:20638-55. [PMID: 25391046 PMCID: PMC4264187 DOI: 10.3390/ijms151120638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/25/2014] [Accepted: 11/04/2014] [Indexed: 12/04/2022] Open
Abstract
The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.
Collapse
Affiliation(s)
- Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Juliane Dinter
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Daniela Nürnberg
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Maren Rehders
- School of Engineering and Science, Research Center MOLIFE-Molecular Life Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Chun-Xia Yi
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Silke Morin
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Klaudia Brix
- School of Engineering and Science, Research Center MOLIFE-Molecular Life Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Matthias Tschöp
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
32
|
He S, Tao YX. Defect in MAPK signaling as a cause for monogenic obesity caused by inactivating mutations in the melanocortin-4 receptor gene. Int J Biol Sci 2014; 10:1128-37. [PMID: 25332687 PMCID: PMC4202029 DOI: 10.7150/ijbs.10359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a Family A G protein-coupled receptor that plays an essential role in regulating energy homeostasis, including both energy intake and expenditure. Mutations leading to a reduced MC4R function confer a major gene effect for obesity. More than 170 distinct mutations have been identified in humans. In addition to the conventional Gs-stimulated cAMP pathway, the MC4R also activates MAPKs, especially ERK1/2. We also showed there is biased signaling in the two signaling pathways, with inverse agonists in the Gs-cAMP pathway acting as agonists for the ERK1/2 pathway. In the current study, we sought to determine whether defects in basal or agonist-induced ERK1/2 activation in MC4R mutants might potentially contribute to obesity pathogenesis in patients carrying these mutations. The constitutive and ligand-stimulated ERK1/2 activation were measured in wild type and 73 naturally occurring MC4R mutations. We showed that nineteen mutants had significantly decreased basal pERK1/2 level, and five Class V variants (where no functional defects have been identified previously), C40R, V50M, T112M, A154D and S295P, had impaired ligand-stimulated ERK1/2 activation. Our studies demonstrated for the first time that decreased basal or ligand-stimulated ERK1/2 signaling might contribute to obesity pathogenesis caused by mutations in the MC4R gene. We also observed biased signaling in 25 naturally occurring mutations in the Gs-cAMP and ERK1/2 pathways.
Collapse
Affiliation(s)
- Shan He
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA. ; 2. Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA
| |
Collapse
|
33
|
García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 2014; 27:699-720. [PMID: 24807163 DOI: 10.1111/pcmr.12257] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR), and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild-type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR.
Collapse
Affiliation(s)
- Jose C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain; Instituto Murciano de Investigación Biomédica (IMIB), El Palmar, Murcia, Spain
| | | | | |
Collapse
|