1
|
Yokomizo-Goto M, Takenaka-Ninagawa N, Zhao C, Bourgeois Yoshioka CK, Miki M, Motoike S, Inada Y, Zujur D, Theoputra W, Jin Y, Toguchida J, Ikeya M, Sakurai H. Distinct muscle regenerative capacity of human induced pluripotent stem cell-derived mesenchymal stromal cells in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2024; 15:340. [PMID: 39370505 PMCID: PMC11457425 DOI: 10.1186/s13287-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Ullrich congenital muscular dystrophy (UCMD) is caused by a deficiency in type 6 collagen (COL6) due to mutations in COL6A1, COL6A2, or COL6A3. COL6 deficiency alters the extracellular matrix structure and biomechanical properties, leading to mitochondrial defects and impaired muscle regeneration. Therefore, mesenchymal stromal cells (MSCs) that secrete COL6 have attracted attention as potential therapeutic targets. Various tissue-derived MSCs exert therapeutic effects in various diseases. However, no reports have compared the effects of MSCs of different origins on UCMD pathology. METHODS To evaluate which MSC population has the highest therapeutic efficacy for UCMD, in vivo (transplantation of MSCs to Col6a1-KO/NSG mice) and in vitro experiments (muscle stem cell [MuSCs] co-culture with MSCs) were conducted using adipose tissue-derived MSCs, bone marrow-derived MSCs, and xeno-free-induced iPSC-derived MSCs (XF-iMSCs). RESULTS In transplantation experiments on Col6a1-KO/NSG mice, the group transplanted with XF-iMSCs showed significantly enhanced muscle fiber regeneration compared to the other groups 1 week after transplantation. At 12 weeks after transplantation, only the XF-iMSCs transplantation group showed a significantly larger muscle fiber diameter than the other groups without inducing fibrosis, which was observed in the other transplantation groups. Similarly, in co-culture experiments, XF-iMSCs were found to more effectively promote the fusion and differentiation of MuSCs derived from Col6a1-KO/NSG mice than the other primary MSCs investigated in this study. Additionally, in vitro knockdown and supplementation experiments suggested that the IGF2 secreted by XF-iMSCs promoted MuSC differentiation. CONCLUSION XF-iMSCs are promising candidates for promoting muscle regeneration while avoiding fibrosis, offering a safer and more effective therapeutic approach for UCMD than other potential therapies.
Collapse
Affiliation(s)
- Megumi Yokomizo-Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Chengzhu Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshiko Inada
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Denise Zujur
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - William Theoputra
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yonghui Jin
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Junya Toguchida
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Wu Y, Li X, Sun Y, Tan X, Wang C, Wang Z, Ye L. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater 2023; 20:111-125. [PMID: 35663335 PMCID: PMC9133584 DOI: 10.1016/j.bioactmat.2022.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Although biomimetic hydrogels play an essential role in guiding bone remodeling, reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity, robust mechanical properties and suitable antioxidant ability for bone regeneration. To address these challenges, we first engineered molecular design of hydrogels (gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate, GPEGD), where their mechanical properties were significantly enhanced via introducing trace amounts of additives (0.5 wt%). The novel hybrid hydrogels show high compressive strength (>700 kPa), stiff modulus (>170 kPa) and strong ROS-scavenging ability. Furthermore, to endow the GPEGD hydrogels excellent osteoinductions, novel biocompatible, antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles (BPDAH) were developed for functionalization of the GPEGD gels (BPDAH-GPEGD). In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage. More importantly, the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations. At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect, Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels. Thus, the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications. Trace additives of DMAEMA markedly enhanced the mechanical performances of the gelatin-based hydrogels through molecular induced multiple crosslinking structures. Molecular design strategy combined with bioactive nanocomposites have a synergistically effects on promoting ROS scavenging ability and osteoactivity of the biomimetic hydrogels.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenming Wang
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Ling Ye
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
5
|
Frøbert AM, Brohus M, Roesen TS, Kindberg J, Fröbert O, Conover CA, Overgaard MT. Circulating insulin-like growth factor system adaptations in hibernating brown bears indicate increased tissue IGF availability. Am J Physiol Endocrinol Metab 2022; 323:E307-E318. [PMID: 35830688 DOI: 10.1152/ajpendo.00429.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown bears conserve muscle and bone mass during 6 mo of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of insulin-like growth factors (IGFs). In subadult Scandinavian brown bears, we observed that mean plasma IGF-1 and IGF-2 levels during hibernation were reduced to 36 ± 10% and 56 ± 15%, respectively, compared with the active state (n = 12). Western ligand blotting identified IGF-binding protein (IGFBP)-3 as the major IGFBP in the active state, whereas IGFBP-2 was codominant during hibernation. Acid labile subunit (ALS) levels in hibernation were reduced to 41±16% compared with the active state (n = 6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS levels were significantly reduced during hibernation (n = 6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, size-exclusion chromatography of bear plasma demonstrated a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Furthermore, we note that the major IGF-2 mRNA isoform expressed in livers in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 is replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modeling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin-binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.NEW & NOTEWORTHY Brown bears shift from circulating ternary IGF/IGFBP/ALS complexes in the active state to binary IGF/IGFBP complexes during hibernation, indicating increased tissue IGF-bioactivity. Furthermore, brown bears use a splice variant of IGF-2, suggesting increased bone-specific targeting of IGF anabolic signaling.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Tinna S Roesen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M. Potential Role of Insulin Growth-Factor-Binding Protein 2 as Therapeutic Target for Obesity-Related Insulin Resistance. Int J Mol Sci 2021; 22:ijms22031133. [PMID: 33498859 PMCID: PMC7865532 DOI: 10.3390/ijms22031133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| |
Collapse
|
7
|
Hsu HP, Chen YT, Chen YY, Lin CY, Chen PY, Liao SY, Lim CCY, Yamaguchi Y, Hsu CL, Dzhagalov IL. Heparan sulfate is essential for thymus growth. J Biol Chem 2021; 296:100419. [PMID: 33600795 PMCID: PMC7974028 DOI: 10.1016/j.jbc.2021.100419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Thymus organogenesis and T cell development are coordinated by various soluble and cell-bound molecules. Heparan sulfate (HS) proteoglycans can interact with and immobilize many soluble mediators, creating fields or gradients of secreted ligands. While the role of HS in the development of many organs has been studied extensively, little is known about its function in the thymus. Here, we examined the distribution of HS in the thymus and the effect of its absence on thymus organogenesis and T cell development. We found that HS was expressed most abundantly on the thymic fibroblasts and at lower levels on endothelial, epithelial, and hematopoietic cells. To study the function of HS in the thymus, we eliminated most of HS in this organ by genetically disrupting the glycosyltransferase Ext1 that is essential for its synthesis. The absence of HS greatly reduced the size of the thymus in fetal thymic organ cultures and in vivo, in mice, and decreased the production of T cells. However, no specific blocks in T cell development were observed. Wild-type thymic fibroblasts were able to physically bind the homeostatic chemokines CCL19, CCL21, and CXCL12 ex vivo. However, this binding was abolished upon HS degradation, disrupting the CCL19/CCL21 chemokine gradients and causing impaired migration of dendritic cells in thymic slices. Thus, our results show that HS plays an essential role in the development and growth of the thymus and in regulating interstitial cell migration.
Collapse
Affiliation(s)
- Hsuan-Po Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Tzu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ying Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Yu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shio-Yi Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yang Y, Jiang W, Yang S, Qi F, Zhao R. Transgenerational Inheritance of Betaine-Induced Epigenetic Alterations in Estrogen-Responsive IGF-2/IGFBP2 Genes in Rat Hippocampus. Mol Nutr Food Res 2020; 64:e1900823. [PMID: 32022472 DOI: 10.1002/mnfr.201900823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/17/2020] [Indexed: 01/18/2023]
Abstract
SCOPE Betaine serves as a methyl donor for DNA methylation. Here, the effects of betaine on hippocampal expression of neurogenesis genes and their DNA methylation status across three generations are investigated. METHODS AND RESULTS Pregnant rats (F0) are fed control and betaine-supplemented diets throughout gestation and lactation. Female F1 and F2 offspring at weaning, together with the F0 dams, are used in the study. Hippocampal expression of aromatase, estrogen receptor α, and estrogen-related receptor β is downregulated in F1, together with the estrogen-responsive insulin-like growth factor 2/insulin-like growth factor binding protein 2 (IGF-2/IGFBP2) genes. However, all these genes are upregulated in F2, which follows the same pattern of F0. In agreement with changes in mRNA expression, the imprinting control region (ICR) of IGF-2 gene is hypomethylated in F1 but hypermethylated in F2 and F0. In contrast, the promoter DNA methylation status of all the affected genes is hypermethylated in F1 but hypomethylated in F2 and F0. Methyl transfer enzymes, such as betaine homocysteine methyltransferase and DNA methyltransferase 1, follow the same pattern of transgenerational inheritance. CONCLUSION These results indicate that betaine exerts a transgenerational effect on hippocampal expression of estrogen-responsive genes in rat offspring, which is associated with corresponding alterations in DNA methylation on ICR of IGF-2 gene and the promoter of affected genes.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wenduo Jiang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fulei Qi
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
9
|
Cassinelli G, Favini E, Dal Bo L, Tortoreto M, De Maglie M, Dagrada G, Pilotti S, Zunino F, Zaffaroni N, Lanzi C. Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget 2018; 7:47848-47863. [PMID: 27374103 PMCID: PMC5216983 DOI: 10.18632/oncotarget.10292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heparan sulfate (HS) mimic/heparanase inhibitor roneparstat (SST0001) shows antitumor activity in preclinical sarcoma models. We hypothesized that this 100% N-acetylated and glycol-split heparin could interfere with the functions of several receptor tyrosine kinases (RTK) coexpressed in sarcomas and activated by heparin-binding growth factors. Using a phospho-proteomic approach, we investigated the drug effects on RTK activation in human cell lines representative of different sarcoma subtypes. Inhibition of FGF, IGF, ERBB and PDGF receptors by the drug was biochemically and functionally validated. Roneparstat counteracted the autocrine loop induced by the COL1A1/PDGFB fusion oncogene, expressed in a human dermatofibrosarcoma protuberans primary culture and in NIH3T3COL1A1/PDGFB transfectants, inhibiting cell anchorage-independent growth and invasion. In addition, roneparstat inhibited the activation of cell surface PDGFR and PDGFR-associated FAK, likely contributing to the reversion of NIH3T3COL1A1/PDGFB cell transformed and pro-invasive phenotype. Biochemical and histological/immunohistochemical ex vivo analyses confirmed a reduced activation of ERBB4, EGFR, INSR, IGF1R, associated with apoptosis induction and angiogenesis inhibition in a drug-treated Ewing's sarcoma family tumor xenograft. The combination of roneparstat with irinotecan significantly improved the antitumor effect against A204 rhabdoid xenografts resulting in a high rate of complete responses and cures. These findings reveal that roneparstat exerts a multi-target inhibition of RTKs relevant in the pathobiology of different sarcoma subtypes. These effects, likely cooperating with heparanase inhibition, contribute to the antitumor efficacy of the drug. The study supports heparanase/HS axis targeting as a valuable approach in combination therapies of different sarcoma subtypes providing a preclinical rationale for clinical investigation.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica Favini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Dal Bo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella De Maglie
- Department of Veterinary Sciences and Public Health, Università Degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Gianpaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franco Zunino
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K, De Bruyne E. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2018; 7:48732-48752. [PMID: 27129151 PMCID: PMC5217049 DOI: 10.18632/oncotarget.8982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous plasma cell malignancy. The MM cells reside in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, proliferation, and drug resistance. As in most cancers, the insulin-like growth factor (IGF) system has been demonstrated to play a key role in the pathogenesis of MM. The IGF system consists of IGF ligands, IGF receptors, IGF binding proteins (IGFBPs), and IGFBP proteases and contributes not only to the survival, proliferation, and homing of MM cells, but also MM-associated angiogenesis and osteolysis. Furthermore, increased IGF-I receptor (IGF-IR) expression on MM cells correlates with a poor prognosis in MM patients. Despite the prominent role of the IGF system in MM, strategies targeting the IGF-IR using blocking antibodies or small molecule inhibitors have failed to translate into the clinic. However, increasing preclinical evidence indicates that IGF-I is also involved in the development of drug resistance against current standard-of-care agents against MM, including proteasome inhibitors, immunomodulatory agents, and corticoids. IGF-IR targeting has been able to overcome or revert this drug resistance in animal models, enhancing the efficacy of standard-of-care agents. This finding has generated renewed interest in the therapeutic potential of IGF-I targeting in MM. The present review provides an update of the impact of the different IGF system components in MM and discusses the diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Hans E Johnsen
- Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mette Nyegaard
- Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, NY, USA
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452:54-63. [PMID: 29065343 DOI: 10.1016/j.carres.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of linear and anionic polysaccharides that play essential roles in many biological and physiological processes. Interactions between GAGs and proteins regulate function in many proteins and are related to many human diseases and disorders. The structural motifs and mechanisms for interactions between GAGs and proteins are not fully understood. Specific bindings, including minor but unique sequences sporadically distributed along the GAG chains or variably sulfated domains interspersed by undersulfated regions, may be specifically recognized by defined domains of a variety of proteins. Understanding the molecular basis of these interactions will provide a template for developing novel glycotherapeutic agents. The present article reviews recent methodologies and progress on the characterization of structural motifs in both GAGs and proteins involved in GAG-protein interactions. The analytical approaches are categorized into three groups: affinity-based methods; molecular docking, nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography; and mass spectrometry (MS) techniques. The advantages and limitations of each category of methods are discussed and are based on examples of using these techniques to investigate binding between GAGs and proteins.
Collapse
Affiliation(s)
- Jiyuan Yang
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
12
|
Dai Q, Jiang P, Gu Y, Zhu L, Dai H, Yao Z, Liu H, Ma X, Duan C, Qu L. Insulin-like Growth Factor Binding Protein6 Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage in Rats. Cell Mol Neurobiol 2017; 37:1207-1216. [PMID: 28044240 DOI: 10.1007/s10571-016-0453-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Qijun Dai
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Peipei Jiang
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Yang Gu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Lin Zhu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Haifeng Dai
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Zhigang Yao
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Hua Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Xiaoping Ma
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Chengwei Duan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Lianxia Qu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China.
| |
Collapse
|
13
|
Bieghs L, Brohus M, Kristensen IB, Abildgaard N, Bøgsted M, Johnsen HE, Conover CA, De Bruyne E, Vanderkerken K, Overgaard MT, Nyegaard M. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients. PLoS One 2016; 11:e0154256. [PMID: 27111220 PMCID: PMC4844248 DOI: 10.1371/journal.pone.0154256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/11/2016] [Indexed: 01/02/2023] Open
Abstract
Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology, Aalborg Hospital, Aalborg University, Alborg, Denmark
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ida B. Kristensen
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg Hospital, Aalborg University, Alborg, Denmark
| | - Hans E. Johnsen
- Department of Hematology, Aalborg Hospital, Aalborg University, Alborg, Denmark
| | - Cheryl A. Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN, United States of America
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Xiong GM, Yap YZ, Choong C. Single-step synthesis of heparin-doped polypyrrole nanoparticles for delivery of angiogenic factor. Nanomedicine (Lond) 2016; 11:749-65. [DOI: 10.2217/nnm.16.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To perform one-pot synthesis of heparin-immobilized polypyrrole (PPy) nanoparticles and evaluate the use of these nanoparticles for the delivery of VEGF. Materials & methods: Heparin-stabilized synthesis of PPy nanoparticles was performed via oxidative polymerization. VEGF-bound PPy-heparin nanoparticles were delivered to endothelial cells and bioactivity of VEGF was assessed by Matrigel tube formation. Results: Size-controllable synthesis of heparin-doped PPy nanoparticles was achieved, and heparin promoted the conjugation of VEGF. Angiogenic activity of the VEGF-conjugated PPy nanoparticles was verified. Conclusion: Heparin-doped PPy nanoparticles can be synthesized using one-pot reaction and provide a delivery platform by which VEGF can be conjugated onto.
Collapse
Affiliation(s)
- Gordon M Xiong
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yi Zhen Yap
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Cleo Choong
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- KK Research Centre, KK Women's & Children Hospital, 100 Bukit Timah Road, 229899 Singapore
| |
Collapse
|
15
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
16
|
Azevedo HS, Pashkuleva I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev 2015; 94:63-76. [PMID: 26325686 DOI: 10.1016/j.addr.2015.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact.
Collapse
Affiliation(s)
- Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Iva Pashkuleva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Heparan sulfation is essential for the prevention of cellular senescence. Cell Death Differ 2015; 23:417-29. [PMID: 26250908 DOI: 10.1038/cdd.2015.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 11/08/2022] Open
Abstract
Cellular senescence is considered as an important tumor-suppressive mechanism. Here, we demonstrated that heparan sulfate (HS) prevents cellular senescence by fine-tuning of the fibroblast growth factor receptor (FGFR) signaling pathway. We found that depletion of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2), a synthetic enzyme of the sulfur donor PAPS, led to premature cell senescence in various cancer cells and in a xenograft tumor mouse model. Sodium chlorate, a metabolic inhibitor of HS sulfation also induced a cellular senescence phenotype. p53 and p21 accumulation was essential for PAPSS2-mediated cellular senescence. Such senescence phenotypes were closely correlated with cell surface HS levels in both cancer cells and human diploid fibroblasts. The determination of the activation of receptors such as FGFR1, Met, and insulin growth factor 1 receptor β indicated that the augmented FGFR1/AKT signaling was specifically involved in premature senescence in a HS-dependent manner. Thus, blockade of either FGFR1 or AKT prohibited p53 and p21 accumulation and cell fate switched from cellular senescence to apoptosis. In particular, desulfation at the 2-O position in the HS chain contributed to the premature senescence via the augmented FGFR1 signaling. Taken together, we reveal, for the first time, that the proper status of HS is essential for the prevention of cellular senescence. These observations allowed us to hypothesize that the FGF/FGFR signaling system could initiate novel tumor defenses through regulating premature senescence.
Collapse
|