1
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Portales-Castillo I, Dean T, Cheloha RW, Creemer BA, Vilardaga JP, Savransky S, Khatri A, Jüppner H, Gardella TJ. Altered Signaling and Desensitization Responses in PTH1R Mutants Associated with Eiken Syndrome. Commun Biol 2023; 6:599. [PMID: 37268817 PMCID: PMC10238420 DOI: 10.1038/s42003-023-04966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
The parathyroid hormone receptor type 1 (PTH1R) is a G protein-coupled receptor that plays key roles in regulating calcium homeostasis and skeletal development via binding the ligands, PTH and PTH-related protein (PTHrP), respectively. Eiken syndrome is a rare disease of delayed bone mineralization caused by homozygous PTH1R mutations. Of the three mutations identified so far, R485X, truncates the PTH1R C-terminal tail, while E35K and Y134S alter residues in the receptor's amino-terminal extracellular domain. Here, using a variety of cell-based assays, we show that R485X increases the receptor's basal rate of cAMP signaling and decreases its capacity to recruit β-arrestin2 upon ligand stimulation. The E35K and Y134S mutations each weaken the binding of PTHrP leading to impaired β-arrestin2 recruitment and desensitization of cAMP signaling response to PTHrP but not PTH. Our findings support a critical role for interaction with β-arrestin in the mechanism by which the PTH1R regulates bone formation.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, BJCIH Building, 425 South Euclid St, St. Louis, MO, 63110, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Ross W Cheloha
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Brendan A Creemer
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
4
|
Comparison of Gene Expression Patterns in Articular Cartilage and Xiphoid Cartilage. Biochem Genet 2021; 60:676-706. [PMID: 34410558 DOI: 10.1007/s10528-021-10127-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.
Collapse
|
5
|
Carlson EL, Karuppagounder V, Pinamont WJ, Yoshioka NK, Ahmad A, Schott EM, Le Bleu HK, Zuscik MJ, Elbarbary RA, Kamal F. Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis. Sci Transl Med 2021; 13:13/580/eaau8491. [PMID: 33568523 DOI: 10.1126/scitranslmed.aau8491] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.
Collapse
Affiliation(s)
- Elijah L Carlson
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Adeel Ahmad
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael J Zuscik
- Colorado Program for Skeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA. .,Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
McDonough RC, Gilbert RM, Gleghorn JP, Price C. Targeted Gq-GPCR activation drives ER-dependent calcium oscillations in chondrocytes. Cell Calcium 2021; 94:102363. [PMID: 33550208 DOI: 10.1016/j.ceca.2021.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
The temporal dynamics of calcium signaling are critical regulators of chondrocyte homeostasis and chondrogenesis. Calcium oscillations regulate differentiation and anabolic processes in chondrocytes and their precursors. Attempts to control chondrocyte calcium signaling have been achieved through mechanical perturbations and synthetic ion channel modulators. However, such stimuli can lack both local and global specificity and precision when evoking calcium signals. Synthetic signaling platforms can more precisely and selectively activate calcium signaling, enabling improved dissection of the roles of intracellular calcium ([Ca2+]i) in chondrocyte behavior. One such platform is hM3Dq, a chemogenetic DREADD (Designer Receptors Exclusively Activated by Designer Drugs) that activates calcium signaling via the Gαq-PLCβ-IP3-ER pathway upon administration of clozapine N-oxide (CNO). We previously described the first-use of hM3Dq to precisely mediate targeted, synthetic calcium signals in chondrocyte-like ATDC5 cells. Here, we generated stably expressing hM3Dq-ATDC5 cells to investigate the dynamics of Gαq-GPCR calcium signaling in depth. CNO drove robust calcium responses in a temperature- and concentration-dependent (1 pM-100 μM) manner and elicited elevated levels of oscillatory calcium signaling above 10 nM. hM3Dq-mediated calcium oscillations in ATDC5 cells were reliant on ER calcium stores for both initiation and sustenance, and the downregulation and recovery dynamics of hM3Dq after CNO stimulation align with traditionally reported GPCR recycling kinetics. This study successfully generated a stable hM3Dq cell line to precisely drive Gαq-GPCR-mediated and ER-dependent oscillatory calcium signaling in ATDC5 cells and established a novel tool to elucidate the role that GPCR-mediated calcium signaling plays in chondrocyte biology, cartilage pathology, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|
7
|
Noda H, Guo J, Khatri A, Dean T, Reyes M, Armanini M, Brooks DJ, Martins JS, Schipani E, Bouxsein ML, Demay MB, Potts JT, Jüppner H, Gardella TJ. An Inverse Agonist Ligand of the PTH Receptor Partially Rescues Skeletal Defects in a Mouse Model of Jansen's Metaphyseal Chondrodysplasia. J Bone Miner Res 2020; 35:540-549. [PMID: 31693237 PMCID: PMC8050614 DOI: 10.1002/jbmr.3913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
Abstract
Jansen's metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand-independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell-based assays, we found that certain N-terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11 ,dTrp12 ,Trp23 ,Tyr36 ]-PTHrP(7-36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1-H223R allele of JMC in osteoblastic cells via the collagen-1α1 promoter (C1HR mice). We observed that after 2 weeks of twice-daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof-of-concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hiroshi Noda
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael Armanini
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - John T Potts
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
9
|
McDonough RC, Shoga JS, Price C. DREADD-based synthetic control of chondrocyte calcium signaling in vitro. J Orthop Res 2019; 37:1518-1529. [PMID: 30908734 DOI: 10.1002/jor.24285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Calcium is a critical second messenger involved in chondrocyte mechanotransduction. Several distinct calcium signaling mechanisms implicated in chondrocyte mechanotransduction have been identified using mechanical perturbations or soluble signaling factors. However, these commonly used stimuli can lack specificity in the mechanisms by which they initiate calcium signaling. Synthetic tools allowing for more precise and selective regulation of calcium signaling, such as the engineered G-protein-coupled receptors known as DREADDs (Designer Receptors Exclusively Activated by Designer Drugs), may better assist in isolating the roles of intracellular calcium ([Ca2+ ]i ) and cell activation in chondrocyte biology. One DREADD, hM3Dq, is solely activated by clozapine N-oxide (CNO) and regulates calcium activation through the Gq -PLCβ-IP3 -ER pathway. Here, hM3Dq-transfected ATDC5 cells were treated with CNO (100 nM-1 μM) to establish the feasibility of using Gq -DREADDs to drive [Ca2+ ]i activation in chondrocyte-like cells. CNO administration resulted in a coordinated, dose-dependent, and transient calcium response in hM3Dq-transfected cells that resulted primarily from calcium release from the ER. Following activation via CNO administration, hM3Dq-ATDC5 cells exhibited refractory behavior and required a 4-h wash-out period to recover hM3Dq-mediated signaling. However, hM3Dq inactivation did not inhibit alternative calcium activation mechanisms in ATDC5 cells (via GSK101 or hypo-osmotic shock), nor did CNO-driven calcium signaling negatively impact ATDC5 cell health. This study established the successful use of hM3Dq for the safe, targeted, and well-controlled activation of calcium signaling in ATDC5 cells and its use as a potential tool for assessing clinically significant questions regarding calcium signaling in chondrocyte biology, cartilage pathology, and cartilage tissue engineering. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1518-1529, 2019.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE
| | - Janty S Shoga
- Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, 19716, DE.,Department of Biomechanics and Movement Science, University of Delaware, Newark, DE
| |
Collapse
|
10
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
11
|
Briet C, Pereda A, Le Stunff C, Motte E, de Dios Garcia-Diaz J, de Nanclares GP, Dumaz N, Silve C. Mutations causing acrodysostosis-2 facilitate activation of phosphodiesterase 4D3. Hum Mol Genet 2018; 26:3883-3894. [PMID: 29016851 DOI: 10.1093/hmg/ddx271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/08/2017] [Indexed: 01/21/2023] Open
Abstract
Type 2 acrodysostosis (ACRDYS2), a rare developmental skeletal dysplasia characterized by short stature, severe brachydactyly and facial dysostosis, is caused by mutations in the phosphodiesterase (PDE) 4D (PDE4D) gene. Several arguments suggest that the mutations should result in inappropriately increased PDE4D activity, however, no direct evidence supporting this hypothesis has been presented, and the functional consequences of the mutations remain unclear. We evaluated the impact of four different PDE4D mutations causing ACRDYS2 located in different functional domains on the activity of PDE4D3 expressed in Chinese hamster ovary cells. Three independent approaches were used: the direct measurement of PDE activity in cell lysates, the evaluation of intracellular cAMP levels using an EPAC-based (exchange factor directly activated by cAMP) bioluminescence resonance energy transfer sensor , and the assessment of PDE4D3 activation based on electrophoretic mobility. Our findings indicate that PDE4D3s carrying the ACRDYS2 mutations are more easily activated by protein kinase A-induced phosphorylation than WT PDE4D3. This occurs over a wide range of intracellular cAMP concentrations, including basal conditions, and result in increased hydrolytic activity. Our results provide new information concerning the mechanism whereby the mutations identified in the ACRDYS2 dysregulate PDE4D activity, and give insights into rare diseases involving the cAMP signaling pathway. These findings may offer new perspectives into the selection of specific PDE inhibitors and possible therapeutic intervention for these patients.
Collapse
Affiliation(s)
- Claire Briet
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Endocrinology, Diabetology and Nutrition, Mitovasc Institute, CHU Angers, France
| | - Arrate Pereda
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba-Txagorritxu, E-01009 Vitoria-Gasteiz, Spain
| | - Catherine Le Stunff
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Motte
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Versailles - St Quentin, UFR des Sciences de la santé Simone Veil, Versailles, Paris, France
| | - Juan de Dios Garcia-Diaz
- Clinical Genetics Unit, Department of Internal Medicine, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba-Txagorritxu, E-01009 Vitoria-Gasteiz, Spain
| | - Nicolas Dumaz
- INSERM U976, Institut de Recherche sur la Peau, Hôpital Saint Louis, Paris, France
| | - Caroline Silve
- INSERM U1169, Université Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium/Filière de Santé Maladies Rares OSCAR, Assistance Publique Hôpitaux de Paris, Paris, France.,Service de Biochimie et Génétique Moléculaires, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| |
Collapse
|
12
|
Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM, Guo FJ. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 2017; 16:8019-8028. [PMID: 28983600 PMCID: PMC5779886 DOI: 10.3892/mmr.2017.7616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are a population of progenitor cells which give rise to postnatal skeletal tissues including bone, cartilage and bone marrow stroma, however not to adipose, haematopoietic or muscle tissue. Growth plate chondrocytes exhibit the ability of continuous proliferation and differentiation, which contributes to the continuous physiological growth. The growth plate has been hypothesized to contain SSCs which exhibit a desirable differentiation capacity to generate bone and cartilage. Due to the heterogeneity of the growth plate chondrocytes, SSCs in the growth plate are not well studied. The present study used cluster of differentiation (CD)146 and CD105 as markers to isolate purified SSCs. CD105+ SSCs and CD146+ SSCs were isolated using a magnetic activated cell sorting method. To quantitatively investigate the proliferation and differentiation ability, the colony-forming efficiency (CFE) and multi‑lineage differentiation capacity of CD105+ SSCs and CD146+ SSCs were compared with unsorted cells and adipose-derived stem cells (ASCs). It was revealed that CD105+ and CD146+ subpopulations represented subsets of SSCs which generated chondrocytes and osteocytes, however not adipocytes. Compared with CD105+ subpopulations and ASCs, the CD146+ subpopulation exhibited a greater CFE and continuous high chondrogenic differentiation capacity in vitro. Therefore, the present study suggested that the CD146+ subpopulation represented a chondrolineage‑restricted subpopulation of SSCs and may therefore act as a valuable cell source for cartilage regeneration.
Collapse
Affiliation(s)
- Ying-Xing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ya-Ping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Ming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng-Jing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
13
|
|
14
|
Le Stunff C, Tilotta F, Sadoine J, Le Denmat D, Briet C, Motte E, Clauser E, Bougnères P, Chaussain C, Silve C. Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis. J Bone Miner Res 2017; 32:333-346. [PMID: 27589370 DOI: 10.1002/jbmr.2987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
In humans, activating mutations in the PRKAR1A gene cause acrodysostosis 1 (ACRDYS1). These mutations result in a reduction in PKA activation caused by an impaired ability of cAMP to dissociate mutant PRKAR1A from catalytic PKA subunits. Two striking features of this rare developmental disease are renal resistance to PTH and chondrodysplasia resulting from the constitutive inhibition of PTHR1/Gsa/AC/cAMP/PKA signaling. We developed a knock-in of the recurrent ACRDYS1 R368X PRKAR1A mutation in the mouse. No litters were obtained from [R368X]/[+] females (thus no homozygous [R368X]/[R368X] mice). In [R368X]/[+] mice, Western blot analysis confirmed mutant allele heterozygous expression. Growth retardation, peripheral acrodysostosis (including brachydactyly affecting all digits), and facial dysostosis were shown in [R368X]/[+] mice by weight curves and skeletal measurements (μCT scan) as a function of time. [R368X]/[+] male and female mice were similarly affected. Unexpected, however, whole-mount skeletal preparations revealed a striking delay in mineralization in newborn mutant mice, accompanied by a decrease in the height of terminal hypertrophic chondrocyte layer, an increase in the height of columnar proliferative prehypertrophic chondrocyte layer, and changes in the number and spatial arrangement of proliferating cell nuclear antigen (PCNA)-positive chondrocytes. Plasma PTH and basal urinary cAMP were significantly higher in [R368X]/[+] compared to WT mice. PTH injection increased urinary cAMP similarly in [R368X]/[+] and WT mice. PRKACA expression was regulated in a tissue (kidney not bone and liver) manner. This model, the first describing the germline expression of a PRKAR1A mutation causing dominant repression of cAMP-dependent PKA, reproduced the main features of ACRDYS1 in humans. It should help decipher the specificity of the cAMP/PKA signaling pathway, crucial for numerous stimuli. In addition, our results indicate that PRKAR1A, by tempering intracellular cAMP levels, is a molecular switch at the crossroads of signaling pathways regulating chondrocyte proliferation and differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Catherine Le Stunff
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Francoise Tilotta
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Jérémy Sadoine
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Dominique Le Denmat
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Claire Briet
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Motte
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Eric Clauser
- INSERM U970, University Paris Descartes, Paris Centre de Recherche Cardiovasculaire (PARCC), Paris, France
| | - Pierre Bougnères
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Catherine Chaussain
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Odontology Department Bretonneau, Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
| | - Caroline Silve
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France.,Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
15
|
Nilsson O, Isoherranen N, Guo MH, Lui JC, Jee YH, Guttmann-Bauman I, Acerini C, Lee W, Allikmets R, Yanovski JA, Dauber A, Baron J. Accelerated Skeletal Maturation in Disorders of Retinoic Acid Metabolism: A Case Report and Focused Review of the Literature. Horm Metab Res 2016; 48:737-744. [PMID: 27589347 PMCID: PMC5534175 DOI: 10.1055/s-0042-114038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nutritional excess of vitamin A, a precursor for retinoic acid (RA), causes premature epiphyseal fusion, craniosynostosis, and light-dependent retinopathy. Similarly, homozygous loss-of-function mutations in CYP26B1, one of the major RA-metabolizing enzymes, cause advanced bone age, premature epiphyseal fusion, and craniosynostosis. In this paper, a patient with markedly accelerated skeletal and dental development, retinal scarring, and autism-spectrum disease is presented and the role of retinoic acid in longitudinal bone growth and skeletal maturation is reviewed. Genetic studies were carried out using SNP array and exome sequencing. RA isomers were measured in the patient, family members, and in 18 age-matched healthy children using high-performance liquid chromatography coupled to tandem mass spectrometry. A genomic SNP array identified a novel 8.3 megabase microdeletion on chromosome 10q23.2-23.33. The 79 deleted genes included CYP26A1 and C1, both major RA-metabolizing enzymes. Exome sequencing did not detect any variants that were predicted to be deleterious in the remaining alleles of these genes or other known retinoic acid-metabolizing enzymes. The patient exhibited elevated plasma total RA (16.5 vs. 12.6±1.5 nM, mean±SD, subject vs. controls) and 13-cisRA (10.7 nM vs. 6.1±1.1). The findings support the hypothesis that elevated RA concentrations accelerate bone and dental maturation in humans. CYP26A1 and C1 haploinsufficiency may contribute to the elevated retinoic acid concentrations and clinical findings of the patient, although this phenotype has not been reported in other patients with similar deletions, suggesting that other unknown genetic or environmental factors may also contribute.
Collapse
Affiliation(s)
- Ola Nilsson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nina Isoherranen
- Department of Pharmaceutics School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Michael H. Guo
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Julian C. Lui
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ines Guttmann-Bauman
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Carlo Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jack A. Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Tenhola S, Voutilainen R, Reyes M, Toiviainen-Salo S, Jüppner H, Mäkitie O. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur J Endocrinol 2016; 175:211-8. [PMID: 27334330 PMCID: PMC5149394 DOI: 10.1530/eje-16-0109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 1 is caused by activating mutations in the calcium-sensing receptor (CASR), a G-protein-coupled receptor signaling through α11 (Gα11) and αq (Gαq) subunits. Heterozygous activating mutations in GNA11, the gene encoding Gα11, underlie ADH type 2. This study describes disease characteristics in a family with ADH caused by a gain-of-function mutation in GNA11. DESIGN A three-generation family with seven members (3 adults, 4 children) presenting with ADH. METHODS Biochemical parameters of calcium metabolism, clinical, genetic and brain imaging findings were analyzed. RESULTS Sanger sequencing revealed a heterozygous GNA11 missense mutation (c.1018G>A, p.V340M) in all seven hypocalcemic subjects, but not in the healthy family members (n=4). The adult patients showed clinical symptoms of hypocalcemia, while the children were asymptomatic. Plasma ionized calcium ranged from 0.95 to 1.14mmol/L, yet plasma PTH was inappropriately low for the degree of hypocalcemia. Serum 25OHD was normal. Despite hypocalcemia 1,25(OH)2D and urinary calcium excretion were inappropriately in the reference range. None of the patients had nephrocalcinosis. Two adults and one child (of the two MRI scanned children) had distinct intracranial calcifications. All affected subjects had short stature (height s.d. scores ranging from -3.4 to -2.3 vs -0.5 in the unaffected children). CONCLUSIONS The identified GNA11 mutation results in biochemical abnormalities typical for ADH. Additional features, including short stature and early intracranial calcifications, cosegregated with the mutation. These findings may indicate a wider role for Gα11 signaling besides calcium regulation.
Collapse
Affiliation(s)
- Sirpa Tenhola
- Department of PediatricsKymenlaakso Central Hospital, Kotka, Finland Department of PediatricsKuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Raimo Voutilainen
- Department of PediatricsKuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Monica Reyes
- Endocrine UnitMassachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sanna Toiviainen-Salo
- Department of RadiologyHUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harald Jüppner
- Endocrine UnitMassachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Outi Mäkitie
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland Folkhälsan Institute of GeneticsHelsinki, Finland Department of Molecular Medicine and SurgeryKarolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
Affiliation(s)
- Christian Santa Maria
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dolores Shoback
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
18
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|