1
|
Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, Wang W. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B 2023; 13:4667-4687. [PMID: 38045038 PMCID: PMC10692395 DOI: 10.1016/j.apsb.2023.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing City, Jiaxing 314000, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xin Yu
- Bengbu Medical College (Department of Neurology, the Second Hospital of Jiaxing City), Jiaxing 233030, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Cozzolino F, Canè L, Sacchettino L, Gatto MC, Iacobucci I, Gatta C, De Biase D, Di Napoli E, Paciello O, Avallone L, Monti M, d’Angelo D, Napolitano F. Preliminary evaluation of the proteomic profiling in the hippocampus of aged grazing cattle. Front Aging Neurosci 2023; 15:1274073. [PMID: 37965495 PMCID: PMC10641839 DOI: 10.3389/fnagi.2023.1274073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Brain aging is a physiological process associated with physical and cognitive decline; however, in both humans and animals, it can be regarded as a risk factor for neurodegenerative disorders, such as Alzheimer's disease. Among several brain regions, hippocampus appears to be more susceptible to detrimental effects of aging. Hippocampus belongs to limbic system and is mainly involved in declarative memories and context-dependent spatial-learning, whose integrity is compromised in an age-dependent manner. In the present work, taking advantage of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics, we sought to identify proteins differentially expressed in the hippocampus of the aged grazing milk cows. Our exploratory findings showed that, out of 707 identified proteins, 112 were significantly altered in old cattle, when compared to the adult controls, and functional clusterization highlighted their involvement in myelination, synaptic vesicle, metabolism, and calcium-related biological pathways. Overall, our preliminary data pave the way for the future studies, aimed at better characterizing the role of such a subcortical brain region in the age-dependent cognitive decline, as well as identifying early aging markers to improve animal welfare and husbandry practices of dairy cattle from intensive livestock.
Collapse
Affiliation(s)
- Flora Cozzolino
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Luisa Canè
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Claudia Gatto
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
| | - Ilaria Iacobucci
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Claudia Gatta
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Monti
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Napolitano
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Stowe TA, McClung CA. How Does Chronobiology Contribute to the Development of Diseases in Later Life. Clin Interv Aging 2023; 18:655-666. [PMID: 37101656 PMCID: PMC10124625 DOI: 10.2147/cia.s380436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. For example, many older adults have a shift in chronotype, which is an individual's natural inclination to sleep certain times of the day. As adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases commonly associated with aging.
Collapse
Affiliation(s)
- Taylor A Stowe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Correspondence: Colleen A McClung, Email
| |
Collapse
|
4
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Barth E, Srivastava A, Wengerodt D, Stojiljkovic M, Axer H, Witte OW, Kretz A, Marz M. Age-dependent expression changes of circadian system-related genes reveal a potentially conserved link to aging. Aging (Albany NY) 2021; 13:25694-25716. [PMID: 34923482 PMCID: PMC8751596 DOI: 10.18632/aging.203788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock system influences the biology of life by establishing circadian rhythms in organisms, tissues, and cells, thus regulating essential biological processes based on the day/night cycle. Circadian rhythms change over a lifetime due to maturation and aging, and disturbances in the control of the circadian system are associated with several age-related pathologies. However, the impact of chronobiology and the circadian system on healthy organ and tissue aging remains largely unknown. Whether aging-related changes of the circadian system’s regulation follow a conserved pattern across different species and tissues, hence representing a common driving force of aging, is unclear. Based on a cross-sectional transcriptome analysis covering 329 RNA-Seq libraries, we provide indications that the circadian system is subjected to aging-related gene alterations shared between evolutionarily distinct species, such as Homo sapiens, Mus musculus, Danio rerio, and Nothobranchius furzeri. We discovered differentially expressed genes by comparing tissue-specific transcriptional profiles of mature, aged, and old-age individuals and report on six genes (per2, dec2, cirp, klf10, nfil3, and dbp) of the circadian system, which show conserved aging-related expression patterns in four organs of the species examined. Our results illustrate how the circadian system and aging might influence each other in various tissues over a long lifespan and conceptually complement previous studies tracking short-term diurnal and nocturnal gene expression oscillations.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Akash Srivastava
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Diane Wengerodt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Milan Stojiljkovic
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexandra Kretz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
6
|
|
7
|
Yan CC, Zhang XS, Zhou L, Yang Q, Zhou M, Zhang LW, Xing JC, Yan ZF, Price M, Li J, Yue BS, Fan ZX. Effects of aging on gene expression in blood of captive Tibetan macaques ( Macaca thibetana) and comparisons with expression in humans. Zool Res 2021; 41:557-563. [PMID: 32746507 PMCID: PMC7475009 DOI: 10.24272/j.issn.2095-8137.2020.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression occur as animals, including primates, age. Macaques have long been used as a model species for primate evolution and biomedical studies. Here, to study gene expression in Tibetan macaques (Macaca thibetana, TMs) and its differences to humans, we applied RNA-Seq to obtain the blood transcriptomes of 24 TMs. In total, 2 523 age-associated differentially expressed genes (DEGs) were identified. Several pathways and processes that regulate aging, including the FoxO signaling pathway, autophagy, and platelet activation, were significantly enriched in the up-regulated DEGs. Two significantly age-related modules were identified by weighted gene co-expression network analysis (WGCNA). The TMs and humans shared 279 common DEGs, including 111 up-regulated and 141 down-regulated genes with advancing age in the same expression direction. However, 27 age-related DEGs presented the opposite expression direction in TMs as that in humans. For example, INPPL1, with inhibitory effects on the B cell receptor signaling pathway, was up-regulated in humans but down-regulated in TMs. In general, our study suggests that aging is a critical factor affecting gene expression in the captive TM population. The similarities and differences in gene expression patterns between TMs and humans could provide new insights into primate evolution and benefit TM model development.
Collapse
Affiliation(s)
- Chao-Chao Yan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin-Shang Zhang
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Qiao Yang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Min Zhou
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lin-Wan Zhang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jin-Chuan Xing
- Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zhi-Feng Yan
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bi-Song Yue
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhen-Xin Fan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China. E-mail:
| |
Collapse
|
8
|
Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec (Hoboken) 2020; 304:1094-1104. [DOI: 10.1002/ar.24536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Polina A. Vishnyakova
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Konstantin Yu. Moiseev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey A. Spirichev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey I. Emanuilov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | | | - Petr M. Masliukov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| |
Collapse
|
9
|
Epelbaum J, Terrien J. Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109854. [PMID: 31891735 DOI: 10.1016/j.pnpbp.2019.109854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
The neuroendocrine system (NES) plays a crucial role in synchronizing the physiology and behavior of the whole organism in response to environmental constraints. The NES consists of a hypothalamic-pituitary-target organ axis that acts in coordination to regulate growth, reproduction, stress and basal metabolism. The growth (or somatotropic), hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes are therefore finely tuned by the hypothalamus through the successive release of hypothalamic and pituitary hormones to control the downstream physiological functions. These functions rely on a complex set of mechanisms requiring tight synchronization between peripheral organs and the hypothalamic-pituitary complex, whose functionality can be altered during aging. Here, we review the results of research on the effects of aging on the NES of nonhuman primate (NHP) species in wild and captive conditions. A focus on the age-related dysregulation of the master circadian pacemaker, which, in turn, alters the synchronization of the NES with the organism environment, is proposed. Finally, practical and ethical considerations of using NHP models to test the effects of nutrition-based or hormonal treatments to combat the deterioration of the NES are discussed.
Collapse
Affiliation(s)
- Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France; Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| |
Collapse
|
10
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
11
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
12
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|