1
|
Dahal L, Graham TGW, Dailey GM, Heckert A, Tjian R, Darzacq X. Surprising features of nuclear receptor interaction networks revealed by live-cell single-molecule imaging. eLife 2025; 12:RP92979. [PMID: 39792435 PMCID: PMC11723585 DOI: 10.7554/elife.92979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell BiologyBerkeleyUnited States
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Thomas GW Graham
- Department of Molecular and Cell BiologyBerkeleyUnited States
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Gina M Dailey
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Alec Heckert
- Eikon Therapeutics Inc, Hayward, CaliforniaBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell BiologyBerkeleyUnited States
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell BiologyBerkeleyUnited States
| |
Collapse
|
2
|
Medicharla SS, Maheshwari T, B V S. In silico studies of designed thiadiazole derivatives as retinoic acid receptor-alpha (RAR-α) inhibitors for potential contraceptive application. J Biomol Struct Dyn 2024:1-16. [PMID: 39679915 DOI: 10.1080/07391102.2024.2440643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/03/2024] [Indexed: 12/17/2024]
Abstract
Retinoic acid receptors (RARs) are a class of nuclear receptors that play an important role in spermatogenesis. Blocking RAR-α activity is an effective method of contraception. In this study, we used in silico methods to design and evaluate new thiadiazole-based RAR-α antagonists. We performed molecular docking, ADME studies, molecular dynamics, and Binding free energy calculations to determine binding affinities, oral bioavailability, and stability. From the twenty designed compounds, three compounds, BVSSS14, BVSSS09, and BVSSS10, exhibit promising interactions and docking scores of -12.3, -11.6, and -10.1 kcal/mol, respectively. Using molecular dynamics simulations, we elucidated the conformational stability of these three compounds within the RAR-α binding pocket. Furthermore, MMGBSA analysis provided insights into binding free energies, proving the efficacy of BVSSS14, BVSSS09, and BVSSS10. In silico approach highlights the potential of BVSSS14, BVSSS09, and BVSSS10 as promising compounds to inhibit RAR-α, and these compounds are effective candidates as contraceptive agents, laying the groundwork for future experimental validation.
Collapse
Affiliation(s)
- Sri Satya Medicharla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Tanya Maheshwari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Suma B V
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
3
|
Rastinejad F. Allosteric communications between domains of nuclear receptors. Steroids 2024; 214:109551. [PMID: 39653158 DOI: 10.1016/j.steroids.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Nuclear receptors (NRs) regulate gene expression in response to hormonal signals, influencing diverse physiological processes and diseases. Structural and dynamics investigations based on X-ray crystallography, cryo-electron microscopy (cryo-EM), hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulations, have significantly deepened our understanding of the conformational states, dynamics, and interdomain interactions of multi-domain NRs. Structural studies have examined heterodimeric complexes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) with retinoid X receptor alpha (RXRα), liver X receptor beta (LXRβ) with RXRα, and retinoic acid receptor beta (RARβ) with RXRα, as well as homodimers like hepatic nuclear factor 4 alpha (HNF-4α), androgen receptor (AR), and glucocorticoid receptor (GR). These investigations highlight critical allosteric communication between ligand-binding domains (LBDs) and DNA-binding domains (DBDs), emphasizing the roles of flexible hinge regions and N-terminal segments in adapting to diverse DNA configurations. Both non-steroid receptor heterodimers and homodimers exhibit robust interdomain connections that mediate allosteric signaling. For instance, AR demonstrates three distinct conformational states that underscore its dynamic behavior, while GR exhibits unique ligand-dependent domain interactions shaping receptor signaling. The collective findings so far suggest a conserved mechanism of cross-domain communication across the NR family. Supported by complementary biophysical, spectroscopic, mutagenesis, and computational studies, this body of research has elucidated the nature of domain-domain interfaces and their pivotal roles in regulating the transcriptional activity of steroid and non-steroid receptors.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
4
|
Hazarika S, Yu T, Biswas A, Dube N, Villalona P, Okafor CD. Nuclear Receptor Interdomain Communication is Mediated by the Hinge with Ligand Specificity. J Mol Biol 2024; 436:168805. [PMID: 39332668 DOI: 10.1016/j.jmb.2024.168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Nuclear receptors are ligand-induced transcription factors that bind directly to target genes and regulate their expression. Ligand binding initiates conformational changes that propagate to other domains, allosterically regulating their activity. The nature of this interdomain communication in nuclear receptors is poorly understood, largely owing to the difficulty of experimentally characterizing full-length structures. We have applied computational modeling approaches to describe and study the structure of the full-length farnesoid X receptor (FXR), approximated by the DNA binding domain (DBD) and ligand binding domain (LBD) connected by the flexible hinge region. Using extended molecular dynamics simulations (>10 microseconds) and enhanced sampling simulations, we provide evidence that ligands selectively induce domain rearrangement, leading to interdomain contact. We use protein-protein interaction assays to provide experimental evidence of these interactions, identifying a critical role of the hinge in mediating interdomain contact. Our results illuminate previously unknown aspects of interdomain communication in FXR and provide a framework to enable characterization of other full-length nuclear receptors.
Collapse
Affiliation(s)
- Saurov Hazarika
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Tracy Yu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Arumay Biswas
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Namita Dube
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Priscilla Villalona
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - C Denise Okafor
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
6
|
Geng N, Yu Z, Zeng X, Chen Y, Sheng M, Xu D, Yan M, Yang M, Huang X. Pulse Activation of Retinoic Acid Receptor Enhances Hematopoietic Stem Cell Homing by Controlling CXCR4 Membrane Presentation. Stem Cell Rev Rep 2024:10.1007/s12015-024-10813-4. [PMID: 39480614 DOI: 10.1007/s12015-024-10813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The interplay between metabolic signaling and stem cell biology has gained increasing attention, though the underlying molecular mechanisms remain incompletely elucidated. In this study, we identify and characterize the role of adapalene (ADA), a retinoic acid receptor (RAR) agonist, in modulating the migration behavior of hematopoietic stem cells (HSCs). Our initial findings reveal that ADA treatment suppresses hematopoietic stem and progenitor cell (HSPC) mobilization induced by AMD3100 and G-CSF. Furthermore, we demonstrate that ADA treatment upregulates the surface expression of CXCR4 on HSPCs, resulting in enhanced chemotaxis towards CXCL12. Mechanistically, our study suggests that ADA enhances CXCR4 surface presentation without increasing CXCR4 mRNA levels, pointing towards a non-canonical role of RAR signaling in regulating intracellular trafficking of CXCR4. In vivo experiments show that ADA administration significantly enhances HSC homing efficiency. Additionally, competitive transplantation assays indicate a marked increase in donor chimerism following ADA treatment. These findings highlight the critical role of retinoic acid signaling in regulating HSC homing and suggest its potential for advancing novel HSC-based therapeutic strategies.
Collapse
Affiliation(s)
- Nanxi Geng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingchao Zeng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxuan Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Menghong Yan
- Pudong Medical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min Yang
- Department of Neonatology, Yangtze River Delta Integration Demonstration Zone (QingPu), Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 201713, China.
| | - Xinxin Huang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Dahal L, Graham TGW, Dailey GM, Heckert A, Tjian R, Darzacq X. Surprising Features of Nuclear Receptor Interaction Networks Revealed by Live Cell Single Molecule Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.16.558083. [PMID: 37745337 PMCID: PMC10516011 DOI: 10.1101/2023.09.16.558083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Type 2 Nuclear Receptors (T2NRs) require heterodimerization with a common partner, the Retinoid X Receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and over-expression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged retinoid X receptor (RXR) and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Thomas GW Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Alec Heckert
- Eikon Therapeutics Inc., Hayward, California, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| |
Collapse
|
8
|
Banjan B, Vishwakarma R, Ramakrishnan K, Dev RR, Kalath H, Kumar P, Soman S, Raju R, Revikumar A, Rehman N, Abhinand CS. Targeting AFP-RARβ complex formation: a potential strategy for treating AFP-positive hepatocellular carcinoma. Mol Divers 2024:10.1007/s11030-024-10915-8. [PMID: 38955977 DOI: 10.1007/s11030-024-10915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARβ interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARβ complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARβ complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Pankaj Kumar
- Nitte (Deemed to Be University), Department of Pharmaceutical Chemistry, NGSMPS, NGSM Institute of Pharmaceutical Sciences, Mangalore, 575018, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
9
|
Artimovič P, Badovská Z, Toporcerová S, Špaková I, Smolko L, Sabolová G, Kriváková E, Rabajdová M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024; 13:1081. [PMID: 38994935 PMCID: PMC11240766 DOI: 10.3390/cells13131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Eva Kriváková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| |
Collapse
|
10
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
11
|
Colucci M, Zumerle S, Bressan S, Gianfanti F, Troiani M, Valdata A, D'Ambrosio M, Pasquini E, Varesi A, Cogo F, Mosole S, Dongilli C, Desbats MA, Contu L, Revankdar A, Chen J, Kalathur M, Perciato ML, Basilotta R, Endre L, Schauer S, Othman A, Guccini I, Saponaro M, Maraccani L, Bancaro N, Lai P, Liu L, Pernigoni N, Mele F, Merler S, Trotman LC, Guarda G, Calì B, Montopoli M, Alimonti A. Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells. Cancer Cell 2024; 42:646-661.e9. [PMID: 38428412 PMCID: PMC11003464 DOI: 10.1016/j.ccell.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones. Here, we identify the retinoic-acid-receptor (RAR) agonist adapalene as an effective pro-senescence compound in prostate cancer (PCa). Reactivation of RARs triggers a robust senescence response and a tumor-suppressive SASP. In preclinical mouse models of PCa, the combination of adapalene and docetaxel promotes a tumor-suppressive SASP that enhances natural killer (NK) cell-mediated tumor clearance more effectively than either agent alone. This approach increases the efficacy of the allogenic infusion of human NK cells in mice injected with human PCa cells, suggesting an alternative therapeutic strategy to stimulate the anti-tumor immune response in "immunologically cold" tumors.
Collapse
Affiliation(s)
- Manuel Colucci
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Faculty of Biology and Medicine, University of Lausanne UNIL, CH1011 Lausanne, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine (VIMM) & Department of Medicine, University of Padova, Padova, Italy
| | - Silvia Bressan
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Veneto Institute of Molecular Medicine (VIMM) & Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Veneto Institute of Molecular Medicine (VIMM) & Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Troiani
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, Bellinzona, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich, CH, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; MRC London Institute of Medical Sciences (LMS), London, UK
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Angelica Varesi
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Francesca Cogo
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Cristina Dongilli
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Maria Andrea Desbats
- Veneto Institute of Molecular Medicine (VIMM) & Department of Medicine, University of Padova, Padova, Italy
| | - Liliana Contu
- Veneto Institute of Molecular Medicine (VIMM) & Department of Medicine, University of Padova, Padova, Italy
| | - Ajinkya Revankdar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jingjing Chen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Madhuri Kalathur
- Children's GMP, LLC, St. Jude Children's Research Hospital, 262 Danny Thomas Place Mail Stop 920 Memphis, TN 38105, USA
| | - Maria Luna Perciato
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 viale Ferdinando D'Alcontres, Italy
| | - Laczko Endre
- Functional Genomics Center Zurich, ETHZ and University of Zurich, Zurich, CH, Switzerland
| | - Stefan Schauer
- Functional Genomics Center Zurich, ETHZ and University of Zurich, Zurich, CH, Switzerland
| | - Alaa Othman
- Functional Genomics Center Zurich, ETHZ and University of Zurich, Zurich, CH, Switzerland
| | - Ilaria Guccini
- Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich, CH, Switzerland
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine (VIMM) & Department of Medicine, University of Padova, Padova, Italy
| | - Luisa Maraccani
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine (VIMM) & Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Lei Liu
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sara Merler
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Bianca Calì
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine (VIMM) & Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Veneto Institute of Molecular Medicine (VIMM) & Department of Medicine, University of Padova, Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich, CH, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
12
|
Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Structural characterization of the DNA binding mechanism of retinoic acid-related orphan receptor gamma. Structure 2024; 32:467-475.e3. [PMID: 38309263 DOI: 10.1016/j.str.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Retinoic acid-related orphan receptor gamma (RORγ) plays critical roles in regulating various biological processes and has been linked to immunodeficiency disorders and cancers. DNA recognition is essential for RORγ to exert its functions. However, the underlying mechanism of the DNA binding by RORγ remains unclear. In this study, we present the crystal structure of the complex of RORγ1 DNA-binding domain (RORγ1-DBD)/direct repeat DNA element DR2 at 2.3 Å resolution. We demonstrate that RORγ1-DBD binds the DR2 motif as a homodimer, with the C-terminal extension (CTE) region of RORγ1-DBD contributing to the DNA recognition and the formation of dimeric interface. Further studies reveal that REV-ERB-DBD and RXR-DBD, also bind the DR2 site as a homodimer, while NR4A2-DBD binds DR2 as a monomer. Our research uncovers a binding mechanism of RORγ1 to the DR2 site and provides insights into the biological functions of RORγ1 and the broader RORs subfamily.
Collapse
Affiliation(s)
- Longying Jiang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueke Liu
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xujun Liang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hudie Wei
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuchu Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Zhuang J, Shang Q, Rastinejad F, Wu D. Decoding Allosteric Control in Hypoxia-Inducible Factors. J Mol Biol 2024; 436:168352. [PMID: 37935255 DOI: 10.1016/j.jmb.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1β). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.
Collapse
Affiliation(s)
- Jingjing Zhuang
- Marine College, Shandong University, Weihai 264209, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Rojas BL, Vazquez-Rivera E, Partch CL, Bradfield CA. Dimerization Rules of Mammalian PAS Proteins. J Mol Biol 2024; 436:168406. [PMID: 38109992 PMCID: PMC10922841 DOI: 10.1016/j.jmb.2023.168406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The PAS (PER, ARNT, SIM) protein family plays a vital role in mammalian biology and human disease. This analysis arose from an interest in the signaling mechanics by the Ah receptor (AHR) and the Ah receptor nuclear translocator (ARNT). After more than fifty years by studying this and related mammalian sensor systems, describing the role of PAS domains in signal transduction is still challenging. In this perspective, we attempt to interpret recent studies of mammalian PAS protein structure and consider how this new insight might explain how these domains are employed in human signal transduction with an eye towards developing strategies to target and engineer these molecules for a new generation of therapeutics. Our approach is to integrate our understanding of PAS protein history, cell biology, and molecular biology with recent structural discoveries to help explain the mechanics of mammalian PAS protein signaling. As a learning set, we focus on sequences and crystal structures of mammalian PAS protein dimers that can be visualized using readily available software.
Collapse
Affiliation(s)
- Brenda L Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA
| | | | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA; McArdle Laboratory for Cancer Research. University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
15
|
Daffern N, Radhakrishnan I. Per-ARNT-Sim (PAS) Domains in Basic Helix-Loop-Helix (bHLH)-PAS Transcription Factors and Coactivators: Structures and Mechanisms. J Mol Biol 2024; 436:168370. [PMID: 37992889 PMCID: PMC10922228 DOI: 10.1016/j.jmb.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
17
|
Zhang FX, Xu P, Zhang LJ, Fan R, Zhang HX, Liu DH, Liu K, Shen DY. RARγ promotes the invasion and metastasis of thyroid carcinoma by activating the JAK1-STAT3-CD24/MMPs axis. Int Immunopharmacol 2023; 125:111129. [PMID: 37897947 DOI: 10.1016/j.intimp.2023.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
The nuclear receptor superfamily RAR is generally considered to play a crucial role in the development of tumors by regulating the transcription of target genes. Nevertheless, whether RARγ performs tumor-promoting or tumor-suppressing functions and its specific mechanism in thyroid carcinoma (TC) remain unknown. Here, our study demonstrated that RARγ was abnormally overexpressed in TC tissues compared with normal thyroid tissues. Moreover, RARγ expression was remarkably correlated with cell phenotypes such as cell proliferation, migration and invasion. Mechanistically, RARγ knockdown effectively decreased the phosphorylation levels of JAK1 and STAT3, leading to decreased expression of the membrane protein CD24. In a coculture system, TC cells with high levels of CD24 in the membrane were more likely to escape phagocytosis by macrophages via the combination of CD24 with the inhibitory receptor Siglec-10 in the membrane of macrophages. In contrast, the ability of macrophages to engulf TC cells was notably elevated through exogenous addition of CD24 antibody. Collectively, our study revealed a previously undiscovered molecular mechanism of RARγ in promoting the development of TC, shedding light on RARγ as a promising therapeutic target for TC.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China; Department of General Surgery, The First Hospital Affiliated to Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Peng Xu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Lin-Jun Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Hao-Xuan Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Hua Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Ke Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China.
| |
Collapse
|
18
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
19
|
Rastinejad F. The protein architecture and allosteric landscape of HNF4α. Front Endocrinol (Lausanne) 2023; 14:1219092. [PMID: 37732120 PMCID: PMC10507258 DOI: 10.3389/fendo.2023.1219092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a multi-faceted nuclear receptor responsible for governing the development and proper functioning of liver and pancreatic islet cells. Its transcriptional functions encompass the regulation of vital metabolic processes including cholesterol and fatty acid metabolism, and glucose sensing and control. Various genetic mutations and alterations in HNF4α are associated with diabetes, metabolic disorders, and cancers. From a structural perspective, HNF4α is one of the most comprehensively understood nuclear receptors due to its crystallographically observed architecture revealing interconnected DNA binding domains (DBDs) and ligand binding domains (LBDs). This review discusses key properties of HNF4α, including its mode of homodimerization, its binding to fatty acid ligands, the importance of post-translational modifications, and the mechanistic basis for allosteric functions. The surfaces linking HNF4α's DBDs and LBDs create a convergence zone that allows signals originating from any one domain to influence distant domains. The HNF4α-DNA complex serves as a prime illustration of how nuclear receptors utilize individual domains for specific functions, while also integrating these domains to create cohesive higher-order architectures that allow signal responsive functions.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, Target Discovery Institute (NDMRB), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA. Comput Struct Biotechnol J 2023; 21:3149-3157. [PMID: 37287811 PMCID: PMC10242635 DOI: 10.1016/j.csbj.2023.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor known as bile acid receptor (BAR). FXR plays critical roles in various biological processes, including metabolism, immune inflammation, liver regeneration and liver carcinogenesis. FXR forms a heterodimer with the retinoid X receptor (RXR) and binds to diverse FXR response elements (FXREs) to exert its various biological functions. However, the mechanism by which the FXR/RXR heterodimer binds the DNA elements remains unclear. In this study, we aimed to use structural, biochemical and bioinformatics analyses to study the mechanism of FXR binding to the typical FXRE, such as the IR1 site, and the heterodimer interactions in the FXR-DBD/RXR-DBD complex. Further biochemical assays showed that RAR, THR and NR4A2 do not form heterodimers with RXR when bound to the IR1 sites, which indicates that IR1 may be a unique binding site for the FXR/RXR heterodimer. Our studies may provide a further understanding of the dimerization specificity of nuclear receptors.
Collapse
|
21
|
Jaroonwitchawan T, Arimochi H, Sasaki Y, Ishifune C, Kondo H, Otsuka K, Tsukumo SI, Yasutomo K. Stimulation of the farnesoid X receptor promotes M2 macrophage polarization. Front Immunol 2023; 14:1065790. [PMID: 36776885 PMCID: PMC9911659 DOI: 10.3389/fimmu.2023.1065790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
FXR is a key molecule that modulates anti-inflammatory activity in the intestinal-liver axis. Although FXR has pleiotropic functions including regulation of liver inflammation and activation of macrophages, it remains unclear whether it is involved in macrophage polarization. In this paper we demonstrated that stimulation of macrophages derived from the bone marrow using an FXR agonist activated polarization toward M2 but not M1 macrophages. The treatment of mice with chitin skewed macrophage polarization towards M2 macrophages, while co-treatment with an FXR agonist further promoted the polarization toward M2 macrophages in vivo. This skewed polarization towards M2 macrophages by an FXR agonist was accompanied by increased expression of signaling molecules related to the retinoic acid receptor. Inhibition of the retinoic acid receptor suppressed FXR agonist-mediated M2 macrophage polarization, indicating that this polarization was, at least, partly dependent on the retinoic acid receptor pathway. These data demonstrate that FXR has a role in polarization toward M2 macrophages and suggest a possible therapeutic potential of FXR agonists in M2 macrophage-related conditions.
Collapse
Affiliation(s)
- Thiranut Jaroonwitchawan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|