1
|
Anand-Ivell R, Coutinho AR, Dai Y, England G, Goericke-Pesch S, Ivell R. INSL3 Variation in Dogs Following Suppression and Recovery of the HPG Axis. Animals (Basel) 2024; 14:675. [PMID: 38473059 DOI: 10.3390/ani14050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a constitutive product of mature, adult-type Leydig cells of the testes and consequently in most mammals is an ideal biomarker with which to monitor pubertal development. A new heterologous time-resolved fluorescence immunoassay was developed and validated to measure circulating INSL3 in the blood of adult male dogs. Compared to other species, INSL3 concentration is low with marked variation between individuals, which appears to be independent of breed, age, or weight. A model system was then used in which a cohort of beagle dogs was subject to a GnRH-agonist implant to suppress the HPG axis and spermatogenesis, followed by implant removal and recovery. Unlike testosterone, INSL3 levels were not fully suppressed in all animals by the GnRH agonist, nor was the recovery of Leydig cell function following implant removal uniform or complete, even after several weeks. In dogs, and dissimilar from other species (including humans), Leydig-cell INSL3 appears to be quite variable between individual dogs and only weakly connected to the physiology of the HPG axis after its suppression by a GnRH-agonist implant and recovery. Consequently, INSL3 may be less useful in this species for the assessment of testis function.
Collapse
Affiliation(s)
- Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Acacia Rebello Coutinho
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Yanzhenzi Dai
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Gary England
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
2
|
Liu L, Huang W, Luo K, Zeng Y, Shao Y, Long Z. Relationship between semen parameters, serum InhB, and INSL-3 levels, and the degree of varicocele. Clinics (Sao Paulo) 2024; 79:100339. [PMID: 38330789 PMCID: PMC10864834 DOI: 10.1016/j.clinsp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal expansion of the pampininias venous plexus in the scrotum, resulting in impaired sperm production and reduced sperm quality. The exact pathophysiological mechanism leading to varicocele-related infertility has not been fully elucidated. Although treatable, varicocele may lead to male infertility. OBJECTIVE To investigate the relationship between semen parameters, serum InhB and INSL-3 levels, and the degree of varicocele in male patients. METHODS Serum InhB and INSL-3 were detected. To evaluate the relationship between semen parameters and serum InhB and INSL-3 levels. To evaluate the value of semen parameters and serum InhB and INSL-3 levels in distinguishing disease severity in patients with varicocele. RESULTS Serum INSL-3 in patients with varicocele decreased with the severity of the disease. Serum INSL-3 was positively correlated with total sperm count and frequency of normal sperm morphology. There was a weak correlation between serum InhB and semen volume, concentration, and total sperm. Patients with different disease severity were similar within the groups, with partial overlap or similarity between varicocele Grade I and Grade II, and significant differences between Grade III and Grade I and II. Semen volume, concentration, total sperm, normal sperm morphology, and serum InhB and INSL-3 levels could distinguish the degree of varicocele. CONCLUSION Semen parameters and the combination of serum InhB and INSL-3 levels in patients with varicocele are closely related to the severity of the disease. Serum INSL-3 is expected to be a potential biomarker for early clinical intervention.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China
| | - WenJie Huang
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China.
| | - KeBing Luo
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China
| | - YiZhou Zeng
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China
| | - YunHao Shao
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China
| | - ZongMin Long
- Department of Urinary Surgery, The First people's hospital of Zunyi City (The third affiliated hospital of Zunyi Medical University), Zunyi, Guizhou Province, China
| |
Collapse
|
3
|
Kawate N. Insulin-like peptide 3 in domestic animals with normal and abnormal reproductive functions, in comparison to rodents and humans. Reprod Med Biol 2022; 21:e12485. [PMID: 36310659 PMCID: PMC9601793 DOI: 10.1002/rmb2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background Insulin-like peptide 3 (INSL3) is a circulating hormone secreted from only testis and ovaries in mammals. Findings on INSL3 have been gathered from subjects with normal and abnormal reproductive statuses, especially rodents and humans. However, little to no review articles focusing on INSL3 in domestic animals exist. Methods The author reviewed the past and recent literature regarding the structure, expression, roles of INSL3 in the reproductive organs, and its circulation under normal and aberrant reproductive conditions in domestic animals in comparison with rodents and humans. Main findings As with humans and rodents, blood INSL3 concentrations rise around puberty in normal male domestic animals and are associated with testicular size. INSL3 levels are acutely upregulated by luteinizing hormone (LH), and the increase is smaller than that of testosterone in male ruminants, whereas the acute regulation of INSL3 by LH does not occur in human men. Dogs with cryptorchidism and bulls with abnormal semen have lowered INSL3 levels. Conclusion The findings regarding INSL3 secretions in male domestic animals with normal and aberrant reproductive functions illustrate similar or dissimilar points to humans and rodents. Data on blood INSL3 levels in normal and abnormal female domestic species are still limited and require further investigation.
Collapse
Affiliation(s)
- Noritoshi Kawate
- Graduate School of Veterinary ScienceOsaka Metropolitan UniversityIzumisanoJapan
| |
Collapse
|
4
|
Kohsaka T, Yoneda Y, Yoshida T, Minagawa I, Pitia AM, Iwasawa A, Ikegaya N. Relaxin exerts a protective effect during ischemia-reperfusion in the rat model. Andrology 2021; 10:179-189. [PMID: 34435470 DOI: 10.1111/andr.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Testicular torsion, which causes ischemia-reperfusion (IR) injury, is a serious urological emergency that can lead to testicular dysfunction, including infertility, primarily among newborn and pubertal males; thus, effective drugs should be administered during or after ischemia. OBJECTIVES Using a rat model of testicular IR injury, the present study investigated the protective effects of relaxin (RLN) against oxidative stress, testicular dysfunction, inflammation, histological damage, arrested spermatogenesis, and germ cell apoptosis as well as explored the usefulness of RLN as a potential protective drug for IR injury combined with surgical treatment. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to left testicular ischemia for 2 h, followed by 24 h of reperfusion. They were subsequently divided into three groups: sham, IR, and IR + RLN groups. Porcine RLN (500 ng/h) or saline was infused using an implanted osmotic mini-pump 90 min after inducing ischemia. The RLN dose used herein was that which resulted in serum RLN levels comparable to those in mid-pregnant rats based on previous studies. RESULTS Testicular IR increased germ cell apoptosis and histological damage as well as promoted disorganized and arrested spermatogenesis, accompanied by a significant increase in oxidative stress and inflammation. However, RLN administration ameliorated the adverse consequences associated with IR injury by attenuating oxidative stress and mitigating apoptosis and inflammation. DISCUSSION AND CONCLUSION The study findings clearly demonstrated that RLN exerts a protective effect against IR-induced testicular injury by attenuating oxidative stress, apoptosis, and inflammation, suggesting that RLN together with surgical treatment is a potentially efficacious approach toward ameliorating testicular dysfunction following testicular torsion.
Collapse
Affiliation(s)
- Tetsuya Kohsaka
- Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | | | - Takuya Yoshida
- Department of Clinical Nutrition, University of Shizuoka, Shizuoka, Japan
| | - Itaru Minagawa
- Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Ali M Pitia
- Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Atsushi Iwasawa
- Department of Agricultural and Environmental Science, Gifu University, Gifu, Japan
| | - Naoki Ikegaya
- Department of Medicine, Yaizu Municipal General Hospital, Shizuoka, Japan
| |
Collapse
|
5
|
Yamamoto Y, Okano T, Yamada H, Akashi K, Sendo S, Ueda Y, Morinobu A, Saegusa J. Soluble guanylate cyclase stimulator reduced the gastrointestinal fibrosis in bleomycin-induced mouse model of systemic sclerosis. Arthritis Res Ther 2021; 23:133. [PMID: 33941248 PMCID: PMC8091711 DOI: 10.1186/s13075-021-02513-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic autoimmune-mediated connective tissue disorder. Although the etiology of the disease remains undetermined, SSc is characterized by fibrosis and proliferative vascular lesions of the skin and internal organs. SSc involves the gastrointestinal tract in more than 90 % of patients. Soluble guanylate cyclase (sGC) stimulator is used to treat pulmonary artery hypertension (PAH) and has been shown to inhibit experimental skin fibrosis. METHODS Female C57BL/6J mice were treated with BLM or normal saline by subcutaneous implantation of osmotic minipump. These mice were sacrificed on day 28 or day 42. Gastrointestinal pathologies were examined by Masson Trichrome staining. The expression of fibrosis-related genes in gastrointestinal tract was analyzed by real-time PCR, and the levels of collagen in the tissue were measured by Sircol collagen assay. To evaluate peristaltic movement, the small intestinal transport (ITR%) was calculated as [dyeing distance × (duodenum - appendix)] - 1 × 100 (%). We treated BLM-treated mice with sGC stimulator or DMSO orally and analyzed them on day 42. RESULTS Histological examination revealed that fibrosis from lamina propria to muscularis mucosa in the esophagus was significantly increased in BLM-treated mice, suggesting that BLM induces esophageal hyperproliferative and prefibrotic response in C57BL/6J mice. In addition, the gene expression levels of Col3a1, CCN2, MMP-2, MMP-9, TIMP-1, and TIMP-2 in the esophagus were significantly increased in BLM-treated mice. More severe hyperproliferative and prefibrotic response was observed in the mice sacrificed on day 42 than the mice sacrificed on day 28. The ITR% was found to be significantly lower in BLM-treated mice, suggesting that gastrointestinal peristaltic movement was reduced in BLM-treated mice. Furthermore, we demonstrated that sGC stimulator treatment significantly reduced hyperproliferative and prefibrotic response of esophagus and intestine in BLM-treated mice, by histological examination and Sircol collagen assay. CONCLUSIONS These findings suggest that BLM induces gastrointestinal hyperproliferative and prefibrotic response in C57BL/6J mice, and treatment with sGC stimulator improves the BLM-induced gastrointestinal lesion.
Collapse
Affiliation(s)
- Yuzuru Yamamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kengo Akashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.
| |
Collapse
|
6
|
Correlation Networks Provide New Insights into the Architecture of Testicular Steroid Pathways in Pigs. Genes (Basel) 2021; 12:genes12040551. [PMID: 33918852 PMCID: PMC8069258 DOI: 10.3390/genes12040551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Steroid metabolism is a fundamental process in the porcine testis to provide testosterone but also estrogens and androstenone, which are essential for the physiology of the boar. This study concerns boars at an early stage of puberty. Using a RT-qPCR approach, we showed that the transcriptional activities of several genes providing key enzymes involved in this metabolism (such as CYP11A1) are correlated. Surprisingly, HSD17B3, a key gene for testosterone production, was absent from this group. An additional weighted gene co-expression network analysis was performed on two large sets of mRNA-seq to identify co-expression modules. Of these modules, two containing either CYP11A1 or HSD17B3 were further analyzed. This comprehensive correlation meta-analysis identified a group of 85 genes with CYP11A1 as hub gene, but did not allow the characterization of a robust correlation network around HSD17B3. As the CYP11A1-group includes most of the genes involved in steroid synthesis pathways (including LHCGR encoding for the LH receptor), it may control the synthesis of most of the testicular steroids. The independent expression of HSD17B3 probably allows part of the production of testosterone to escape this control. This CYP11A1-group contained also INSL3 and AGT genes encoding a peptide hormone and an angiotensin peptide precursor, respectively.
Collapse
|
7
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
8
|
Ivell R, Alhujaili W, Kohsaka T, Anand-Ivell R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen Comp Endocrinol 2020; 299:113583. [PMID: 32800774 DOI: 10.1016/j.ygcen.2020.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular descent into a scrotum, and also appears to be associated with male phenotype, in particular horn and skeletal growth. Circulating INSL3 is produced exclusively by the mature testicular Leydig cells in male mammals and acts as a potent biomarker for testis development during fetal and pubertal development as well as in ageing. As such it can be used also to monitor seasonally breeding animals as well as to investigate environmental or lifestyle conditions affecting development. Nevertheless, most information about INSL3 and RXFP2 comes from a very limited selection of species; it will be especially useful to gain further information from a more diverse range of animals, especially those whose evolution has led them to express unusual reproductive phenotypes.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE2 5RD, UK.
| | - Waleed Alhujaili
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK
| | - Tetsuya Kohsaka
- Dept. of Applied Life Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | |
Collapse
|
9
|
Shokri S, Tavalaee M, Ebrahimi SM, Ziaeipour S, Nasr-Esfahani MH, Nejatbakhsh R. Expression of RXFP2 receptor on human spermatozoa and the anti-apoptotic and antioxidant effects of insulin-like factor 3. Andrologia 2020; 52:e13715. [PMID: 32557760 DOI: 10.1111/and.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Insulin-like factor 3 (INSL3) has an important role in the human reproductive system; however, its detailed function is still mysterious. We aimed to investigate the possibility of expression of RXFP2 receptor on human spermatozoa and to determine the anti-apoptotic and antioxidant mechanism derived the binding of INSL3 and RXFP2. In this experimental study, the expression/location of the RXFP2 receptor was determined on the spermatozoa of fertile and infertile men. Twenty samples from 20 fertile men were collected and divided into 6 parts (control group, and five groups treated with INSL3 10, 100, 250, 500, 1,000 ng/ml). DNA damage, active caspase, reactive oxygen species (ROS) and sperm parameters were evaluated by TUNEL, flow cytometry, optical microscope and computer-assisted sperm analysis. The expression of RXFP2 was confirmed by Western blot. Immunocytochemistry illustrated that this receptor is expressed in the posterior half of the spermatozoa's head. The INSL3 at concentrations of 500 and 1,000 ng/ml reduced the active caspase and mitochondrial ROS, and also reduced DNA fragmentation at 1,000 ng/ml. Besides, INSL3 500 and 1,000 ng/ml significantly increased the sperm motility. This study confirmed the presence of RXFP2 receptor in fertile and infertile men's spermatozoa, indicating the highly dose-dependent efficacy of the INSL3, which may have promising impacts on the in-vitro fertilisation outcomes.
Collapse
Affiliation(s)
- Saeed Shokri
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Tavalaee
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyyed Meisam Ebrahimi
- Department of Medical Surgical Nursing, Abhar School of Nursing, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sanaz Ziaeipour
- Department of Anatomical Sciences, School of Medicine, Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
He Y, Maltecca C, Tiezzi F, Soto EL, Flowers WL. Transcriptome analysis identifies genes and co-expression networks underlying heat tolerance in pigs. BMC Genet 2020; 21:44. [PMID: 32316933 PMCID: PMC7171765 DOI: 10.1186/s12863-020-00852-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress adversely affects pig growth and reproduction performance by reducing feed intake, weight gain, farrowing rate, and litter size. Heat tolerance is an important characteristic in pigs, allowing them to mitigate the negative effects of heat stress on their physiological activities. Yet, genetic variation and signaling pathways associated with the biological processes of heat-tolerant pigs are currently not fully understood. This study examined differentially expressed genes and constructed gene co-expression networks on mRNAs of pigs under different heat-stress conditions using whole transcriptomic RNA-seq analyses. Semen parameters, including total sperm number per ejaculate, motility, normal morphology rate, droplets, and rejected ejaculate rate, were measured weekly on 12 boars for two time periods: thermoneutral (January to May), and heat stress (July to October). Boars were classified into heat-tolerant (n = 6) and heat-susceptible (n = 6) groups based on the variation of their ejaculate parameters across the two periods. RNA was isolated from the blood samples collected from the thermoneutral and heat stress periods for gene expression analysis. RESULTS Under heat stress, a total of 66 differentially expressed genes (25 down-regulated, 41 up-regulated) were identified in heat-tolerant pigs compared to themselves during the thermoneutral period. A total of 1041 differentially expressed genes (282 down-regulated, 759 up-regulated) were identified in the comparison between heat-tolerant pigs and heat-susceptible pigs under heat stress. Weighted gene co-expression network analysis detected 4 and 7 modules with genes highly associated (r > 0.50, p < 0.05) with semen quality parameters in heat-tolerant and heat-susceptible pigs under the effects of heat stress, respectively. CONCLUSION This study utilized the sensitivity of semen to heat stress to discriminate the heat-tolerance ability of pigs. The gene expression profiles under the thermoneutral and heat stress conditions were documented in heat-tolerant and heat-susceptible boars. Findings contribute to the understanding of genes and biological mechanisms related to heat stress response in pigs and provide potential biomarkers for future investigations on the reproductive performance of pigs.
Collapse
Affiliation(s)
- Yuqing He
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Emmanuel Lozada Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - William L. Flowers
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| |
Collapse
|
11
|
Kohsaka T, Minagawa I, Morimoto M, Yoshida T, Sasanami T, Yoneda Y, Ikegaya N, Sasada H. Efficacy of relaxin for cisplatin-induced testicular dysfunction and epididymal spermatotoxicity. Basic Clin Androl 2020; 30:3. [PMID: 32166037 PMCID: PMC7061478 DOI: 10.1186/s12610-020-0101-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cisplatin (CP) is an extremely effective anticancer agent widely used to treat various cancer types, however, the potential side effects include testicular dysfunction. This study was to investigate, using a rat model of CP-induced testicular dysfunction, the protective effects of relaxin (RLN) against oxidative stress, testicular function, histological damage, spermatogenesis, germ-cell apoptosis, and sperm output, and to explore the usefulness of RLN as a potential protective drug for use with CP in chemotherapeutic treatments. Methods Sprague-Dawley male rats were used, which were divided into three groups: sham control, CP, and CP + RLN. Porcine RLN (500 ng/h) or saline was infused for 5 days using an implanted osmotic mini-pump following intraperitoneal injection of CP (6 mg/kg). RLN dose was chosen based on previous studies showing that it resulted in serum relaxin levels comparable to those in rats at the middle of pregnancy. At 5 days after CP administration, samples were collected and assessment of testicular histopathology, germ-cell apoptosis, oxidative stress, lipid peroxidation, and sperm quality was performed as main measures. Results The testicular CP model showed reduced testis weight and significantly decreased spermatogenesis scores. Additionally, CP administration induced a 4.6-fold increase in the apoptotic index associated with a significant increase in oxidative stress and upregulation of pro-apoptotic Casp3 and downregulation of anti-apoptotic Bcl2 levels, resulting in a marked reduction in sperm concentration. However, RLN administration caused a significant reduction in CP-mediated damage by attenuating oxidative stress and cell apoptosis. RLN administration efficiently scavenged ROS via the activation of SOD, CAT, and GPx and upregulation of GSH to prevent lipid peroxidation and decreased apoptosis by altering Bcl2 and Casp3 expression, thereby reducing histopathological damage and restoring spermatogenesis. Furthermore, RLN ameliorated attenuated sperm motility in the cauda epididymis resulting from CP treatment. Conclusions This study clearly indicates that RLN exerts a protective effect against CP-induced testicular damage through attenuation of oxidative stress and suppression of apoptosis. Our findings suggest RLN as a potentially efficacious drug for use with cisplatin chemotherapy in order to ameliorate CP-induced side effects and testicular injury adversely affecting spermatogenesis, sperm quality, and oxidative-stress parameters.
Collapse
Affiliation(s)
- Tetsuya Kohsaka
- 1Department of Applied Life Sciences, Animal Reproduction & Physiology Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Itaru Minagawa
- 1Department of Applied Life Sciences, Animal Reproduction & Physiology Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Masashi Morimoto
- 1Department of Applied Life Sciences, Animal Reproduction & Physiology Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Takuya Yoshida
- 2Department of Clinical Nutrition, School of Food and Nutritional Science, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Tomohiro Sasanami
- 1Department of Applied Life Sciences, Animal Reproduction & Physiology Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Yoshitaka Yoneda
- Advanced Reproductive Medical Center, Shizuoka Ladies Clinic, Shizuoka, 420-0837 Japan
| | - Naoki Ikegaya
- Department of Medicine, Yaizu Municipal General Hospital, Shizuoka, 422-8505 Japan
| | - Hiroshi Sasada
- 5Division of Animal Science, Kitasato University School of Veterinary Medicine, Towada, 034-8628 Japan
| |
Collapse
|
12
|
Anand-Ivell R, Byrne CJ, Arnecke J, Fair S, Lonergan P, Kenny DA, Ivell R. Prepubertal nutrition alters Leydig cell functional capacity and timing of puberty. PLoS One 2019; 14:e0225465. [PMID: 31751436 PMCID: PMC6872131 DOI: 10.1371/journal.pone.0225465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Leydig cell functional capacity reflects the numbers and differentiation status of the steroidogenic Leydig cells in the testes and becomes more or less fixed in early adulthood with the final establishment of the hypothalamo-pituitary-gonadal (HPG) axis after puberty. Factors influencing Leydig cell functional capacity and its role in puberty are poorly understood. Using a bovine model of dairy bulls fed four different nutritional regimes from 1 month to 12 months, and applying circulating Insulin-like peptide 3 (INSL3) as an accurate biomarker of Leydig cell functional capacity, showed that a high plane of nutrition in the first 6 months of life, but not later, significantly increased INSL3 in young adulthood. Moreover, INSL3 concentration at 4 months indicated a marked differential in early feeding regime and correlated well (negatively) with the timing of puberty, as reflected by the age in days for the first production of an ejaculate with >50 million sperm and >10% forward motility, as well as with testis size at 18 months. Reversing the diet at 6 months was unable to rectify the trend in either parameter, unlike for other parameters such as testosterone, body weight, and scrotal circumference. This study has shown that early prepubertal nutrition is a key factor in the development of Leydig cell functional capacity in early adulthood and appears to be a key driver in the dynamic progression of puberty.
Collapse
Affiliation(s)
- Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail:
| | - Colin J. Byrne
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jonas Arnecke
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
13
|
Ivell R, Anand-Ivell R. Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Hum Reprod Update 2018; 24:639-651. [DOI: 10.1093/humupd/dmy029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | |
Collapse
|
14
|
Minagawa I, Murata Y, Terada K, Shibata M, Park EY, Sasada H, Kohsaka T. Evidence for the role of INSL3 on sperm production in boars by passive immunisation. Andrologia 2018; 50:e13010. [DOI: 10.1111/and.13010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- I. Minagawa
- Department of Applied Life Science; Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| | - Y. Murata
- Department of Agriculture; Graduate School of Integrated Science and Technology; Shizuoka University; Shizuoka Japan
| | - K. Terada
- Shizuoka Swine and Poultry Experimental Station; Kikugawa Japan
| | - M. Shibata
- Shizuoka Swine and Poultry Experimental Station; Kikugawa Japan
| | - E. Y. Park
- Research Institute of Green Science and Technology; Shizuoka University; Shizuoka Japan
- Department of Bioscience; Graduate School of Science and Technology; Shizuoka University; Shizuoka Japan
| | - H. Sasada
- School of Veterinary Science; Kitasato University; Towada Japan
| | - T. Kohsaka
- Department of Applied Life Science; Faculty of Agriculture; Shizuoka University; Shizuoka Japan
- Department of Agriculture; Graduate School of Integrated Science and Technology; Shizuoka University; Shizuoka Japan
| |
Collapse
|
15
|
Miyazaki T, Ishizaki M, Dohra H, Park S, Terzic A, Kato T, Kohsaka T, Park EY. Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Sci Rep 2017; 7:17339. [PMID: 29229959 PMCID: PMC5725452 DOI: 10.1038/s41598-017-17707-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a member of the relaxin/insulin superfamily and is expressed in testicular Leydig cells. Essential for fetal testis descent, INSL3 has been implicated in testicular and sperm function in adult males via interaction with relaxin/insulin-like family peptide receptor 2 (RXFP2). The INSL3 is typically prepared using chemical synthesis or overexpression in Escherichia coli followed by oxidative refolding and proteolysis. Here, we expressed and purified full-length porcine INSL3 (pINSL3) using a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system. Biophysical measurements and proteomic analysis revealed that this recombinant pINSL3 exhibited the correct conformation, with the three critical disulfide bonds observed in native pINSL3, although partial cleavage occurred. In cAMP stimulation assays using RXFP2-expressing HEK293 cells, the recombinant pINSL3 possessed full biological activity. This is the first report concerning the production of fully active pINSL3 without post-expression treatments and provides an efficient production platform for expressing relaxin/insulin superfamily peptides.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masaaki Ishizaki
- Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tetsuya Kohsaka
- Laboratory of Animal Reproduction and Physiology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
16
|
Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 2016; 88:678-690. [PMID: 27592693 DOI: 10.1111/asj.12694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires.
Collapse
Affiliation(s)
- Ali M Pitia
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroaki Sano
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Yoshiaki Minato
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tetsuya Kohsaka
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
17
|
Vernunft A, Ivell R, Heng K, Anand-Ivell R. The Male Fetal Biomarker INSL3 Reveals Substantial Hormone Exchange between Fetuses in Early Pig Gestation. PLoS One 2016; 11:e0152689. [PMID: 27031644 PMCID: PMC4816311 DOI: 10.1371/journal.pone.0152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca. 114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus.
Collapse
Affiliation(s)
- Andreas Vernunft
- FBN Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Braun BC, Müller K, Jewgenow K. Expression profiles of relaxin family peptides and their receptors indicate their influence on spermatogenesis in the domestic cat (Felis catus). Domest Anim Endocrinol 2015; 52:25-34. [PMID: 25704248 DOI: 10.1016/j.domaniend.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Abstract
Disturbed spermatogenesis is a common problem in felines. Studying spermatogenesis in the domestic cat can improve the understanding of the biological background and help to counteract fertility problems in other feline species. Here, we analyzed 3 relaxin family peptides (relaxin, relaxin-3, and INSL3) and their receptors (RXFP1, RXFP2, and RXFP3) as potential spermatogenic factors involving their expression in the testis at different stages of its development. It may be concluded from its stage-dependent expression that relaxin, together with RXFP1, appears to be involved in the first stage of spermatogenesis, whereas relaxin-3 via binding to RXFP3 influences spermiogenesis. Furthermore, correlations were observed between relaxin, relaxin-3, RXFP1, RXFP2 and RXFP3 messenger RNA expression, and the relative numbers of haploid cells in testes. The peptide INSL3 was highly expressed at all testis development stages. Because of the low and stage-independent expression of its receptor RXFP2, an auto- and/or paracrine function of INSL3 in spermatogenesis seems unlikely. In the adult testis, messenger RNA expression of relaxin, RXFP1, and RXFP3 predominantly occurs in the tubular testis compartment, whereas INLS3 is mainly expressed in the interstitium.
Collapse
Affiliation(s)
- B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany.
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| | - K Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| |
Collapse
|
19
|
INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell Tissue Res 2015; 363:579-88. [PMID: 26077926 PMCID: PMC4735252 DOI: 10.1007/s00441-015-2213-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/08/2015] [Indexed: 01/04/2023]
Abstract
INSL3 (insulin-like peptide 3) is a relaxin peptide family member expressed by Leydig cells in the vertebrate testis. In mammals, INSL3 mediates testicular descent during embryogenesis but information on its function in adults is limited. In fish, the testes remain in the body cavity, although the insl3 gene is still expressed, suggesting yet undiscovered, evolutionary older functions. Anti-Müllerian hormone (Amh), in addition to inhibiting spermatogonial differentiation and androgen release, inhibits the Fsh (follicle-stimulating hormone)-induced increase in insl3 transcript levels in zebrafish testis. Therefore, the two growth factors might have antagonistic effects. We examine human INSL3 (hINSL3) effects on zebrafish germ cell proliferation/differentiation and androgen release by using a testis tissue culture system. hINSL3 increases the proliferation of type A undifferentiated (Aund) but not of type A differentiating (Adiff) spermatogonia, while reducing the proliferation of Sertoli cells associated with proliferating Aund. Since the area occupied by Aund decreases and that of Adiff increases, we conclude that hINSL3 recruits Aund into differentiation; this is supported by the hINSL3-induced down-regulation of nanos2 transcript levels, a marker of single Aund spermatogonia in zebrafish and other vertebrates. Pulse-chase experiments with a mitosis marker also indicate that hINSL3 promotes spermatogonial differentiation. However, hINSL3 does not modulate basal or Fsh-stimulated androgen release or growth factor transcript levels, including those of amh. Thus, hINSL3 seems to recruit Aund spermatogonia into differentiation, potentially mediating an Fsh effect on spermatogenesis.
Collapse
|
20
|
Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 2015; 362:407-20. [PMID: 26017634 DOI: 10.1007/s00441-015-2206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.
Collapse
|
21
|
Feugang JM, Greene JM, Sanchez-Rodríguez HL, Stokes JV, Crenshaw MA, Willard ST, Ryan PL. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reprod Biol Endocrinol 2015; 13:46. [PMID: 25990010 PMCID: PMC4445784 DOI: 10.1186/s12958-015-0043-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/08/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars. METHODS Spermatozoa were harvested from three fertile boars and reproductive tract (testes and epididymis) and sex accessory gland (prostate and seminal vesicles) tissues were collected post-mortem from each boar. Epididymis ducts were sectioned into caput, corpus, and cauda regions, and spermatozoa were mechanically collected. All samples were subjected to immunofluorescence and/or western immunoblotting for relaxin, RXFP1, and RXFP2 detection. Immunolabeled-spermatozoa were submitted to flow cytometry analyses and data were statistically analyzed with ANOVA. RESULTS Both receptors were detected in all tissues, with a predominance of mature and immature isoforms of RXFP1 and RXFP2, respectively. Relaxin signals were found in the testes, with Leydig cells displaying the highest intensity compared to other testicular cells. The testicular immunofluorescence intensity of relaxin was greater than that of other tissues. Epithelial basal cells exhibited the highest relaxin immunofluorescence intensity within the epididymis and the vas deferens. The luminal immunoreactivity to relaxin was detected in the seminiferous tubule, epididymis, and vas deferens ducts. Epididymal and ejaculated spermatozoa were immunopositive to relaxin, RXFP1, and RXFP2, and epididymal corpus-derived spermatozoa had the highest immunoreactivities across epididymal sections. Both vas deferens-collected and ejaculated spermatozoa displayed comparable, but lowest immunofluorescence signals among groups. The entire sperm length was immunopositive to both relaxin and receptors, with relaxin signal being robust in the acrosome area and RXFP2, homogeneously distributed than RXFP1 on the head of ejaculated spermatozoa. CONCLUSIONS Immunolocalization indicates that relaxin-receptor complexes may have important roles in boar reproduction and that spermatozoa are already exposed to relaxin upon their production. The findings suggest autocrine and/or paracrine actions of relaxin on spermatozoa, either before or after ejaculation, which have possible roles on the fertilizing potential of spermatozoa.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Jonathan M Greene
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiological Sciences, Robert P. Hanson Biomedical Sciences Laboratories, University of Wisconsin, Madison, WI, 53706, USA.
| | - Hector L Sanchez-Rodríguez
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Animal Science, Mayaguez Campus, University of Puerto Rico, Mayaguez, Puerto Rico.
| | - John V Stokes
- Department of Basic Sciences, Flow Cytometry facility core, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|